
1

Texas Tech University Knowledge Representation Group

Answer set programming (asp)

So far we used our A-Prolog knowledge bases

to receive information about truth or falsity of

some statements or to find objects satisfying

some simple properties. These types of tasks

are normally performed by database systems.

Even though the language’ ability to express

recursive definitions and the methodology of

representing defaults and various forms of in-

complete information gave us additional power

and allowed to construct rich and elaboration

tolerant knowledge bases the type of queries

essentially remained the same as in databases.

In this section we will illustarte how signif-

icantly different computational problems can

be reduced to finding answer sets of logic pro-

grams.

2

Texas Tech University Knowledge Representation Group

Computing Hamiltonian Paths

Given: Directed graph G, initial vertex s0.

Find: a path from s0 to s0 which visit each

vertex exactly once.

Graph represented by

vertex(s0). . . . edge(si, sj). . . . init(s0).

The Idea: Represent every Hamiltonian path

by a collection of statements of the form

in(s0, s1). . . . in(sk, s0).

which belongs to an answer set of a program

Π associated with the problem.

3

Texas Tech University Knowledge Representation Group

Constructing the program

We start with describing conditions on a col-

lection P of atoms of the form in(s1, s2) which

will make P a Hamiltonian path.

• Path P visits every vertex V at most once:

(1) :- vertex(V2), vertex(V1), vertex(V),

in(V1,V),

in(V2,V),

neq(V1,V2).

(2) :- vertex(V2), vertex(V1), vertex(V),

in(V,V1),

in(V,V2),

neq(V1,V2).

4

Texas Tech University Knowledge Representation Group

• P visits every vertex of the graph.

First we introduce relation reached(V) which

holds if P visits V on its way from the initial

vertex:

(3) reached(V2) :- vertex(V1), vertex(V),

init(V1),

in(V1,V2).

(4) reached(V2) :- vertex(V1), vertex(V),

reached(V_1),

in(V1,V2).

Now the constraint

(5) :- vertex(V),

not reached(V).

guarantees that every vertex is reached.

5

Texas Tech University Knowledge Representation Group

To complete the solution we need to find some

way to generate the collection of ’candidate’

paths and use the above conditions to select

those which are indeed Hamiltonian. In DLV

this can be done by the rule

(6) in(V1,V2) v -in(V1,V2) :- edge(V1,V2).

Let us denote the program consisting of the

representation of the graph G and this rule by

Π0. Obviously there is one-to-one correspon-

dence between answer sets of Π0 and arbitrary

sets of edges of G. We will some times say

that Π0 generates these sets. Now let Π be

Π0 expanded by ’testing’ rules above. This

time, there is one-to-one correspondence be-

tween answer sets of Π and Hamiltonian paths

in G. They can be computed by DLV .

6

Texas Tech University Knowledge Representation Group

The problem can also be solved in SMODELS.

To do that we will replace our disjunctive rule

(6) by two non-disjunctive rules

7a. in(V1,V2) :- edge(V1,V2),

not out(V1,V2).

7b. out(V1,V2) :- edge(V1,V2),

not in(V1,V2).

Assuming that out is just an another name for

negation of in it is easy to check that both

programs have the same answer sets.

Another useful construct of SMODELS, called

a Choice Rule, has the form:

(a) n1 {p(X) : q(X)} n2 :- body.

(b) n1 {p(c1),...,p(ck)} n2 :- body.

7

Texas Tech University Knowledge Representation Group

Both, n1 and n2 can be omitted. The rule (a)

allows to include in answer sets of the program

arbitrary collections S of atoms of the form p(t)

such that

1. n1 ≤ |S| ≤ n2

2. p(t) ∈ S then q(t) belongs to the correspond-

ing answer set.

The rule (b) allows to select such an S from

atoms listed in the head of the rule. E.g., pro-

gram

q(a).

{p(X) : q(X)}1.

has answers sets {q(a)} and {q(a), p(a)}.

The rules (7) can be replaced by the rule

{in(V1,V2) : edge(V1,V2)}.

8

Texas Tech University Knowledge Representation Group

Comments

• One of the goals of CS is to discover new ways

of solving computational problems. (Think about

the impact the discovery of recursion had on

our ability to solve problems.)

From this perspective it is instructive to com-

pare the PROCESSES of finding a “procedu-

ral” and a “declarative” solutions of the above

problem. They are markedly different and lead

to different solutions. The first focuses on data

structure and algorithm. The second on the

appropriate encoding of the definition of the

problem.

Question: What are the limits of applicability

of the second method?

9

Texas Tech University Knowledge Representation Group

Comments

Other declarative solution of the problem of

finding Hamiltonian paths was tried before. A

graph, G, and the definition of Hamiltonian

path can be encoded by a propositional for-

mula F . There is one-to-one correspondence

between models of F and Hamiltonian paths

of G. A program, called “satisfiability checker”

finds the models.

So, why use A-Prolog?

• A-Prolog encoding is much shorter and eas-

ier to understand. Seems to be frequently the

case. Need mathematical analysis!

• A-Prolog with disjunction has more expres-

sive power then propositional logic.

10

Texas Tech University Knowledge Representation Group

Solving Puzzles

Consider the following puzzle:

Victor has been murdered, and Arthur, Bertram,

and Carleton are suspects. Arthur says he did

not do it. He says that Bertram was the vic-

tim’s friend but that Carleton hated the vic-

tim. Bertram says he was out of town the day

of the murder, and besides he didn’t even know

the guy. Carleton says he is innocent and he

saw Arthur and Bertram with the victim just

before the murder. Assuming that everyone –

except possibly for the murderer– is telling the

truth, use resolution to solve the crime.

Write a program to solve the puzzle.

11

Texas Tech University Knowledge Representation Group

The story is about four people: person(a). per-

son(b). person(c). person(v). Next several

statements record their testimony.

Arthur says:

says(a,i(a)). he is innocent.

says(a,ht(c,v)). Carleton hated Viktor.

says(a,f(b,v)). Bertram and Victor are

friends.

Bertram says:

says(b,o(b)). he was out of town.

says(b,nk(b,v)). he didn’t know Viktor.

Carleton says:

says(c,i(c)). he is innocent.

says(c,t(a,v)). he saw Arthur and Bertram

says(c,t(b,v)). with the victim.

12

Texas Tech University Knowledge Representation Group

The rule

h(F) :- says(P,F),

not m(P).

where h(F) reads ’holds F’, says that everyone,

except possibly for the murderer, is telling the

truth. Next several rules contain some com-

monsense knowledge about meaning of the re-

lations used by the suspects.

1. Relation ’together’ is symmetric and tran-

sitive:

h(t(A,B)) :- person(A),person(B),

h(t(B,A)).

h(t(A,B)) :- person(A),person(B),person(C),

h(t(A,C)),

h(t(C,B)).

13

Texas Tech University Knowledge Representation Group

2. Relation ’friends’ is symmetric:

h(f(A,B)) :- person(A),person(B),

h(f(B,A)).

3. Murderers are not innocent.

:- h(i(P)),m(P), person(P).

4. A person cannot be seen together with peo-

ple who are out of town.

:- person(P), person(P1),

h(o(P)),h(t(P,P1)).

5. Friends know each other.

:- person(A), person(B),

h(f(A,B)),h(nk(A,B)).

14

Texas Tech University Knowledge Representation Group

6. Person who was out of town cannot be a

murderer.

:- h(o(P)), m(P), person(P).

7. Exactly one of the suspects is a murderer.

1{m(a),m(b),m(c)}1.

The last two statements are SMODELS di-

rective which tell SMODELS to suppress the

display atoms different from those formed by

predicate m.

hide. show m(F).

The only answer set of the program contains

m(b) correctly concluding that Bertram is the

murderer.

