
An environment for stepwise map specification
and reasoning in Prolog. I: Three language

extension mechanisms?

Pasquale Caianiello, Stefania Costantini, Eugenio G. Omodeo

Dipartimento di Informatica, Università degli Studi di L’Aquila
Email: {caianiel,stefcost,omodeo}@univaq.it

Abstract. We show how to enhance a low-level logical language, such
as the ‘Schröder-Tarski’ calculus of dyadic relations, so as to make it
amenable to a friendly usage. An equational formalism of that kind can
play a fundamental role in a two-level architecture of logic-based systems.
Three forms of definitional extensions are supported: (1) introduction of
new term constructors; (2) ‘disguisement’ of special equations under new
sentence constructors; (3) templates for parametric lists of sentences that
will be actualized in the formation of axiomatic theories. The power of
these extension mechanisms, fully supported by a Prolog program, is
illustrated through examples and case studies.

Introduction

In the architecture of a computerized system for applications of logic, translation
techniques have the role of bridging languages which cater for friendly interac-
tion with man at one end, and formalisms which can best cope with machine
exploitation issues at the opposite end. Typically source language and target
language meet at some intermediate level, thanks to pre-processing stages which
proceed from higher levels towards the machine level, and to definitional exten-
sion mechanisms which proceed in the opposite direction. Preprocessing stages
normalize and simplify source-level sentences, and are typically supported by
rewriting techniques; definitional extension mechanisms (behaving like macros
and procedures) enrich the dictions available at target level, enabling the con-
struction of a hierarchy of increasingly abstract dictions.

Examples of this are not hard to find, since we are referring to logical systems
in a broad sense: In an environment for declarative programming, an abstract
logical machine can underlie the user-oriented language, typically a fragment of
predicate logic or of some first-order theory (cf. [1, 2]); in a relational DBMS,

? The research described in this paper benefited from the cooperation fostered by the
European COST action 274 (TARSKI). It is partially supported by the MIUR 40%
project “Ragionamento su aggregati e numeri a supporto della programmazione e
relative verifiche: dagli algoritmi di decisione alla programmazione con vincoli con
multi-insiemi, insiemi e mappe”.

a high-level language such as SQL gets translated into relational algebra be-
fore query optimization (cf. [3, 4]); proof assistants sometimes perform better
in equational reasoning (which we view as being more machine-oriented) than
in unrestricted forms of first-order reasoning, and hence they push the user in
restating his/her axioms and lemmas in equational terms whenever (s)he can
(cf. [5, 6]). Even translating a regular definition into a family of finite automata
and then into a concrete lexical analyzer (cf. [7]) can be viewed as an activity of
the kind we are discussing.

We will report here on a Prolog program which supports definitional exten-
sion mechanisms within a purely equational framework such as the ‘Schröder-
Tarski’ calculus of dyadic relations (here quotes are meant to indicate that one
can retain the general features without being committed to some standard for-
mulation).1 We think that such a formalism can play a fundamental role in a
two-level architecture of logic-based systems.

Three basic forms of definitional extensions are supported:
• introduction of new term constructors;
• ‘disguisement’ of special equations under new sentence constructors;
• templates for parametric lists of sentences that will be actualized in the for-

mation of axiomatic theories.

Supplied features which make the above mechanisms really flexible are the
ones enabling the user to:
• introduce variadic constructs, to wit, constructs with an unrestricted number

of arguments;
• exploit, in the definienda, parameters which do not belong to the formalism:

typically, natural numbers, lists, and even quantified first-order formulas (cf.
Figure 7);

• make some definitions local to specific theories;
• make some templates for parametric theories ‘ephemeral’, so that they are

available throughout the loading of the context where they are created, but
then they automatically vanish;

• pass identifiers as parameters to templates: a typical use will be Skolemiza-
tion;

• fix default expressions for some template parameters.
Moreover, the system checks the overall consistency of definitions: the same con-
struct cannot be defined twice in the same context, all parameters of a definien-
dum must appear in the definiens, etc. The process of definition expansion should
be guaranteed to converge by such checks, although this fact has not been proved
formally so far.

A ‘stress-test’ for the above-described Prolog program relates to the trans-
lation of an Entity-Relationship model into the calculus of relations, along the
lines discussed in [8, 9].

1 The prototype Metamorpho system, written in SWI-Prolog, is available at the URL
http://costantini.dm.univaq.it/online.htm

This paper aims at illustrating the features of this definitional environment,
mainly via examples. We will show how easily one can progress from very basic
and simple constructs to quite significant dictions, provided convenient support
for definition handling is made available. It is worth noticing that the layered
organization of constructs, which is a key for enhancing the expressiveness of
the language, is also expected to play an important role in connection with
automated proofs, provided it is integrated with suitable lemma management
capabilities (cf. [6, 10]).

1 Minimality assumptions about the privileged
formalism.

This paper does not intend to propose any formalism as the ultimate machine-
language for logic; however, we cannot make our points clear unless we focus on a
specific formalism. As a compromise, we postpone to the next section the precise
description of the formalism within which we will carve our examples. We could
set to work our definitional mechanisms within the equational theory of regular
languages [11] (and in fact our Prolog program would offer support to that,
cf. Figure 4); but, by choosing an overly limited framework as our ‘drosophila’,
we might convey the wrong impression that the expressive power of a language
endowed with only those features that we will indicate cannot lead very far.

By way of first approach, we develop our extension mechanisms for a logical
formalism which is equational and devoid of individual variables. ‘Equational’
means that every formula can ultimately be reduced to an equation; the ab-
sence of variables implies that our formalism will have no quantifiers or binding
constructs of any kind (descriptors, lambda-abstractors, etc.). Even a formal-
ism subject to such syntactic restrictions can span from applications (e.g., ER-
modeling and knowledge representation) to pure mathematics (e.g. number the-
ories and set theories), offering adequate support to specifications and reasoning.
We choose in fact as our ‘drosophila’ (not a niche language, though!) the histori-
cal Schröder-Tarski formalism of dyadic relations, which we call map-calculus.
On it, one can erect such full-fledged theories as the Zermelo-Fraenkel set theory
(cf. [12, 5] and Sec.4.3), which gets much more often developed within first-order
logic. A major drawback will be poor readability; on the other hand, thanks to
its simplicity, map calculus will not clutter with inessential details the nature of
the design issues which here we address.

Moving from the same minimalist attitude, we will describe the syntax of
our logical language simply by a signature, optionally equipped with a table of
operator-precedences and associativity rules which enable and facilitate a prefix-
infix- and postfix-usage of some operators. This signature will progressively grow,
as new constructs will be brought into play via the extension mechanisms which
we will propose. A Prolog parser can, hence, be exploited (in combination with a
simple filtering recognizer) to analyze our logical expressions. Conversely, in or-
der to ‘pretty-print’ the well-formed expressions of the extended logical language,
a ready-made Prolog program translating them into LATEX will suffice.

2 Logical Framework

Very much like any logical formalism, map calculus consists of a symbolic lan-
guage, an intended semantics, a collection of logical axiom schemes (which, ac-
cording to the intended semantics, are valid, i.e. true in any legal interpretation),
and a collection of inference rules.
Theories and context. Normally a derivation gets performed within a context,
composed by a calculus and a bunch of theories. Calculus and theories consist
of axioms and inference rules, the only difference being that: The axioms and
inference rules of the calculus reflect some very general semantics associated with
the formalism at work (they are, in a precise sense, logically valid); the ones of
a theory, instead, describe specific assumptions concerning the domain(s) of an
application (they are sometimes called proper axioms and rules). A context can
comprise infinitely many axioms and rules, but in order to manage it effectively,
we insist that the collection of all axioms and rules be encompassed by finitely
many schemes (‘multiplied’ so-to-speak, as explained below, by meta-variables
occurring in them).

General Features of Map Calculus

Our positive expectations on map calculus arise from three orders of considera-
tions:
• The algebraic (mostly equational) nature of this relational formalisms.
• The simplicity of graphs and matrices as conceptual tools to support trans-

lation techniques as well as diagrammatic reasoning in this calculus [13], in
a way similar to the way Karnaugh maps help in connection with switching
algebra.

• The absence of variable-binding constructs (or, even, of individual variables)
which, as argued above, in this framework facilitates one in the design of
meta-level tools—such as definitional extension mechanisms of the kind which
we are about to discuss.

Map-calculus was designed to ease reasoning about dyadic relations —maps,
as we will call them— over an unspecified, yet fixed, universe U of discourse.
Its language fulfills the minimality assumptions stated in Sec.1; we feel therefore
authorized to concentrate mainly on syntax and intended semantics, and simply
summarize the logical axioms by the table shown in Figure 1.2

Definition. Map terms are all expressions of the following signature:
symbol : Ø 1l ι pi ∩ 4 ◦ ^ − ∪ †
degree : 0 0 0 0 2 2 2 1 1 2 2 2
priority : 5 3 6 7 2 2 4

2 It is understood here that we are taking the substitution law for equals as our only
inference rule. Instead of the last logical axiom in our list, various authors adopt the
so-called Schröder’s law shown at the bottom-right of Figure 3, cf. [14].

P∪Q=Q∪P P∪Q∪R=P∪(Q∪R)

P∪Q∪P∪Q=P P◦Q◦R=P◦(Q◦R)

(P∪Q)◦R=P◦R∪Q◦R P◦ι=P

P^^=P (P∪Q)^=P^∪Q^

(P◦Q)^=Q^◦P^ P^◦P◦Q∪Q=Q

Fig. 1. Logical axioms of a version of map calculus

(Of these, ∩,4,◦,∪,−, † will be used as left-associative infix operators, ^ as
a postfix operator, and as a line topping its argument.)

We assume a countable infinity p1, p2, p3, . . . of map letters to be available.
The language of map-calculus consists of map equalities Q=R, where Q

and R are map terms. 2

Of the operators and constants in the above signature, only a few deserve
being regarded as primitive map constructs: all others, including the ones that
will be added to the signature from time to time, will be regarded as derived
constructs. For definiteness, we will treat as being primitive (apart from the pis)
only ∪, , ◦, ^, and ι; but warn the reader that a complete basis of constructs
can be chosen in many other ways (e.g., we could have adopted ∩, 4, 1l, †, ι).

For an interpretation of map-calculus one must indicate a nonempty U , and
assign a subset p=i of the Cartesian square U2 =Def U × U to each map letter
pi. Then each map expression P comes to designate, thanks to the rules below,
a specific map P= (any equality Q=R between map expressions turns out, ac-
cordingly, to be either true or false):

ι= =Def {〈a, a〉 | a ∈ U}; Q
=

=Def { 〈a, b〉 ∈ U2 | 〈a, b〉 /∈ Q= };
(Q∪R)= =Def { 〈a, b〉 ∈ U2 | either 〈a, b〉 ∈ Q= or 〈a, b〉 ∈ R= };

(Q◦R)= =Def { 〈a, b〉 ∈ U2 | there is a c ∈ U for which 〈a, c〉 ∈ Q= and 〈c, b〉 ∈ R= };
(Q^)= =Def { 〈b, a〉 ∈ U2 | 〈a, b〉 ∈ Q= } .

The interpretation of map-calculus obviously extends to any derived con-
struct. E.g., we will state below that 1l and P†Q are shorts for ι∪ι and for
P◦Q, respectively; hence it will ensue that 1l= =Def U2 and that

(Q†R)= =Def { 〈a, b〉 ∈ U2 | for all c ∈ U , either 〈a, c〉 ∈ Q= or 〈c, b〉 ∈ R= } .

Metavariables. Meta-variables are needed in the statement both of abbrevi-
ating definitions and of axiom schemes, inference rules, and templates. Thanks
to our minimality assumptions, we can almost entirely avoid having to treat
meta-variables of different types. We do not need meta-variables for formulas:
A fully generic formula can be designated by P=Q, where P,Q are distinct
meta-variables for terms.

It will turn out, however, that meta-variables representing lists of terms or
formulas forcibly enter into play if we want to introduce variadic constructs, i.e.
functors and relators whose numbers of arguments are not fixed, and if we want to
keep the size of single formulas reasonably small (a ‘granularity’ issue which has
some importance in the development of derivations). Moreover, meta-variables in

templates sometimes stand for ‘names’; i.e., they represent identifiers or special
symbols which one will exploit within theories whose constructions depends on
the template. Finally, one occasionally wants to represent a generic (say dyadic)
construct by a metavariable.

Luckily, we will be able to cope with these accessory meta-variables without
the burden of associating explicitly a type to each meta-variable. We will, in fact,
exploit directly Prolog’s logical variables in the role of meta-variables; and will
rely on valuable features of Prolog to avoid certain otherwise necessary distinc-
tions when working at the meta-level. To escape ambiguities, we will implicitly
relate the type of language expressions which are represented by a meta-variable
to the positions which the latter occupies in a (meta-)formula.

3 Uses and Formats of Definitions

Definitions extend in a bottom-up fashion the basic language, enabling one to
specify a context more concisely and readably. We will now see a few introductory
examples of their use.

We introduce a first kind of definitions by means of the =: sign, which en-
riches the term sublanguage. Having assumed union, complement, composition,
and converse operators ∪, ,◦, ^ to be available from the outset, we can put

δ =: ι, 1l =: ι∪δ, Ø =: 1l,
P∩Q =: P∪Q, P−Q =: P∩Q, P4Q =: P−Q ∪ (Q−P),
P†Q =: P◦Q, mult(P) =: P∩P◦δ, bros(P,Q) =: P^ ◦ Q,

thus stating in particular that any term of either the form P∩Q or the form
P4Q stands for the corresponding right-hand-side term. For example, r14r2
stands for r1∩r2 ∪ r2∩r1, and ultimately (unless we simplify) for r1∪r2 ∪ r2∪r1.

Likewise, by means of the ↔: sign, one can introduce new forms of sen-
tences. For example,

P⊆Q ↔: P−Q=Ø, P=Q&R=S ↔: P 4 Q ∪ R 4 S=Ø,

f ↔: ι=Ø, P=Q→R=S ↔: 1l ◦ (P 4 Q)◦1l ◦ (R 4 S) = Ø,
disguise special equalities under the new inclusion relator and various connectives
(which retain their standard meanings of conjunction, falsehood, and material
implication). One can again interchange notation based exclusively on the prim-
itive constructs with customized notation exploiting the derived ones as well.

One can continue by putting, for example,
Disj(P,Q) ↔: P ∩Q=Ø, isFunc(P) ↔: bros(P, P)⊆ι, RUniq(P) ↔: mult(P)=Ø,

rA(P) =: P ◦ 1l, diag(P) =: P ∩ ι, Coll(P) ↔: is diag(P),
Total(P) ↔: rA(P)=1l, dom(P) =: diag(rA(P)), img(P) =: dom(P^).

It goes without saying —at least for the implemented Prolog program— that
is diag(P) stands for diag(P)=P . One hence easily recognizes that isFunc(P) and
RUniq(P) are equivalent ways of stating that P designates a single-valued map;
that is, a function partially defined on the universe U . Coll(P), which requires
P to be a sub-diagonal map, in a sense states that P is monadic, namely that
P can be regarded as the representation of a sub-collection of U . Another way

of representing collections, is by means of those P for which is rA(P) holds.
Throughout, we will generally name map operators by identifiers with a lowercase
initial, and will name map relators by identifiers which have either an uppercase
initial or one of the forms “is . . .”, “are . . .”, “has . . .”.

The above two forms of definitions act like macros: in fact, whatever construct
matches something appearing on the left of =: or of ↔: could in principle
disappear from the formulation of a theory, being reducible to what appears on
the right. As we have seen, definitions can be nested; namely, the right-hand-
side expressions of definitions may involve, along with constructs of the basic
endowment, the additional constructs introduced by earlier definitions.

Recursion can be exploited in these kinds of ‘macro’ definitions, mainly in
order to introduce variadic operators, i.e. operators with an unrestricted number
of arguments. Tail-recursion (in essence, simple iteration) suffices to this aim. In
this connection, we adopt the Prolog notation for lists, where [], [E1, . . . , En],
and [E1, . . . , En+1 | T] represent, respectively: the void list; a list of length n
whose ith component is Ei; and a list whose length is at least n + 1, whose ith

component is Ei for i = 1, . . . , n + 1, and whose components from the (n + 2)th

on form the suffix list T . The following definition ‘implements’ iterated map
difference:3

−([P]) =: P −([P,Q | T]) =: −([P∩Q | T]).
Plainly, the first element P of the argument list represents the map from which
all other maps in the list will be subtracted. Among others, this definition yields
−([P,Q])=:P∩Q, −([P,Q,R])=:P∩Q∩R, −([P,Q,R, S])=:P∩Q∩R∩S.

A substantially different kind of recursion is exemplified by the following
definitions (cf also those in Figure 7):4

th(L,R ‖ 1) =: L th(L,R ‖ i+ 1) =: R ◦ th(L,R, i)
succth(L,R‖N − 1) =: th(L,R,N)

tuples(R‖N) =:
(
img(R) ∩ dom(th(R,R,N))

)
− dom(succth(R,R,N))

These introduce a construct th(L,R,N), and related constructs succth(L,R,M)
and tuples(R,N), where the parameters N and M (N = 1, 2, 3, . . . and M =
0, 1, 2, . . .) act as ‘outer ’ parameters. To clarify what is understood there, let us
try a more perspicuous printing of those definitions:

N th(L,R) =: R◦ · · ·◦R︸ ︷︷ ︸
N−1 times

◦L, (N − 1)succth(L,R) =: N th(L, R),

N–tuples(R) =:
(
img(R)∩ dom(N th(R,R)) − dom(N succth(R,R)

)
.

The intended meaning of L ad R is that they represent functions which extract
the left part (=the first component) and the right part (=the sub-tuple consisting
of all components but the first) from any non-void tuple in U . Thus, roughly
speaking, in order to extract the N th component from a tuple, we must move

3 Note, incidentally, that we are allowing use of the same name for symbols of different
degrees: e.g., − is being used in both a dyadic and a variadic way.

4 As shown here, to separate the inner from the outer parameters in a definiens, we
will use ‘‖’ instead of ‘,’. We avoid doing the same within definienda.

N − 1 times right, and then move left. Tuples (including the void tuple) can be
thought of as being those elements of U which are R-images. An N -tuple then is
any tuple within which we can move N times right (ending, presumably, in the
void tuple), but which do not enable N + 1 consecutive moves to the right.

As an application, let us consider the notion of key pertaining to relational
databases: this is a tuple of attributes which uniquely characterizes an entity.
One way of specifying keys, which exploits the th operator introduced above, is
by the definition

Key([L,R,A0, . . . , An]) ↔: isFunc
(⋂n

j=0(j + 1)th(L,R)◦Aj
^

)
,

whose level is, however, too high w.r.t. our current treatment of definitions, not
catering for the very popular “. . . ” construct. We hence resort to the following
specification:

keyFunc([A], L,R ‖ I) =: succth(L,R, I)◦A^,
keyFunc([A,B|T], L,R ‖ J − 1) =: th(L,R, J)◦A^∩keyFunc([B|T], L,R, J),

Key([L,R|S]) ↔: isFunc(keyFunc(S, L, R, 0)).

The reader is now invited to give a glance at Figure 2, where various cus-
tomary properties which maps can meet are associated with newly generated
constructs (cf. [15, pp. 34, 44–49]). The defined construct is sometimes a new
relator (e.g., isSymmetric), and we proceed as before; but in other cases, specify-
ing the property by a single equation would seem unnatural to us. For example,
should we put

isEquivalence(P) ↔: isSymmetric(P) & isTransitive(P),
then (by the definition of & given above) isEquivalence(P) would reduce to
P^4P ∪(P ◦ P − P)4Ø=Ø, where the constituent conditions would loose their
features.

This is why we introduce definitions of another kind, called templates, which
contain the Θ: sign. These will act like procedures in the construction of theories
and contexts, during which they will be invoked with actual map terms in place
of the formal parameters (which are the meta-variables occurring to the left of
Θ:). The “,” separator appearing in the body of Θ-definitions behaves as a

primitive and soft conjunction which seems preferable and more natural to us
than & in most cases.

As illustrated by the definition of InductClosed in Figure 2, templates can
be nested one inside another (although the list of syntactic element which they
will generate upon invocation will always be flat); moreover they may contain,
in addition to schemes of sentences which will become axioms when templates
will be invoked during the formation of a theory, also context-specific inference
rules. In the case at hand, the rule [Coll(S), G⊆S, S◦R⊆1l◦S] ⇒ D⊆S is meant
to indicate that when D is the inductive closure of a set G of generators relative
to a map R, then D will be included in any superset S of G which is closed w.r.t.
R (in the sense that any R-image of an element of S belongs to S in its turn).

Recursion helps in definitions of this kind too. In templates, however, simple
tail-recursion does not always suffice: Forms of recursion more unwieldy than in
macros are sometimes needed, as was shown in [8] in specifying the role of place-

isTransitive(P) ↔: P◦P⊆P
isSymmetric(P) ↔: P^=P

isReflexive(P) ↔: P∪P^⊆rA(ι∩P)
isStrict(P) ↔: diag(P)=Ø

isAntisymmetric(P) ↔: P ∩P^⊆ι
isTrichotomic(P) ↔: 1l=P ∪ ι ∪P^

isAsymmetric(P) ↔: P ∩P^=Ø

isTotallyReflexive(P) ↔: ι⊆P
isConnex(P) ↔: P ∪P^=1l

isPreorder(P) Θ: [isReflexive(P), isTransitive(P)]
isEquivalence(P) Θ: [isSymmetric(P), isTransitive(P)]

isEquivalence(P,Ch) Θ: [isFunc(Ch), is ◦(Ch,Ch), Ch◦Ch^=P]
isGaloisCorresp(G) Θ: [G◦G⊆ι, isStrict(G), G^⊆rA(G)]

isDense(Le) ↔: Le−ι⊆(Le−ι) ◦ (Le−ι)
hasNoEndPoints(Le) ↔: ι⊆(Le−ι) ◦ 1l◦ (Le−ι)^

isNDMonotonic(F,Le) ↔: Le◦F ∩F◦Le=Ø

Bisimulation(B,Oss) ↔: 1l◦ (B−B^) ∪ (Oss ◦B−B ◦Oss)=Ø

NonVoid(P) ↔: 1l◦P◦1l=1l

Const(P) Θ: [Coll(P ◦ 1l◦P), NonVoid(P)]
Point(P) Θ: [is rA(P), Coll(P ◦P^), NonVoid(P)]

Between(D,R,C) ↔: R⊆D ◦ 1l◦C
Maps(R,D,C) Θ: [Coll(D), Coll(C), D◦R⊆1l◦C]

InductClosed(D,R,G) Θ: [G⊆D, Maps(R,D,D−G),
[Coll(S), G⊆S, S◦R⊆1l◦S] ⇒ D⊆S]

semiGroup(P) Θ: [P (P (Q,R), S)=P (Q,P (R,S))]
monoid(P,U) Θ: [semiGroup(P), P (U,R)=R, P (R,U)=R]

convolution(C,P) Θ: [C(C(Q))=Q, C(P (Q,R))=P (C(R), C(Q))]
rightDistrib(P,Q) Θ: [P (Q(R,S), T)=Q(P (R, T), P (S, T))]
leftDistrib(P,Q) Θ: [P (T,Q(R,S))=Q(P (T,R), P (T, S))]
Skolem(P,Q,N) Θ: [N =: Q, N⊆P, isFunc(N), rA(N)=rA(P)]

Fig. 2. Widespread properties of maps

semiGroup(∪) convolution(^,∪) P∪Q=Q∪P

monoid(◦, ι) convolution(^,◦) rightDistrib(◦,∪)

P∪Q∪P∪Q=P [P◦Q∩R=Ø] ⇒ P^◦R∩Q=Ø

Fig. 3. Variant version of the logical axioms for map calculus

P ∗ =: P ∗

P∪Q =: P∪Q
P◦Q =: P◦Q

Ø =: Ø

ι =: Ø∗

P+ =: P◦P ∗

is ∪(P, P) P∪Q=Q∪P

monoid(∪, Ø) (ι∪P)∗=ι∪P+=P ∗

leftDistrib(◦,∪) rightDistrib(◦,∪)

monoid(◦, ι) X◦Ø= Ø◦X = Ø

[P ∪Q◦R=Q] ⇒ P◦R∗=Q

Fig. 4. Primitive and derived symbols, and logical axioms, for regular expressions

Tense(T1, T2,Tid) Θ: [Tid =: T1, [is rA(P)] ⇒ P ⊆ T1 † T2 ◦P,
T1 ◦Q−T1 ◦P ⊆ T1◦(P−Q)]

Tense(p2, p1, future) Tense(p1, p2, past)

Fig. 5. Proper axioms of a formulation of minimal tense logic based on map calculus

holders in ER-modeling, but there is not enough room to illustrate this here. As a
simple tail-recursive example, let us characterize an IsA chain among collections
of ‘individuals’ of some sort. Assuming that the parameters Y, P designate the
collection of all individuals (an unspecified sub-collection of U), and the one
(included in Y) of all ‘place-holders’, which none of the collections in an IsA
chain is allowed to intersect, we can put

IsA([Y, P, F]) Θ: [ι] [F⊆Y, Disj(F, P)],
IsA([Y, P, E, F | T]) Θ: [ι] [E⊆F | IsA([Y, P, F | T])].

Thus IsA([Y, P, E0, . . . , En]) states that E0⊆ · · ·⊆En⊆Y and En∩P=Ø, where
it is understood that Y ⊆ι and P⊆Y . The term ι which appears in the default-
list after Θ: will become the actual value of Y , should Y still be uninstantiated
at invocation time.

The following example hints at a totally different use of parameters in tem-
plates, by which one can associate mnemonic identifiers or symbols to map letters
within a theory:

nameLets([]) Θ: [], nameLets([P,Q|R]) Θ: [P=:Q | nameLets(R)].
The very useful definitions of Skolem (which is meant to introduce a new

name for an inclusion-maximal function contained in a given relation) and of
semiGroup, monoid, etc., at the bottom of Figure 2, take advantage, similarly
but with a different purpose (cf. Figures 3 and 4), of the allowed usage of a
metavariable in the role of a constructor.

To see some of the above machinery at work, consider the file in Figure 5.
Loading this will lead to a theory [16, 17] consisting of two axioms (which happen
to be valid, and as such are redundant) and two inference rules. The Tense
template, which serves a local purpose, will be discarded when the loading of
the axiom file ends. The meta-variables in the body of the template which do
not occur among parameters (viz. P and Q) represent propositional sentences.

4 Case Studies

4.1 Templates on graph isomorphism

A graph devoid of isolated nodes can be represented simply by the set of its
edges, which we can designate by a map letter. Then, in order to describe an
isomorphism f between two graphs g, h, we can simply resort to the following
theory:

g =: p1 h =: p2 f =: p3

isFunc(f) isFunc(f^) g=f ◦ h◦ f
rA(f)=rA(g ∪ g^) rA(f^)=rA(h∪ h^)

Here the first three items introduce aliases for three map letters, the next three
items state that f is a function, that f is injective, and that f is a morphism
between g and h; the last two items state that the domain of f consists of all
nodes of g, and that its image consists of all nodes of h.

Since the notion of graph isomorphism is an important one, it may be worth-
while to characterize it by templates, which is doable as follows:

graphIsom(G, F, H) Θ: [isFunc(F), isFunc(F^),
dom(F)=nodes(G), img(F)=nodes(H),
G=F ◦ H ◦ F],

graphIsom(G, F, H,G′, F ′,H ′) Θ: [nameLets([G′, G,H ′,H, F ′, F]),
nodes(G) =: dom(G ∪G^),
graphIsom(G′, T, H ′)].

At this point, one can easily construct a theory of the same kind of the theory
seen at the beginning of this section, e.g. by the following series of invocations:

graphIsom(p110, p7, p89), graphIsom(p1, p2, p3, g, f, h),
graphIsom(p4, p5, p6, i, j, k), graphIsom(p3, p7, p4, h, l, i).

Referring to this example, let us notice that the first invocation, which is
graphIsom(p110, p7, p89), should be regarded as ill-formed unless a definition of
the construct nodes were already available at the level of the calculus. Anyway,
each one of the subsequent three invocations will not refer to the global definition
of nodes, but to the one (which appears in the second template) that is local to
the theory. This overriding mechanism may at first look confusing, because each
invocation calls again into play the definition of nodes. Normally, it is not legal to
define a construct twice in the same context; but in a case such as the one at hand,
the system will easily recognize that the three local definitions are in fact the
same, and therefore it will only store the first of the three. Similar considerations
can be made concerning i and h. These aliases get in fact defined repeatedly,
through the invocation of nameLets: if the definitions were inconsistent (e.g., if
i were an alias both for p4 and for p110), they would cause an error during the
loading of the theory. As a last remark concerning the scope of names, note
that the definition of nodes within the above template of graphIsom contains a
meta-variable G, which clearly is not the same G which appears among formal
parameters in the header of the template.

4.2 Templates for tuple theories

Figure 6 illustrates how one can organize a hierarchical family of templates in
sight of modeling divergent but akin situations which will be met frequently in
significant application contexts. For example, many theories will describe a uni-
verse U where a pairing operation is available; but in some cases (such as those
which arise in relational database applications) one can distinguish ‘individuals’
of some sort from ‘tuples’ (namely those objects which, with the only exception
of a void tuple, result from pairing), whereas in other cases one cannot sharply
draw such a distinction (e.g., Cantor’s historical pairing function operates on
natural numbers, and it also produces natural numbers as results). Rather than

link(P,Q) =: P ◦ 1l◦Q sibs(P) =: bros(P^, P^)

areQProj(L,R, Y, T) Θ: [, , ι, ι] [isFunc(L), isFunc(R),
link(Y, T)⊆bros(L,R)]

areQProj(L,R) Θ: areQProj(L,R, ,)

areProj(L,R, Y, T) Θ: [, , ι, ι] [areQProj(L,R, Y, T),
Coll(sibs(L) ∩ sibs(R)), rA(L)=rA(R)]

areProj(L,R) Θ: areProj(L,R, ,)

HdTlPure(L,R,E) Θ: [areProj(L,R),
Const(E), rA(L)=rA(ι−E)]

HdTl(L,R, Y,E) Θ: [areProj(L,R, Y, ι−Y), Coll(Y),
Const(E), Disj(E, Y), Disj(Y, 1l◦R),

rA(L)=rA(E∪Y)]
HdTlFlat(P,L,R, Y,E) Θ: [Ø] [P⊆Y, HdTl(L,R, Y,E),

NonVoid(Y), rA(L^)=rA(Y ^)]

Fig. 6. Quasi-projections, projections, and head–tail operations

th(L,R ‖ 1) =: L th(L,R ‖ i+ 1) =: R ◦ th(L,R, i)
sibs(L,R ‖ []) =: 1l

sibs(L,R ‖ [vi|
−→
V]) =: th(L,R, i) ◦ th^(L,R, i) ∩ sibs(L,R,

−→
V)

mXpr
(
L,R ‖ p(vi, vj)

)
=:

(
th(L,R, i) ◦ p∩ th(L,R, j)

)
◦ 1l

mXpr(L,R ‖¬ϕ) =: mXpr(L,R, ϕ)
mXpr(L,R ‖ϕ&ψ) =: mXpr(L,R, ϕ) ∩ mXpr(L,R, ψ)

mXpr(L,R ‖ ∃−→V ϕ) =: sibs
(
L,R, freeVars(∃−→V ϕ)

)
◦ mXpr(L,R, ϕ)

Maddux(L,R ‖χ) ↔: mXpr(L,R, χ) = 1l

areTotProj(L,R,Tr) Θ: [areQProj(L,R), Total(L), Total(R),
Tr(χ) ↔: Maddux(L,R, χ)]

i, j = 1, 2, . . . , p map letter,
−→
V variable-list, and ϕ,ψ, χ first-order formulas

Fig. 7. Translation of first-order formulas/sentences into map expressions/equations

on the pairing operation, we will focus on the ‘left’ and ‘right’ operations which
in a sense invert it (cf. the discussion in Sec.3). In this connection, divergent sit-
uations may arise again; in some cases these operations will turn out to have the
same domain (namely, the collection of non-void tuples proper), and, moreover,
distinct tuples will be guaranteed to differ either in their left elements or in their
right sub-tuples: when this happens, the ‘left’ and ‘right’ functions are called
conjugated projections; in the contrary case, one speaks of conjugated
quasi-projections.

Figure 7 specifies a classical method for translating any dyadic first-order
formula ϕ devoid of constants and function symbols into a map expression Eϕ =
mXpr(L, R, ϕ), in a context where conjugated quasi-projections L,R, both total,
are available (cf. [12, pp. 95–145]). To explain what is meant, let us refer to an
enumeration v1, v2, . . . of all individual variables, and to an interpretation =; for

all a in the universe U , and for all positive integer i, let ai be the value for which
〈a, ai〉 ∈ th(L,R, i)= holds. The definitions are so given as to ensure that

E=
ϕ = { 〈a, b〉 ∈ U2 | = |= ϕ(a1, . . . , ai−1) }

holds provided no variable vj with i 6 j occurs free in ϕ. It should hence be clear
that the equation Eϕ=1l, viz. Maddux(L,R, ϕ), has the same truth-value as ϕ
when ϕ is a sentence. In the literature one finds similar algorithms which can
translate all sentences of special first-order theories by taking advantage of the
availability of a fork operator [18, 19] instead of conjugated quasi-projections.

4.3 Weak set theory

The following five first-order sentences,
(E) ∀x ∀ y ∃ d (x 6= y → (d ∈ x ↔ d /∈ y)),
(N) ∃ z ∀ v v /∈ z,

(W) ∀x ∀ y ∃w ∀ v (v ∈ w ↔ (v ∈ x ∨ v = y)),
(L) ∀x ∀ y ∃ ` ∀ v (v ∈ ` ↔ (v ∈ x& v 6= y)),
(R) ∀x ∃ r ∀ v (v ∈ x → (r ∈ x & v /∈ r)),

form the system of axioms of a very weak set theory: extensionality, null set,
single-element addition (‘with’ operation x, y 7→ x∪{y}), single-element removal
(‘less’ operation x, y 7→ x \ {y}), and regularity. By dropping (R) —whose role
is to forbid membership cycles— one gets an even weaker theory of sets.

Discussing this theory gives us the opportunity to compare the language of
map calculus with the one of first-order predicate calculus. The translation of
(E), (N), and (R) can be carried out straightforwardly, because each one of
these sentences involves three variables at most. On the other hand, it can be
proved that neither (W) nor (L), separately taken, nor the conjunction of (W)
with (L) and (E), can be translated into map calculus. Somewhat surprisingly,
the conjunction of (W) with (L) and (N) can be restated as the single statement

(NWL) ∀x ∀ y ∃ p (y ∈ p & ∀u (u = x ↔ (∃ v (u ∈ v & v ∈ p)
& ∃w (u /∈ w &w ∈ p)))),

which gets compactly translated into map calculus, in the way displayed in
Figure 8. As a matter of fact, it can be shown easily —even automatically—
that in first-order logic the following equivalence holds:

(E) ` ((N)& (W)& (L)) ↔ (NWL).
The intuitive idea is that (NWL) entails in a roundabout fashion that sets

∅, x ∪ {y} and x \ {y} can be obtained from given sets x and y, by stating that
one can form the somewhat more formidable doubleton set

x@y =Def {x \ {y}, x ∪ {y}}.
As we have recalled above, if one succeeds in deriving areQproj(L,R) for suit-

able map terms L,R in a theory formalized within map calculus, this indicates
that the theory has the same power, both in means of expression and in means
of proof, as the corresponding theory formalized in full first-order logic. Here we
can adopt the set (x@y)@x as the encoding of the ordered pair x, y of sets, and
this is the rationale behind the definitions of λ and % shown in Figure 8. It thus
turns out that the theory in Figure 8 and the first-order theory with which we

syq(P,Q) =: bros(P,Q) − bros(P ,Q)
valve(P,Q) =: P − δ ◦ (P −Q)

tot(P) =: P∪(ι−rA(P))

∈ =: p1 ∈∈ =: ∈ ◦ ∈
3 =: ∈ ^ /∈∈ =: ∈◦ ∈

3∈ =: bros(∈,∈) mix =: ∈∈ ∩ /∈∈
λ =: valve(mix, Ø) % =: λ◦(∈ ∩ 3 ◦ δ ◦ mix)

SetMaddux(χ) ↔: Maddux
(
tot(λ^), tot(%^), χ

)
(E) Coll(syq(∈,∈))

(NWL) 1l = λ ◦ 3
(R) ∈ ⊆ 1l◦ (∈ − 3∈)

Skolem(3 ∪ ι − 3∈, p2, arb)

Fig. 8. A weak set theory

have started are equipollent, because all three sentences in areQproj(λ^, %^) can
be derived from the logical axioms in Figure 1 taken together with the proper
axioms in Figure 8. A key step in these derivations is the intermediate lemma
that isFunc(Q^) entails isFunc(valve(P,Q)^) for all map terms P,Q, a general
fact which can be proved in the map calculus, without contribution of any proper
axioms: This is why the definition of the valve construct should be introduced at
the global level, instead of being kept local to set theory (as are the definitions of
∈,∈∈, . . . , λ, %). Similar considerations advise us that syq (the symmetric quo-
tient construct, cf. [14, pp. 18–20]), and tot (a construct which prolongs any map
without disrupting its single-valuedness), should be made available globally.

Once we have found quasi-projections in a map-based theory and have made
them total, we can import all first-order notation, as we do here by means
of the SetMaddux translator. Another definition reuse shown in Figure 8 is a
conservative Skolem extension, by which we introduce an operator arb meeting
the condition

∀x((arb x ∈ x ∨ arb x = x) & ¬∃ y(y ∈ x & y ∈ arb x)).

5 Concluding Remarks

This article is meant to be the first of a series, whose second paper will treat
extensible inference mechanisms for equational languages of the kind seen above,
and whose third paper will complete the picture of how to move from front-end
languages to back-end formalisms. In each case we will describe tools imple-
mented in Prolog, illustrating their usefulness through significant case-studies:
in their final integrated form, these tools will form a broad-spectrum transla-
tion system named Metamorpho, whose immediate realm of application will be
equational reasoning.

While the prototypical back-end component described in this paper is still
under development, the next main goal in which we feel engaged is the one of

reaching a satisfactory unified design for the main front-end component of the
envisaged Metamorpho system. To tackle this design issue, we will first carry
out the detailed analysis of a number of translation algorithms and techniques.
Various such algorithms are known, e.g. some which bridge nonclassical log-
ics with relation algebras [20–22], and others which operate on 3-variable sen-
tences of first-order logic [12, 23]; some others are still under study [17]. Indeed,
translation techniques to switch between man-oriented and machine-oriented
formalisms need to be unceasingly developed and improved.

Definitional extension mechanisms of the kind discussed in this paper are
rarely bestowed in logic textbooks the attention they deserve (one noticeable
exception is [24]). This is surprising, because many issues which are regarded
as fundamental in the design of any programming language (e.g., scope of dec-
larations, implementation of recursion, inheritance, overriding, loop-detection,
defaults treatment, etc.) enter into the design of logical systems as well. Here we
have treated definitional mechanisms which can be useful near the level of a log-
ical machine; elsewhere [25], we have addressed modularization issues regarding
large-scale proof development in terms of what one might call ‘proof-engineering’.

References

1. Aı̈t Kaci, H.: Warren’s Abstract Machine - A Tutorial Reconstruction. The MIT
Press, Cambridge, Mass. (1991)

2. Van Roy, P.L.: Can Logic Programming Execute as Fast as Imperative Program-
ming? Ph.D. thesis, Univ. of California at Berkeley (1990)

3. Ullman, J.D.: Database and Knowledge-base Systems, vol.1. Volume 49 of Princi-
ples of Computer Science. Computer Science Press, Stanford University (1988)

4. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

5. Formisano, A., Omodeo, E.: An equational re-engineering of set theories. [26]
175–190

6. Formisano, A., Omodeo, E., Temperini, M.: Layered map reasoning: An exper-
imental approach put to trial on sets. In Dovier, A., Meo, M.C., Omicini, A.,
eds.: Declarative Programming – Selected Papers from AGP 2000. Number 48 in
Electronic Notes in Theoretical Computer Science. Elsevier Science B. V. (2001)
1–28

7. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers - Principles, techniques and tools.
Addison-Wesley (1986) Reprinted.

8. Omodeo, E., Doberkat, E.E.: Algebraic semantics of ER-models in the context
of the calculus of relations. I: Static view. In Kahl, W., Parnas, D.L., G., S.,
eds.: Proc. of Relational Methods in Software, RelMiS 2001. Bericht No.2001-02,
Fakultät für Informatik, Universität der Bundeswehr Muenchen (2001) To appear
on Electronic Notes in Theoretical Computer Science 44(3).

9. Doberkat, E.E., Omodeo, E.: Algebraic semantics of ER-models in the context of
the calculus of relations. II: Dynamic view. Technical report, Universität Dort-
mund, Fachbereich Informatik, Lehrstuhl für Software-Technologie (2001) An ex-
tended abstract in H. de Swart ed., Proc. RelMiCS’6–TARSKI, Oisterwijk, the
Netherlands, October 16–21, 2001.

10. Formisano, A., Omodeo, E., Temperini, M.: Instructing equational set-
reasoning with Otter. In Gore, R., Leitsch, A., Nipkow, T., eds.: Auto-
mated Reasoning. Proc. of First International Joint Conference, IJCAR 2001–
(CADE+FTP+TABLEAUX). Number 2083 in Lecture Notes in Computer Sci-
ence, Berlin, Springer-Verlag (2001) 152–167

11. Corradini, F., De Nicola, R., Labella, A.: An equational axiomatization of bisim-
ulation over regular expressions. J. Logic and Comput. 12 (2002) 89–108

12. Tarski, A., Givant, S.: A formalization of Set Theory without variables. Volume 41
of Colloquium Publications. American Mathematical Society (1987)

13. Formisano, A., Omodeo, E., Simeoni, M.: A graphical approach to relational rea-
soning. In Kahl, W., Parnas, D.L., G., S., eds.: Proc. of Relational Methods in
Software, RelMiS 2001. Bericht No.2001-02, Fakultät für Informatik, Universität
der Bundeswehr Muenchen (2001) To appear on Electronic Notes in Theoretical
Computer Science 44(3).

14. Schmidt, G., Ströhlein, T.: Relations and graphs. Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin (1993)

15. Cantone, D., Omodeo, E., Policriti, A.: Set Theory for Computing - From deci-
sion procedures to declarative programming with sets. Texts and Monographs in
Computer Science. Springer-Verlag, Berlin (2001)

16. Burgess, J.: Basic tense logic. In Gabbay, D.M., Guenthner, F., eds.: Handbook
of Philosophical Logic. Volume II. D. Reidel, Dordrecht-Holland (1984) 89–133

17. Cantone, D., Formisano, A., Omodeo, E., Zarba, C.: Compiling dyadic first-order
specifications into map algebra. Theoretical Computer Science 303 (2002)

18. Veloso, P.A.S., Haeberer, A.M.: A finitary relational algebra for classical first-order
logic. Bulletin of the Section of Logic 20 (1991) 52–62

19. Haeberer, A.M., Baum, G.A., Schmidt, G.: On the smooth calculation of relational
recursive expressions out of first-order non-constructive specifications involving
quantifiers. In: Proc. International Conference on Formal Methods in Programming
and Their Applications. Number 735 in Lecture Notes in Computer Science, Berlin,
Springer-Verlag (1993) 319–371

20. Orlowska, E.: Relational interpretation of modal logics. In Andreka, H., Monk, D.,
Nemeti, I., eds.: Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai
54. North-Holland, Amsterdam (1988) 443–471

21. Orlowska, E.: Relational semantics for nonclassical logics: Formulas are relations.
In Wolenski, J., ed.: Philosophical Logic in Poland. (1994) 167–186

22. Frias, M.F., Orlowska, E.: A proof system for fork algebras and its applications to
reasoning in logics based on intuitionism. Logique & Analyse 150-151-152 (1995)
239–284

23. Formisano, A., Omodeo, E., Temperini, M.: Goals and benchmarks for automated
map reasoning. J. Symb. Computation 29 (2000) 259–297 (Special issue on Ad-
vances in First-order Theorem Proving, M.-P. Bonacina and U. Furbach eds).

24. Morse, A.P.: A Theory of Sets. Pure and Applied Mathematics. Academic Press,
New York (1965)

25. Omodeo, E., Schwartz, J.T.: A ‘theory’ mechanism for a proof-verifier based on
first-order set theory. In Kakas, A., Sadri, F., eds.: Computational Logic: From
Logic Programming into the Future: Special volume in honour of Bob Kowalski.
Springer-Verlag, Berlin (In print)

26. Caferra, R., Salzer, G., eds.: Automated Deduction in Classical and Non-Classical
Logics. In Caferra, R., Salzer, G., eds.: Automated Deduction in Classical and
Non-Classical Logics. LNCS 1761 (LNAI), Springer-Verlag (2000)

