
Lazy Employee

An office empoyee takes L minutes to serve a customer.
How slowly can he work?

• n customers arrive at times t1, t2, . . . , tn ∈ N+

• The last customer must leave by time T (closing time).

• The employee can only serve one customer at a time.

• The employee starts serving the next customer as soon as
it finishes the current one. If no customer is available, he
has to wait for one to arrive.

Goal: Maximize L ∈ N+.
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• 3 customers arrive at times t1 = 2, t2 = 7, t3 = 10

• Last customer must leave by time T = 16
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• 3 customers arrive at times t1 = 2, t2 = 7, t3 = 10

• Last customer must leave by time T = 16
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2 7 10





A simple solution

• For each possible value of L = 1, . . . , T + 1

// Check whether all clients can be serverd

• Stop at the first value of L for which clients can’t be served

• Return L− 1

• While there are unserved clients

• Find and serve next client



A simple solution

• For each possible value of L = 1, . . . , T + 1

// Check whether all clients can be serverd

• Stop at the first value of L for which clients can’t be served

• Return L− 1

• While there are unserved clients

• Find and serve next client

O(T )

O(n)

O(n)

Time complexity: O(T · n2)



A simple solution

• For each possible value of L = 1, . . . , T + 1

// Check whether all clients can be serverd

• Stop at the first value of L for which clients can’t be served

• Return L− 1

• Preprocessing: Sort t1, . . . , tn

• While there are unserved clients

• Find and serve next client

O(T )

O(n)

O(n log n)

O(1)

Time complexity: O(Tn+ n log n) = O(Tn)

(since we can assume T ≥ n)



A simple solution

• For each possible value of L = 1, . . . , T + 1

// Check whether all clients can be serverd

• Stop at the first value of L for which clients can’t be served

• Return L− 1

• Preprocessing: Sort t1, . . . , tn

• While there are unserved clients

• Find and serve next client

O(T )

O(n)

O(n log n)

O(1)

Time complexity: O(Tn+ n log n) = O(Tn)

(since we can assume T ≥ n)

Trick/Technique: Sorting

Sorting can be a powerful preprocessing step.



A Possible Implementation

std::sort(arrival_times.begin(), arrival_times.end());

int L;

for(L=2; L<=T+1; L++)

{

int time = 1; //Next available time

for(const int t : arrival_times)

time = std::max(time, t) + L;

if(time > T)

break;

}

std::cout << L-1 << "\n";



A Key Observation

Definition: We say that L is feasible if it allows to serve all
customers by time T .

Observation: The property of being feasible is monotone
w.r.t. L.

For L > 1, feasible(L) =⇒ feasible(L− 1).
and ¬ feasible(L− 1) =⇒ ¬ feasible(L).

L
1 T + 1
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Proof sketch

Suppose w.l.o.g. that the tis are sorted. Let cTi the time after
serving the i customres arriving at times t1, . . . , ti.

We prove by induction on i that ∀i = 1, . . . , n cL+1
i > cLi .

Base case (i = 1):

cL+1
1 = t1 + L+ 1 > t1 + L = cL1 .

Induction step (i > 1):

cL+1
i = max{cL+1

i−1 , ti}+ L+ 1 > max{cLi−1, ti}+ L = cLi .



A Key Observation

Definition: We say that L is feasible if it allows to serve all
customers by time T .

Observation: The property of being feasible is monotone
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Trick/Technique: Binary Search

Use binary search to efficiently find the largest feasible
value of a monotone property.



A Possible Implementation
//Returns the largest index i in [min, max] such that

//p(i) is true.

//If no such index exists returns max.

template<typename T>

T binary_search(T min, T max, bool (*p)(T) )

{

while(min != max)

{

if(T mid = (min+max)/2; p(mid))

min = mid+1;

else

max = mid;

}

return min;

}

Time complexity: O(log(max−min))



A Possible Implementation

bool feasible(int L)

{

int time=1;

for(const int t : arrival_times)

time = std::max(time, t) + L;

return time<=T;

}

std::sort(arrival_times.begin(), arrival_times.end());

std::cout << binary_search(1, T, feasible) << "\n";
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Exponential Search

Idea: Check U = 1, 2, 4, 8, . . . , until feasible(U) is false.

=⇒ U ∈ (L, 2L].
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Exponential Search

Idea: Check U = 1, 2, 4, 8, . . . , until feasible(U) is false.

=⇒ U ∈ (L, 2L].

Trick/Technique: Exponential Search

Use exponential search to efficiently find an upper bound
for applying binary search.
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//If p(min) is false returns p(min)

//Otherwise returns an index min+i in (min, max] such that

//p(min+i) is false and p(min+i/2) is true.

//If no such index exists returns max.

template<typename T>

T exponential_search(T min, T max, bool (*p)(T) )

{

if(!p(min))

return min;

for(T i=1; min+i<max; i*=2)

if(!p(min+i))

return min+i;

return max;

}

Time complexity: O(log(max−min))

A Possible Implementation



std::sort(arrival_times.begin(), arrival_times.end());

int U = exponential_search(1, T+1, feasible); //here U >= 2

std::cout << binary_search(U/2, U, feasible);

Time complexity: O(n logL)

A Possible ImplementationA Possible Implementation

(instead of O(n log T ))
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Sorting can be a powerful preprocessing step.
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