
1

Texas Tech University Knowledge Representation Group

The Syntax and Semantics of

A-Prolog

In this section we give a mathematical intro-

duction to a knowledge representation language

A-Prolog.

The language will be used to illustrate many

of the theoretical ideas of AI and at the same

time serve as a basic for the development of

various applications.

Despite the simplicity of the language under-

standing of this material will require certain

level of mathematical sophistication.



2

Texas Tech University Knowledge Representation Group

Declarative Languages - basic idea

• A declarative program (DP) is a collection of

statements describing objects of a domain and

their properties.

• Semantics defines a notion of a model of a DP

(i.e. a possible state of the world compatible

with the DP statements) and characterizes the

collection of valid consequences of a program.

• Various tasks are reduced to finding models

or computing consequences of a DP.

• Models are found and/or consequences are

computed by general purpose reasoning algo-

rithms often called inference engines.



3

Texas Tech University Knowledge Representation Group

Declarative Languages - basic

terminology

SIGNATURE is a four-tuple

σ = 〈O,F ,P,V〉

of (disjoint) sets.

Elements of O,F ,P are called Object, Func-

tion, and Predicate symbols (or constants) re-

spectively. Predicate constants are used to

name relations between the domain’s objects,

Each function and predicate symbol is associ-

ated with its arity - an integer indicating the

number of symbol’s parameters. Normally, ar-

ity will be determined from the context.

Elements of V are called (object) Variables.



4

Texas Tech University Knowledge Representation Group

Declarative Languages - basic

terminology

TERMS (over σ) are defined as follows:

1. Variables and object constants are terms.

2. If t1, . . . , tn are terms and f ∈ F then f (t1, . . . , tn)

is a term. Terms not containing variables are

called Ground. They are used to name the

domain’s objects.

ATOM is an expression of the form p(t1, . . . , tn)

where p ∈ P and t1, . . . , tn are terms. If t’s are

ground then p(t1, . . . , tn) says that objects de-

noted by t1, . . . , tn satisfy property p.

LITERAL is an atom, p(t1, . . . , tn), or its nega-

tion, ¬p(t1, . . . , tn).



5

Texas Tech University Knowledge Representation Group

The syntax of A-Prolog

• A program Π of A-Prolog (sometimes called

a knowledge base) consists of a signature σ and

a collection of rules of the form (1):

l0 or . . . or li ← li+1, . . . , lm, not lm+1, . . . , not ln.

where l’s are literals of σ.

The left-hand side of a rule is called the Head

and the right-hand side the Body. Both, the

head and the body can be empty.

A rule with the empty head is often referred to

as a Constraint. A rule with the empty body

is often referred to as a Fact and written as

l0 or . . . or li.



6

Texas Tech University Knowledge Representation Group

The syntax of A-Prolog

Object, function and predicate symbols of σ

are denoted by identifiers starting with small

letters. Variables are identifiers starting with

the capital ones.

Variables of Π range over ground terms of σ.

A rule r with variables is viewed as a set of

its ground instantiations - rules obtained from

r by replacing r’s variables by ground terms

of σ. This means that it is enough to define

the semantics of ground (i.e. not containing

variables) programs.

Symbol not is called Default Negation, or

Negation as Failure. The disjunction or is

sometimes called Epistemic Disjunction.



7

Texas Tech University Knowledge Representation Group

More notation and terminology

The following notation will be used throughout

the course: Given a rule r,

head(r) = {l0, . . . , li}

pos(r) = {li+1, . . . , lm}

neg(r) = {lm+1, . . . , ln}

Rule r can be written as H ← B+, B− where

H = head(r), B+ = pos(r), and B− = neg(r).

A ground set S of literals Satisfies a rule r

(Closed under r) if one of the following con-

ditions hold:

pos(r) 6⊆ S

neg(r) ∩ S 6= ∅

head(r) ∩ S 6= ∅



8

Texas Tech University Knowledge Representation Group

For example, let r be the rule

p(a)← q(b),¬t(c).

and let

S = {¬p(a), q(b),¬t(c)}

Let us check if S satisfies r. By definition,

pos(r) = {q(b),¬t(c)} neg(r) = { } head(r) = {p(a)}

Since,

{q(b),¬t(c)} ⊂ {¬p(a), q(b),¬t(c)},

∅ ∩ {¬p(a), q(b),¬t(c)} = ∅, and

{p(a)} ∩ {¬p(a), q(b),¬t(c)} = ∅,

every satisfiability condition fails. Therefore, S

does not satisfy r. There are many sets that do

satisfy r including { }, {p(a)}, {p(b)}, {t(c)}, and

{p(a), q(b),¬t(c)}. For practice, check to see that

this is so.



9

Texas Tech University Knowledge Representation Group

Informal semantics of A-Prolog

• Ground program Π can be viewed as a spec-

ification for the sets of beliefs to be held by a

rational reasoner associated with Π. Such sets

will be represented by collection of ground lit-

erals. In forming such sets the reasoner must:

1. Satisfy the rules of P .

2. Satisfy the “the rationality principle” which

says: “Believe nothing you are not forced to

believe”.



10

Texas Tech University Knowledge Representation Group

Informal semantics of A-Prolog

Beliefs of Π are represented by sets of ground

literals called Answer Sets (Stable Models) of

Π, e.g., a program

Π0























































p(a) ← not q(a).

p(b) ← not q(b).

q(a).

has one answer set S0 = {q(a), p(b)}. Notice,

that q(a) is true in S0 while, say, q(b) is un-

known.

The answer set of

Π1 = Π0 ∪ {¬q(X)← not q(X).}

is S1 = {q(a),¬q(b), p(b)}. This time q(b) is false

in S1 (while p(a) is still unknown).



11

Texas Tech University Knowledge Representation Group

Defining answer sets - Part 1

Let program Π consist of rules of the form:

l0 or . . . or li ← li+1, . . . , lm. (1)

Answer Set of Π is a consistent set S of ground

literals such that:

• S is closed under the rules of Π;

• S is minimal i.e. no proper subset of S satis-

fies the rules of Π.



12

Texas Tech University Knowledge Representation Group

Examples

• p(a)← ¬p(b). ¬p(a).

A = {¬p(a)}

• p(b)← ¬p(a). ¬p(a).

A = {¬p(a), p(b)}

• p(b)← ¬p(a). p(b)← p(a).

A = { }

• p(a) or p(b).

A1 = {p(a)} A2 = {p(b)}

• p(a) or p(b). ← p(a)

A = {p(b)}



13

Texas Tech University Knowledge Representation Group

Defining answer sets - Part 2

Let Π be an arbitrary program. By ΠS we de-

note the program obtained from Π by

(i) removing all rules containing not l such that

l ∈ S;

(ii) removing all other premises containing not .

Definition: S is an Answer Set of Π iff S is an

answer set of ΠS.

Example:

Π ΠS S = {q(a), p(b)}

p(a)← not q(a).

p(b)← not q(b). p(b).

q(a). q(a).

{q(a), p(b)} is an answer set of Π



14

Texas Tech University Knowledge Representation Group

Examples

• Π0 = {p(a)← not p(a).}

NO ANSWER SET

• Π1 = {p(a)← not p(b). p(b)← not p(a).}

A1 = {p(a)} A2 = {p(b)}

• Π2 = Π1 ∪ {← p(b).}

A = {p(a)}

• Π3 = Π2 ∪ {¬p(a).}

NO ANSWER SET


