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Abstract. This paper presents a logic programming language of novel conception,
called Reflective Prolog, which allows declarative metaknowledge representation
and metareasoning. The language is defined by augmenting pure Prolog (Horn
clauses) with capabilities of self-reference and logical reflection. Self-reference is
designed as a quotation device (a carefully defined naming relation) which allows
the construction of metalevel terms that refer to objectlevel terms and atoms.
Logical reffection is designed as an unquotation mechanism (a distinguished truth
predicate) which relates names to what is named, thus extending the meaning of
domain predicates. The reflection mechanism is embodied in an extended
resolution procedure which automatically switches the context between levels.
This implicit reflection relieves the programmer from having to explicitly deal
with control aspects of the inference process. The declarative semantics of a

Reflective Prolog definite program P is provided in terms of the least reflective
Herbrand model of P, characterized by means of a suitable mapping defined
over the Herbrand interpretations of P. The extended resolution is proved sound
and complete with respect to the least reflective Herbrand model. By illustrating
Reflective Prolog solutions to an organic set of problems, and by discussing the
main differences with respect to other approaches to logic metaprogramming, we
show that the proposed language deploys, within its field of action, greater
expressive and inferential power than those available till now. The interpreter of
the language has been fully implemented. Because of its enhanced power, logic
semantics and working interpreter, Reflective Prolog is offered as a contribution
toward making the declarative approach of logic programming applicable to the
development of increasingly sophisticated knowledge-based systems.
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1. Introduction
The broad desiderata of languages for language representation and reasoning,
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namely: (i) naturalness and expressivity, (ii) formality, clear semantics; (iii)

computational tractabilitY, are notoriously hard to pursue together, and even

harder to achieve.
First-order logic is universally recognized as the best knowledge representation

formalism w.r.t. (ii), but has been questioned w.r.t. (i). Logic programming.

which is based on the Horn-clause subset of first-order logic, on the resolution

principle as a uniform proof procedure, and on the least Herbrand model

iemantics, is considered to be one of the best compromises, currently available,

between (ii) and (iii); c fortiori, however, it inherits the limitations of first-order

logic, whatever they are considered to be.
-Several 

directions have been investigated in orclér to improve the expressive

power of classical logic. Metatheoretical approaches rely on the idea that a

iormal language with high expressive power (close to the one of a natural

language) has to have a self-referential ability (as natural languages have). This

-"ànr (perlis 1985) that the language has expressions naming (quoting) its own

expressions, and thus can be reasoned about in the language itself. Self-reference

implies the need to relate names to what is named (un-naming or un-quoting),

hence leading to representation of truth (Perlis 1985, Perlis 1988). Given a

language L 
,c, means a

might be expressed as

True('a') iff a

where True is a predicate letter of L, a a wff and 'o' its name. In first-order

logic, an equivalent formulation (where T is a theory, l- is the provability relation

of Z and Theorem is, again, a predicate symbol of L):

I l- Theorem ('a') iff T F o

or also, in the form of two inference rules:

Theorem ('o') | *, and a I Theorem ('a')

These rules, connecting object and meta levels, have been called attachment, or

linking, or reflection rules. Weyhrauch (1980) first showed a way to use them in

first-oider logic, and Bowen and Kowalski (1982) introduced them in logic

programs in order to enhance their representational and reasoning capabilities.- 
In the development of artificial intelligence systems, metalevel formulations

are ubiquitous, in that they have been used in a number of domains and with a

wide variety of purposes and architetures (see Aiello et al. 1986, van Harmelen

1989 for a comprehensive overview and classification, respectively). Recognized

advantages of metalevel representations are in the possibility of separation

between domain knowledge and control knowledge' and of better mastering of

inference by explicit treatment of control. Other important advantages of using

metaknowledge and metareasoning in knowledge-based systems have been

recently acknowledged (see Benjamin 1990 for a discussion). Metatheoretic

concepts are suitable to express knowledge about how to perform generalizations,

or abòut problem reformulation, or about inductive biases. More generally, they

permit thè concise statement of generalizations that are useful in problem-solving

(Benjamin 1990).



A metalogic programming language 241

In the field of logic programming, after the original proposal by Bowen and

Kowalski (1982), metaprogramming has become a common technique for

software development in Prolog (a survey of the main current approaches to

metaprogramming in logic programming can be found in Abramson and Rogers

1989, Bruynooghe 1990). The metalinguistic constructs of Prolog on the one

hand increase the expressive power of Horn clauses, make them usable as a

practical programming language, and are necessary to metaprogramming. On the

àther hand, they are low-level, have no logical semantics and have no predefined

relationship with the object-level language. Thus, metaprograms have only a

procedural, often unduly complicated, semantics (a critical analysis of Prolog

metaprograms is given in Hill and Lloyd 1988), It is only recently that new

independent proposals (Hill and Lloyd 1988, Subrahmanian 1988) have been

presented to provide a theoretical foundation for traditional Prolog metaprogram-

ming.
In this paper, we present a self-referential Horn-clause language with logical

reflection, called Reflective Prolog (RP for short). Since it stays within the

framework of logic programming and is intended for declarative representation of

metaknowledge and metareasoning, we call this approach 'metalogic programming'

(this denomination was introduced in Costantini and Lanzarone 1988, and,

independently and in a different context, in Subrahmanian 1988)' The objective

of this approach is that of developing a more expressive and powerful language,

while preserving the essential features of logic programming: Horn-clause syntax,

model-theoretic declarative semantics, resolution via uniflcation as procedural

semantics, correctness and completeness properties. Clearly, we do not mean

that RP is more powerful as a formal system (since Horn clauses are by

themselves Turing complete (Tarnlund 1977)) but rather as a knowledge

programming language: 'One way to judge the usefulness of a language is by its

àUifity to pèrmit concise statements useful in solving an interesting class of

problems, òr in answering an interesting class of queries' (Pylyshym 1984). Also'
we do not claim that RP's metalevel capabilities are entirely new per se, but we

do maintain that it offers a novel combination of these capabilities, yielding an

original balance among the three broad desiderata menfioned at the beginning

of this section.
The basic rationale underlying the design of RP is as follows. Horn clauses

with resolution are taken as the core of the language, because of their

computational tractability. Horn clauses are extended with self-reference, and

resoiution is extended with logical reflection, in order to achieve greater expressive

and inference power. The logical reflection of RP is conceptually based on the

idea of reflection principle as originally introduced in the context of symbolic

logic by Feferman (1972),where it was intended as'the description of a procedure

foi adding to any set of axioms A certain new axioms whose validity follows

from the valdity of the axioms A and which formally express, in the language of

A, evident consequences of the assumption that all the theorems of A are valid'.

As Feferman pointed out, adding a reflection principle to a theory may lead to

conservative or non-conservative extensions, and/or to different kinds of exten-

sions. Reflective Prolog's main characteristics are the following'

o Language and metalanguage are amalgamated in a non-conservative extension.

This means that statements are provable in the amalgamated language, that
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are provable neither in the language nor in the metalanguage alone. This is a

different and more powerful combination w.r.t. the FOL system (Weyhrauch

1980) and the Goedel language (Hill and Lloyd 1991), which are not

amalgamated, and also w.r.t. Bowen-Kowalski's amalgamation (Bowen and

Kowalski 1982), which is conservative.
o The reflection mechanism is implicit, i.e. the interpreter of the language

automatically reflects upwards and downwards on occurrence of predefined

conditions. This allows reasoning and metareasoning to interleave without the

user's intervention, contrary to the systems of Weyhrauch 1980, Smith 1984,

Bowen and Kowalski, 1982, where reflection is explicit, i.e' has to be specified

in advance in the program.
o The reflection principle is embedded in both the procedural and the declarative

semantics of the language, that is, in the extended resolution procedure which
is used by the interpreter, and in the construction of the models which give

meanings to programs. Procedurally, this implies that axiomatization of

standard provability in the metatheory (required in Bowen and Kowalski 1982)

is not needed. Object-level reasoning is not simulated by rneta-interpreters
but directly executed by the language interpreter, thus avoiding unnecessary

inefficiency. Semantically, a device closer to Feferman's reflection principles

rather than to Bowen-Kowalski's linking rules is introduced to characterize

the models of a Reflective Prolog program. The formal semantics is defined

hands-in-hands with the behaviour of the interpreter, as opposed for instance

to MetaProlog (Bowen and Weinberg 1985), where provability is hardwired
in the interpreter but the semantics was not defined until much later
(Subrahmanian 1988).

o The language achieves a substantial part of self-referential first-order logic

advocated in Perlis (1985), Davies (1990) (where implementability was not at

issue). It obtains higher-order features in a first-order language with first-order

syntax, differently from higher-order extensions of Prolog, like À.Prolog (Miller
and Nadathur 1988), or Hilog (Chen er al. 1989).

In this paper we present the syntax, the declarative and procedural semantics,

and sample applications of Reflective Prolog. Declarative semantics is defined in

a model-theoretic fashion, providing a least model semantics based on a notion

oîthe reflective Herbrand model of a theory. The least reflective Herbrand model

is characterized (similarly to the classical Horn-clause language semantics (Lloyd
1987)) as the least fixpoint of a suitable mapping, in order to provide a link
between the declarative and procedural semantics of a program. Derivation by

resolution is extended to include forms of implicit reflection to switch between

levels. Extended resolution is proved sound and complete with respect to the

least reflective Herbrand model of a program. This semantics is not a departure

from the classical semantics of logic programs; rather, it is an extension, based

on the same approach and enjoying the same properties.
The paper is organized as follows. In sections 2 and 3, the formal syntax and

semantics of Reflective Prolog are introduced, and the proofs of the achieved

results are presented. In section 4, the extended unification and resolution are

formally defined. In section 5, a set of sample applications of the language is

presented in detail. In section 6, Reflective Prolog is compared with Prolog

meta-interpreters, and the question of how computational efficiency is affected
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by the proposed extensions and possible ways to cope with it are also discussed.

In section 7, directions of continuation of this research are outlined; in particular,
the srnooth introduction in RP of a powerful form of (metalevel) negation based

on a similar reflection principle is mentioned. Finally, the results on soundness
and completeness of the extended resolution are reported in the Appendix.

2. Syntax
In this and in the next sections, we take as base reference for the foundations
of logic programming the comprehensive presentation of Lloyd (1987), to which
in the following we implicitly refer when saying 'as usual'.

2.1. Alphabet
The main difference in the alphabet of RP w.r.t. traditional Horn-clause languages
is the presence oî metavariables and name constants in addition to object variables
and object constants. There are three kinds of metavariables, called function
metavariables, predicate metavariables and general metavariables, and three kinds
of name constants: quoted name constants, and two kinds oÎ bracketed name
constants.

Definition 2.1. The alphabet II of a Reflective Prolog program P is a union of
the following (disjoint) sets:

A (countably infinite) set of object variables. Each variable is written as a

sequence of characters in which the first is uppercase alphabetic.
A (countably infinite) set of metavariables. Each metavariable is written as a
sequence of characters in which the first is either the character '7o' (function
metavariable) or the character '#' (predicate metavariable) or the character
'$' (general metavariable).
A (finite, possibly empty) set of function symbols.It contains all the function
symbols appearing in P, which are written as sequences of characters where
the first is lowercase alphabetic.
A (finite, non-empty) set of predicate symbols. It contains all the predicate
symbols appearing in P, which are written as sequences of characters where
the first is lowercase alphabetic.
The set of the distinguished function symbols predication, predicate, function,
functor, arity, args.
A (finite, non-empty) set of object constants. It contains all the object
constants appearing in P (if there are none, we add one to the alphabet),
which are written as sequences of characters where the first is lowercase
alphabetic.
A (countably infinite) set of name constants. Each name constant is written
as a sequence of characters included either in quotation marks ("...") (then
called quoted name constant), or in angle brackets ((.,.)) (then called predicate
name constants), or in curly brackets ({ }) (then called function name
constant). This set is the union of the following sets:

- the finite (possibly empty) set of the name constants appearing in P;

- the finite set of the predicate name constants corresponding to the predicate
symbols appearing in P (i.e., for each predicate symbol p, the constant
(p));
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- the finite set of the function name constants corresponding to the function

symbols appearing in P (i.e. for each function symbol f, the constant {f});

- the finite set of the quoted name constants corresponding to the object

constants appearing in P (i.e, for each object constant c' the

constant "c");

- the countably infinite set of the quoted name constants corresponding to

all the symbols above (i.e. for each symbol s, the constants "s", (('(s"",

and so on).
o The distinguished predicate symbols solve (unary), theory-clause (binary), ref

2.2. The language of a Program
The language-defined by a Reflective Prolog program P consists of all the well-

formed formulae in definite clausal form obtained from the alphabet of P' The

definition of terms is extended to include both object variables and metavariables,

and a new class of terms, name terms.

Definition 2.2. Name terms are defined inductively as follows:

(binary).
. A set of operators (connectives and punctuation symbols), viz

,.(,,,,,),,,,,[,.,,,],,.1

Name constants (either quoted or bracketed), described above'

Metavariables (either function or predicate or general), described above.

Function name terms, which are of the form function(functor(@), arity(n),

args([a1, ..., d"])), where @ is a function name constant or a function

màtavariable or a general metavariable, n is a natural number and 6y1, ..., a'
are name terms.
Relation name terms, which are of the form predication(predicate(p), arity(n),

args([a1 , ..., o"])), where p is a predicate name constant or a predicate

metavariable or a general metavariable, n is a natural number and d1, ..., a.

are name terms.l

o
a
a

Definition 2.3. Terms are defined inductively as follows:

o Object variables, described above.

o Object constants, described above.

o Name terms, described above.
o Lists, which are of the form [r',, ...,
o Functional applications, of the form

symbol and q, ..., înate terms.I

î^] (n > 0), where rt, ..., în, aîe terms.

f("r, ..., r.), where f is an n-ary function

Definition 2.4. Reflective Prolog atomic formulae (atoms for short) are of the

form p(r1 , ..., rò, where p is a predicate symbol and 11 , "',TpàÍQ terms'l

Terms can be seen as being divided into metalevel terms, that contain name

terms as subterms, and obiecitevel terms, that do not. Metalevel atoms contain

at least one metalevel term as argument , obiect-level atoms do not.

Name terms allow the representation of language entities in the language itself.
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Quoted name constants are intended as names for constant symbols, and

bracketed name constants as names for predicate and function symbols. Compound
name terms, which are built out of distinguished function symbols, are intended
as names for other terms (function name terms), and atoms (relation name

terms). For example, the name of the term f(a) is the term

function(functor({f}), arity(1), args(["a"])),

the name of the atom p(X) is the term

predication(predicate((p)), arity(1), args(["X"])),

and the name of the atom q(f(a),(b)) is the term

predication (predicate((q)), arity (2),

(2.1)

(2.2)

(2.3)

args([function(functor({f} ), a rity(1), args(["a"])), "(b)"])).

Names of names are also possible: the name of (2.2) (i.e. the name of the name

of the atom p(X)) is

function(fu nctor( { predication} ), a rity(3),

args([function(fu nctor(ipredicate]), arity(1),args(["(p)"])),

function(functor({arityi),arity(1),args(["1"])), (2.4)

f u nction (functor( {a rgs} ),a rity(1),a rgs([" "X""]))]))

In a similar way it is possible to build names of names of names, and so on.
The Reflective Prolog programmer is not forced to use such an awkward

notation: a shortened form is allowed, where distinguished function symbols
(even when quoted one or more times) and arity are omitted' Namely, (2.t)-(2.4)
above can be shortened as:

{f} ("a")
(pX"X")
(q)({f} ("a"),"(b)")
"(p)"(""X"").

Conversion between the two forms is taken care of by the language parser. 'Ihe

short form is clearly most commonly used in actual programs. The reasons for
such a naming device are discussed in the following sections.

Notice that the arguments of metalevel terms or atoms need not be at the
same level of quotation. For instance, pred({f}("a"),(p),g(""b""),h(X)), where
pred and p are predicate symbols and f, g, h are function symbols, is an allowed
metalevel atom.

2.3. Definite programs
Reflective Prolog formulae are in definite clausal form, as usually defined. Thus,
we have:

. unit clauses (facts), which are of the form ct. where o. is an atom.

. non-unit clauses (rules), which are of the form cr:-B. (or, equivalently, c<-B.).
where a is an atom and p a conjunction (of the form ct1 , ..', onr where
dl, ..., an are atoms).

(2.L',)
(2.2',)
(2.3',)
(2.4',)
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o goals (queries), which are of the form ?-B. (equivalently, either <--B. or :-p.),
where B is a conjunction.

The definition of Reflective Prolog definite clause includes, however, some
syntactic restrictions. First, there are three kinds of clauses: object-level clauses,
where the conclusion as well as the conditions are object-level atoms; metalevel
clauses, where the conclusion is a metalevel atom, and the conditions are either
metalevel atoms or object-level atoms; meta-evaluation clauses, which are
metalevel clauses containing one or more atoms with solve as predicate symbol.
Furthermore, use and mention of a predicate in the same clause are not allowed:
i.e'(p) cannot appear in a clause containing an atom p(...). The argument of
solve must be a relation name term representing a goal; since atoms such as
solve((solve)(...)) are forbidden, being a special case of use and mention of a
predicate in the same clause, then meta-meta-evaluation is not allowed in
Reflective Prolog. Finally, the distinguished predicates ref and theory-clause are
predefined, and thus cannot appear in the head of clauses.

Definition 2.5. A safe-referential clause is a definite clause where. for each
composing atom Bj, j e {1. ..., n}. the following conditions hold:

(i) if Bj : p;(a,, ..., or), then y ie {1, ..., k} V s € {1, ..., n} a, does
not contain (pn) as subterm;

(ii) if Bj : solve(a), then a is a relation name rerm;
(iii) if B, is the clause head, then B; * ref(...), rheory_clause(...).I

Definition 2.6. A meta-evaluation predicate p is a predicate which is directly or
indirectly used in the defrnition of sorve, i.e. it either appears in the body bf a
clause whose head is solve(...), or is directly or indirectly used in the definition
of some other predicate appearing in the body of such a clause.I

Definition 2.7. A Reflective Prolog program clause is a safe-referential unit
clause, or a safe-referential non-unit clause A i-Ar, ..., An for which one of the
following conditions holds:

(i) the conclusion A and the conditions A.,, ..., A. are object-level atoms
(object level clause);

(ii) the conclusion A is a metalevel atom, and the conditions A,, ..., An are
either metalevel atoms or object-level atoms (metalevel clause);

(iii) the same as (ii), where A:sotve(...)
(meta-evaluation clause, specifically solve clause)

(iu) the same as (ii) where A:p( .) with p meta-evaluation predicate, an<I
I j € {1, ..., n} : A; : solve(a) (meta-evaluation clause).I

A Reflective Prolog definite program, that is a finite set of program clauses, can
be seen as being divided into two main levels. The first one, called meta-
evaluation level, consists of meta-evaluation clauses, and in practice contains the
definition of the distinguished predicate solve and of its auxiliary predicates (i.e.
the meta-evaluation predicates of definition 2.6). The second level, called óase
level, consists of the remaining metalevel clauses and of all the obiect-level
clauses.
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The distinction between base level and meta-evaluation level is related to the
choice of adopting implicit rather than explicit reflection in the language. The
reasons of this choice and the importance of the syntactic distinction are discussed

in the rest of this paper. The point stated in definitions 2.6 and 2.7 is that the
predicate solve cannot be, in general, explicitly used in clauses. It is however
necessary to allow both direct and indirect recursion in the definition of solve.

Direct recursion is coped with in case (iii) of definition 2.7. Indirect recursion
in definition 2.6 and case (iv) of definition 2.7.

Definition 2.8. A Reflective Prolog definite program is a finite set of Reflective
Prolog definite program clauses.l

Definition 2.9. A Reflective Prolog definite goal is a safe-referential clause of
the form :-81, ..., Bn.l

Example 1. The following is a Reflective Prolog definite program.

/* metaevaluation level x/

ro solve(#P($X, $Y)) :- symmetric(#P), solve(#P($Y, $X)).

A solve(#P($X, $Y)) :- equivalent(#P, #Ol, solve(#O($X, $Y)).

/* base level */

/* metalevels */

symmetric((friend)).
symmetric((equiva lent)).

g equivalent((amico),(friend)).
/* object level */

friend(giorgio, mary).
amico(lucy, albert).
happy(X) :-friend{X,l ucy}.

The base level consists of object-level facts and rules, defining the relations
friend, amico and happy, as well as metalevel facts. The metalevel fact B states

that the relations amico and friend are 'equivalent' (in the sense that their names

are one the translation of the other). Notice that the relation equivalent is defined
over bracketed name constants, which act as names for predicate symbols: the
choice of special constants to name predicates and functions (instead of function
symbols like, for instance, in Hill and Lloyd 1988) aims at making metalevel
clauses involving predicate names easier to write and understand. The relations
friend and equivalent are both asserted to be symmetric.

The two solve rules constitute the meta-evaluation level for the base-level

theory: rule f declaratively defines the meaning of symmetry in the theory,
stating that (the objects whose name is denoted by) $X and $Y are in the relation
(whose name is denoted by) #P, provided that #P is asserted to be symmetric
and that $Y and $X are in the relation #P. Rule p states that equivalent
relations have the same extension.I

Meta-evaluation rules can be considered from different points of view:

o as declarative definition of the intended meaning of base-level relations;
. as connecting intensional properties of relations and functions (like symmetry

and equivalence in the example) to their extensional counterpart; in particular,
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they relate properties expressed on names to the actual extension of the named

entities;
. as auxiliary inference rules, with both a declarative effect (increasing, as we

will see, the set of consequences of the program) and a procedural effect
(allowing the derivation of more facts).

3. Declarative semantics
The declarative semantics of a Reflective Prolog definite program P is defined
by means of a notion of interpretation that extends the usual one to deal with
the metalevel part of the language. We start with the definition of the naming
relation, that relates name terms to the linguistic entities they are intended to
refer to, and with the definition of a pre-interpretatíon.

3.1,. Naming relation and pre-interpretation
The extended Herbrand universe Ue, defined as usual (Lloyd 1987), contains (by

the definition of the language of P) object terms as well as name terms and

metalevel terms. Let NT C Ue be the set of all the name terms belonging to Ue,

and RNT C NT the set of all the relation name terms. The extended Herbrand
base Bpe is deflned as usual, starting from Ur.

We now introduce the naming relation NR such that a NR B means that o is
the name of B. By a stight abuse of notation, we also write (at, ..., d,) NR (Ét,
..., Én), meaning (a1 NR Ét) A...A (o, NR B"). In order to define NR, we

introduce the set A : Ue U fI, where lI is the alphabet of the language of P.
A contains all the terms of the language of P, plus those symbols of the alphabet
(namely, function and predicate symbols) that have a name, but are not terms
of the language.

Definition 3.1. The naming relation NR c NT x A is defined as follows.

[] Each quoted name constant is NR-related to the symbol enclosed in the
quotes.

p] Each bracketed name constant is NR-related to the symbol in the brackets.

E If (p) NR p and (or, ..., an) NR (ar, u") then we have
predication(predicate((p)),arity(n),args([or, ,.., ""])) NR p(a1,..', on)

i.e. a relation name term is the name of an atom.

Ef If {f} NR f and (or, ..., a^) NR (u1, ..., a"r) then we have

function(functor({f}),arity(n),args([a,, ..., o.])) NR f(a1, .,., an)

i.e. a function name term is the name of a term.l

With respect to the examples in section 2.2, NR relates (2.1') to the term f(a),

(2.2') to the atom p(X), (2.3') to the atom q(f(a),(b)) and (2.4'), which is the

name of a name, to the name term (p)("X").
Given the naming relation NR and given an element A of A, we adopt the

notation f A to indicate the name term a such that a NR A. We also write a :
f A (or, conversely, A : .f a) meaning a NR A (conversely, A NR-r a)' For
instance, î p{a) is the relation name term (p)("a") if p is a predicate symbol, or
the function name term {p}("a") if is p a function symbol; J (qX{f}("X")) is the

atom q(f(X)); ,1"(hx""a"") is the relation name term (hX"a"). The application
of NR will be called dereferentiation, and the application of its inverse NR-l



A metalogic programming language 249

referentiatíon Notice that, according to the above definition, referentiation is

possible on every term, while dereferentiation is possible on name terms only.

The naming relation between f A and A is made explicit in Reflective Prolog,
provided that A belongs to Ue: the predefined binary predicate ref(a,A) is true
if a : îA.

The definition of a pre-interpretation Ple over UE is a simple extension of the

usual notion.

Definifion 3.2. A Pre-Interpretation Ple over Ue consists of the following
assignments.

f, Each constant is assigned to itself in Ue.

p] Each n-ary function symbol f is assigned a mapping

Ple(f) :Ug-ue

that maps à.t, ,.., an over f(ar, ..., an).
p Each list [r1, ..., î^] is assigned the sequence [Ph(q), ..., Pk(r")]'l

The definition of pre-interpretation is independent of NR. Consequently, each

metalevel term (e.g. t((p))) is pre-interpreted onto itself in Ue, regardless of
what the contained name terms are intended to represent. As we will show later,
the definition of interpretation relates the named objects and their metalevel
properties (e.g. the extension of the predicate p and the property expressed by

f) via reflection.

3.2. Variable and term assignment
While the notion of term assignment is the usual one, we need to redefine the

notion oî variqble assignment to deal with the different types of metalevel

variables.

Definition 3.3. Let Ple be a pre-interpretation. A variable assignment (w.r.t.
Ple) is an assignment to each variable of an element of the domain Ur of Ple,

such that:

(a) the assignment of each object variable is an object-level term;
(b) the assignment of each predicate metavariable is a predicate name

constant;
(c) the assignment of each function metavariable is a function name constant;
(d) the assignment of each general metavariable is a metalevel term.l

It is worth noting that Reflective Prolog is actually a typed language: object
variables range over object terms, predicate metavariables over predicate name

constants (i.e. over names of predicates), function metavariables over function
name constants (i.e. over names of functions), and general metavariables over

metalevel terms in general. This simple kind of typing is mainly aimed at

avoiding, as far as possible, the use of explicit recognizers. For instance, in order
to define at the metalevel a class of predicates, it is sufficient to give a predicate

metavariable as argument to the relation representing that class, instead of
explicitly checking whether it is the name of a predicate. In order to define the

language semantics, however, it is sufficient to deal with types with respect to
variable assisnment and unification only.
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An instance of a term or atom r is the term or atom t' obtained from r by

applying a variable assignment. Similarly, an instance of a clause o is the clause

<rr' obtained from r,.r by applying the same variable assignment to all the composing

atoms.

3.3. Extended Herbrand interpretation
Finally, we introduce the notion of extended Herbrand interpretation le of the

language defined by a Reflective Prolog definite program P, based on a pre-

interpretation Ple, E can be characterized, as usual, as a subset of the extended

Herbrand base Bpe consisting of the set of all ground atoms which are true w.r.t'
the interpretation. Thus, r(ar, ..., En) € k means that r(ar, '..,3n) is true w.r.t.
lE.

Let LRNT be the set of all the sequences (of any length) of relation name

terms. Let P' be the instantiated version of P, i.e. the program obtained by

substituting in every possible way the variables appearing in P by terms in Ur.

Definition 3.4. An extended Herbrand interpretation h based on a pre-

interpretation Ple, on the naming relation NR and on P' consists of the following
assignments.

E] The assignment of each non-distinguished n-ary predicate symbol r is a

mapping

lr(r) : UE --+ {true, false}

where r(ar, ..., an) --+ false if I i € t1, ..., n) : ai NR r (i.e. a; : (r))

(auto-mention is forbidden).
p The assignment of the distinguished unary predicate symbol solve is a

mapping

k(solve) : RNT -+ {true, false}

where solve(a) -+ true if A: Jc € le, A * solve(...).
p The assignment of the distinguished binary predicate symbol theory-clause

is a mapping

le(theory-clause) I RNT x LRNT --+ {true, false}

where theory-clause(a, [Ér, ..., p.j) -> true if A<-Br, ..., B' or solve(a)<-B'',

..., Bn is a clause in P', where Ja: A or ,l.a : solve( f A), and 81 =

I9r, ..., B' : lÉn.
@ The assignment of the distinguished binary predicate symbol ref is a

mapping

le(ref) : NT x Ue --; {true, false}

where ref(a, A) -+ true 1i " 
: f A.l

Notice that solve (which is true if the atom named by its argument in NR belongs

to the interpretation) not only 'mirrors' the interpretation of predicates, but can

also ,extend' it, since it is possible that solve(a) e tr while A : I a É le. The

definition of Reflective Models, given below, will clarify how this extension is

made effective.
Clearly, an extended Herbrand interpretation is also an interpretation in the
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usual sense. Since the converse does not hold, it is possible to identify the set
HE E 2eee of all the extended Herbrand interpretations of P, which is a complete
lattice under the partial order of set inclusion (with the empty set as the bottom
element, and Bpe as the top element). If the program and the alphabet are non-
empty, the bottom element of HE can be assumed to be the interpretation 1
where the only interpreted predicates are the predefined ones theory-clause and
ref. That is, I characterizes the naming relation, as well as the clauses of the
program. It is easy to see (by the definition of an extended Herbrand
interpretation) that -L is uniquely determined by the program P, and that it is

contained in every other extended Herbrand interpretation.

3.4. Reflective Models
The classical notions of model and of logical consequence are extended to the
notions of reflective model and of reflective logical consequence.

Definition 3.5 Let P be a Reflective Prolog definite program and L the language

of P. A reflective model for P is an extended Herbrand interoretation lr for L

which is a model for

p, = pU {A<_solve( f A) :AeBes,A*solve(... )}.t
Reflective models are also Herbrand models in the usual sense (Lloyd 1987),
and it can be noted that the model intersection property obviously holds for
Reflective Prolog programs. Then there exists a least reflective Herbrand model
RMp of a definite program, which is in general wider than the least Herbrand
model.

Definition 3.6 An atom A is a reflective logical consequence of a Reflective
Prolog definite program P if, for every interpretation le, le is a reflective model
for P implies that lE is a model for A.I
The axioms A-+ solve(îA) will be called in the following reflection axioms.
Adding the reflection axioms to a program P corresponds to applying to P the
reflection principle introduced in Feferman (1962), definition 2.16. ^lhe purpose
here is to extend the usual notion of model, in order to include in the reflective
model of a program P those atoms A such that solve( î A) is a logical consequence
of P. In this way, the extensions to the 'intended meaning' of base-level relations
(and of their interconnections) defined via metalevel clauses and solve rules have
their semantic counterpart.

The notion of extended Herbrand interpretation formalizes the assumption
that the meta-evaluation level has total visibility on the base level. We modified
the classical semantics of the Horn-clause language on this point since, in our
opinion, this is necessary in any metalogic approach. The interaction in the
opposite direction is instead a design choice of the language" Then, for formalizing
the specific design choice of Reflective Prolog we choose to modify the program
(by adding the reflection axioms) rather than further modifying the semantics
(by defining the extended Herbrand interpretation so as to entail A if and only
if solve(îA)). The two possibilities lead to equivalent results in this specific
context, but the latter seems too restrictive in principle. In fact, the reflection
axioms of Reflective Prolog are meant to express just one of the reflection
principles potentially applicable. By keeping the reflection axioms explicit,
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extensions and/or modifications to the language can be performed by changing

the reflection axioms and/or adding new ones, without any semantic modification.
Notice that the solve predicate is not an axiomatization of provability, but it

can be seen as a truth predicate, in the sense mentioned in Perlis (1985). It is

also different from Bowen and Kowalski's demo (Bowen and Kowalski 1982), as

well as from Prolog meta-interpreters (Sterling and Shapiro 1986) where it is

necessary to include rules defining the standard inference strategy. Also, in
Bowen and Kowalski (1982) and Subrahmanian (i988) demo("G") is a logical

consequence of a program if and only if G is. Instead, solve rules do not provide
a conservative extension: the least reflective Herbrand model is in general a

significant superset of the usual least Herbrand model.

Example 2. Let us consider the program below, which is a simplification of
example 1.

solve(#P($X, $Y)):-symmetric(#P),solve(#P($Y, $X)).
symmetric((friend)).
friend(lucy,albert).
happy(X) :-f riend(X,lucy).

The traditional least Herbrand model
the two program facts, since they do
rule.

/* Least Herbrand Model Mp */

symmetric((friend))
f riend(lucv,a lbert)

If we consider extended Herbrand interpretations, where solve( t A) e le if A €
le (upward reflection), Mp becomes (omitting the standard subset J-):

Mp over Exlended Herbrand Interpretations *i

Mp would contain only the two atoms of
not correspond to the conditions of any

Specifically, atoms (iii) and (iv)'mirror' (i) and (ii); but, now, atoms (i) and (iv)
correspond to the conditions of the solve rule, and then a model will contain its

conclusion, namely the atom (v).
If we now look for the least reflective Herbrand model (by augmenting the

program via the reflection axioms A <- solve( î A)), the reflection axiom with (v)

as condition leads to add the conclusion, namely the atom (vi) below (downward
reflection); but in turn (vi) corresponds to the condition of the base-level rule,
thus leading to add the new atoms (vii) and (viii). This is an example of
interleaving between levels.

/* Least Herbrand Model
symmetric((f riend))
friend(lucy, albert)
solve((sym metricX "(f riend)" ))

solve((friendX "lucy", "albert" ))

solve((friendX "albert", " lucy" ))

.../* RMp: the same as

friend(albert, lucy)
haPPY(albert)
solve{(happyX " al bert" ))

(i)
(ii)
(iii)
(iv)
(v)

above, plus: */
(ui)
(vii)
(viii)

Clearly, RMe is not minimal in the traditional sense: it is however minimal if we
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intend to capture the meaning of solve clauses considered as auxiliary inference
rules.l

3.5. Fixpoint semantics
The declarative semantics of a Reflective Prolog definite program P can be

defined as the fixpoint of a mapping defined over the set HE of all the extended
Herbrand interpretations of P. This mapping, called Tee, can be seen as an

extension of the mapping Tp defined in Lloyd (1987).

Definition 3.7. Let P be a Reflective Prolog definite program. The mapping Tee

: HE -+ HE is defined as follows.

Tpe(te) : {A,S € BPE:

A <- A1 , ..., An is a ground instance of a clause in P,

{A,,, ..., A"} E lE, A * solve(c),

A S = solve(îA) ) U

{S,A € Bee :

S +- 51, ..., Sn is a ground instance of a clause in P,

(Sr, ..., S") E lE,

A S = sotve(îA ).r
Proposition 3.1. Let le € HE. Then TeE(le) e HE (that is, Tee maps extended

Herbrand interpretations onto extended Herbrand interpretations.)

Proof. Straightforward.l

It can be noted that the definition of Tpe subsumes the linking rules of Weyhrauch
(1930) and Bowen and Kowalski (1982). In fact, including the atom S (E) in
the result of the application of Tpr corresponds to communicating results from
the base level to the meta-evaluation level (thus modelling upward reflection);
vice versa, the inclusion of A (p]) means that results are reflected from the
meta-evaluation level to the base level (thus modelling downward reflection).
But while in the mentioned approaches a proof is performed at a certain level
(object or meta) and then results can be communicated to the other level, in
subsequent applications of Tpn the switching between base and meta-evaluation
level is performed on single subgoals (interleaving between levels), thus exploiting
all the useful intermediate results no matter the level where they were obtained.

The mapping Tee is clearly monotonic, and we have the following propositions.

Proposition 3.2. Let P be a Reflective Prolog definite program. Then the
mapping Tpe is continuous.

Proof. Let X be a directed subject of HE. Note first that {A1 ... A"} C lub(X)
iff {A1 ... A.} C l, for some lc X. In order to show that Tpe is continuous, \ile
have to show that Tpe(lub(X)) : lub(Tpe(X)) for each directed subset X. Now we
have that A C Tpe(lub(X)) iff one of the points (i)-(iii) holds:

(i) A <- Ar, ..., An is a ground instance of a clause in P and {A,', ..., A.}
e tub(X)
iff A <- A.,, ... An is a ground instance of a clause in P and {A.', ..., An}

Cl,forsomel€X
iff A € Tee(l), for some | € X
iff A € lub(Tpe(X))
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A : solve (î B), B 4- Br, ..., B" is a ground

and {8,, ..., Bn} c lub(X)
iff g.- 8,, ..., Bn is a ground instance of a

B.)C l, for some | € X

iff A : solve(î B) € Tre(l), for some | € X

iff A e lub(Tpe(X))
(iii) A : I a, solve(a) * 31, ..., Sn is a ground instance of a clause in P

and {S1, ..., S.} g lub(X)
iff solve(a) 1-- Sr, ..., S. is a ground

..., S^) e l, for some | € X

iff A: f oe Ter(l),forsomele X

iff A € lub(Tpr(X)).I

instance of a clause in P and {S',

Proposition 3.3. Let P be a Reflective Prolog definite program and 1 an extended

HeÀrand interpretation of P. Then / is a reflective model for P iff Tpe(l) c l.

Proof. / is a reflective model for P iff

(i) for each ground instance A <- Ar, ..., An of each clause in P, A +
solve(F), {A1, ..., A"} e I imPlies:

-A c I, because 1 is a model of each axiom of P;

-solve( î 
A) c l, by the definition of extended Herbrand interpretation;

(ii) for each ground instance solve( tA) <- Sr, ..., S^ of each solve clause

in P, {Sr, ..., S.} e I imPlies:

-solve( î 
A) g l, because / is a model of each axiom of P

-A c l, because 1is a model of the reflection axiorn A <- solve( îA)
iff TpE(l) e LI

Hence the result of van Emden and Kowalski holds (Lloyd 1-987, theorem 6.5,

p. 38), providing a fixpoint characterization of the least reflective Herbrand

modei oi a Reflective Prolog definite program. The only difference is that we

put Tne î 0 : I, but this does not affect the proof. The formulation is given
^below, 

where RMp indicates the least reflective Herbrand model of a Reflective

Prolog definite program P.

Theorem 3.1. (Fixpoint characterisation of the least reflective Herbrand model)

Let P be a Reflective Prolog definite program. Then RMp : lfp(Tee)

Tee J o.l

4, Unification and resolution
4.L Unification
Reflectivé Prolog's extended resolution includes forms of implicit reflection,

which determine the dynamic change of level modelled in the definition of Tpr.

This requires two kinds of unifications: extended unification, which deals with

expressiòns generated at the same level and is able to unify metalevel terms, in

adàition to the usual unification of object-level terms; generalized unification,

which deals with expressions generated at different levels by referentiation/

dereferentiation oPerations.
The following substitution rules are the basis of both extended and generalized

unification, accórding to the definition of variable assignment given in definition

J.J.

(ii ) instance of a clause in P

clause in P and {Br, ...,
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Definition 4.1. A substitution 0 is a finite set of the form {vrltr, ..., vnltn} , where
v1, ..., vn are distinct variables, and y i € {1, ,.., n}, one of the following
conditions holds:

(i) v; is an object variable, and Ir is an object-level term distinct from v;;

(ii) v, is a predicate metavariable, and f; is a predicate name constant;
(iii) vi is a function metavariable, and 4 is a function name constant;
(iv) v, is a general metavariable , and t, is a metalevel term distinct from

vi'l

The definitions of expression, simple expression (se, for short) and disagreement

set aÍe the usual ones. Given a finite set S of simple expressions, the disagreement
set consists as usual of all the subexpressions of each expression in S that do not
coincide. We now present the extended unification algorithm, where S denotes

a finite set of simple expressions to be unified.

Extended unification algorithm

1. Put /c:0 and oo: É (empty substitution).
2. If. Sop is a singleton, then stop; oi. is an mgu of S. Otherwise, find the

disagreement set D4 of Sop.

3. If there exist v and t in D7. such that one of the following conditions
holds:
(i) / is an objectJevel term and v is an object variable that does not

occur in f;
(ii) r is a predicate name constant and v is a predicate metavariable;
(iiD r is a function name constant and v is a function metavariable;
(in) I is a metalevel term and v is a general metavariable that does not

occur in f
then put ck+r : op {vlt}, increment ft and go to 2. Otherwise, stop; S is
not unifiable.I

We now introduce the generalized unification algorithm. Accordingly, we will
speak of generalized mgu, or gmgu, and we will say that two expressions g-unfy.

A generalized simple expression (gse, for short) is either a term, or an atom,
or a predicate symbol, or a function symbol. A ground gse is a gse containing
no variable symbol as a subexpression.

Generalized unification algorithm

1. Put k:0 and oo : E (empty substitution).
2. lf Soe is a singleton, then stop; .ok is a gmgu of ,S. Otherwise, find the

disagreement set Dp of 5o6.
3. If there exist a variable v and a gse / in D1 such that one of the following

conditions holds:
(i) v is a predicate metavariable, and / is a predicate symbol;
(ii) v is a function metavariable, and r is a function symbol;
(iii) v is a general metavariable, and / is a term not containing v;
then put ak+r = op {vl t /}, increment k and go to 2. Otherwise go to 4.

4. If there exist a variable v and a ground gse t in Da such that one of the
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following conditions holds:
(i) y is an object variable, ,f r is an object-level term not containing v;
(ii) v is a predicate metavariable, J r is a predicate name constant;
(iii) v is a function metavariable, J r is a function narne constant;
(iu) v is a general metavariable, J I is a metalevel term not containing

then put ukt,r : oe {vl } t}, increment k and go to 2. Otherwise, stop; S
is not unifiable.l

A gmgu is clearly a substitution, and can be composed with other substitutions
(in particular with either mgus or gmgus) in the usual way. Some examples of
gmgus are given below, where a is a relation name term and B is an atom.

a : #p($X,,,a,') B - p(y,a)

" : (qX{f}("c")) B : q(f(V))
a = #R($F("c")) B : t(f(X))

(1) gmgu : {#Pl<p), $X/"Y"}
(2) smsu = {V/c}
(3) smgu : {#R/(t),gFl{f},xtc}

The gmgu (1) can be obtained as the mgu of a and f B, the gmgu (2) as the
mgu of J a and B, but for gmgu (3) none of these cases holds. In general, if o
is a relation name term, B an atom and g a gmgu of a and B, we have a0 :
î (BB).

For both extended and general unification it is easy to prove (in a way similar
to Lloyd 1987, theorem 4.3, p. 25) that, given a finite set s of respectively simple
expressions or generalized simple expressions, if S is respectively unifiable or g-
unifiable then the unification algorithm terminates and gives respectively an mgu
or gmgu for S, otherwise the unification algorithm terminates and reports this
fact.

Theorem 4.1. (Reflective Prolog unification theorem) Let s be a finite set of
simple expressions. If S is unifiable, then the extended unification algorithm
terminates and gives an mgu for s. If s is not unifiable, then the extendecl
unification algorithm terminates and reports this fact. Let S' be a finite set of
generalized simple expressions. If S' is g-unifiable, then the generalized unification
algorithm terminates and gives a gmgu for s'. If s' is not g-unifiable, then the
generalized unification algorithm terminates and reports this fact.I

4.2. RSLD-resolution
Derivation by resolution is extended to state the role of base-level clauses as
well as meta-evaluation clauses in a proof, where reflection allows the shifting
from the base level to the meta-evaluation level and vice versa. The new
definition makes use of both unification and generalized unification. The notation
is similar to that of Lloyd (1987), with clauses indicated as A<-Ar, ..., An instead
of A:-A1 , ..., An. In order to maintain resolution independent of the computation
rule, the following safeness condition must hold of goals ref(a,A).

Definition 4.2. A goal ref(a,B) is safe if a is a name term and B a term, and
one of the following conditions holds:

. both a and B are ground;

. a is a metavariable and B is ground;
o B is a variable and a is ground.I
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Some comments are in order about restrictions implied by the above definition.

The predefined predicate ref, which declaratively represents the naming relation,

is used procedurally for referencing/dereferencing terms' Dereferencing a non-

ground name term is not possible: for instance, we cannot know the term whose

iame is (pX$x) if $X is unbound. On the contrary, referencing a non-ground

term is pàsiUtó (since we have names for variable symbols), and is normally

done auiomatically when the level of the computation changes (as shown in the

definition of RSlD-resolution). With respect to the explicit use of ref, consider

however the goal <-ref(f(X),$Y),p(x). Since X is unbound, we get $Y/{f}("x").
Reversing the order of the subgoals, we might get a different result if p(x)

instantiatles X. A dynamic check corresponding to definition 4.2 has to be

introduced in the language interpreter, since it is not generally possible to foresee

whether or not a goàt ref(a,A) of an arbitrary program will be safe at run-time.

we can now define the extended resolution principle. Let Q be the true

clause, i.e. the clause satisfied by every interpretation (for instance p<-p is such

a clause). Every program can be considered as implicitly including the true

clause.

Definition 4.3. (Reflective SlD-resolution, or RSlD-resolution) Let G be a

definite goal <-A1, ..., A-, ..., A1 and c a clause. If A- is the selected atom in

G, then é' is derived from G and C using substitution 0 iff one of the following

conditions holds:

(i) C is A<-Br, ..., Bo

g is an mgu of A- and A
G'is the goal <-(R,, "', A--r,Bt, ..., BqlAm+r, "', A.)0

(ii) C is solve(a)*S'', ..., S*,
A- # solve(6)
0 is a gmgu of A- and a
G' is the goal <-(Ar, ..'' A--r,Sr, '.., S*,A-*1, "', A*)0

(iii) A- is solve(M)
C is A<-Bt, '.., Bo

0isagmguofMandA
G'is the goal <-(Ar, '.., A--'r, Br, ...,

(iv) A. is theory-clause(H,B)
C is A<-Br, ..., Bo

Bq,Am+t, ..., A*)0

0 is both a gmgu of H and A and a gmgu of B and

G' is the goal <-(A.,, ..., A--1, A-*1, ..., Ak)o
[Bt, ..., Bo]

(u) A- is theory-clause(H,B)
C is solve(c)<-S.', .'., S*
H + î solve(6)
0 is both an mgu of H and a and a gmgu of B and [S1, "', S-]

G' is the goal <--(Ar, ..., A--1, A-*1, ..', A1)0

(ui) A* is theory-clause( f solve(H),8)
C is A<-Br, ..., Bo

g is both a gmgu of H and A and a gmgu of B and [B', "', Bo]

G' is the goal <-(Ar, ..', A--r, A-*r, .'., Ak)o

(vii) A- is ref(a,B)
CisQ
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0isagmguofaandB
G' is the goal <-(Ar, ..., A--r, A-*1, Ak)oI

RSLD-resolution subsumes SlD-resolution, which corresponds to case (i) above'

Cases (ii) and (iii) perform upward and downward reflection respectively. In

case (ii), a base-level selected atom is resolved with a meta-evaluation clause,

whose conditions appear in the resulting goal G'. Vice versa, in case (iii) a meta-

evaluation selected atom is resolved with a base-level clause, whose conditions

appear in the resulting goal G'. Cases (iv)-(vi) deal with the distinguished

pièdicate rheory-ctause, by modelling the behaviour of cases (i)-(iii). Case (vii)

takes care of referentiation/dereferentiation.
It is worth noting that, given the selected atom A- in a definite goal G, and

the subsequent goal G' obtained (as described above) via one resolution step'

the newly-selected atom {,in G'is treated in the same way; that is, a proof is

in general obtained by an interleaving between base level and meta-evaluation

level.

Example 3. Let us reconsider the program of example 1. The steps to prove

the goal :-happy(albert) are the following'

r-happy(albert)
happy(X):-friend(X,lucv) (case (i) of definition 4'3)

lX/albertl
' :-friend(albert,lucy)
A- (friend)("albert","lucy"\

solve(#P($X, $Y)):-symmetric(#P).solve(#P($Y, $X))
(case (ii) of definition 4.3, shift-up)

[#P/(friend), $X/"albert", $Y/"lucv"]
: -svmmerric((friend)),solve((friendx" lucy", "albert" ))

svmmetric((friend)) (case (i) of definition 4.3)

t1

:-solve((friendX"lucY", "albert"))
friend(lucy,albert) (case (iii) of definition 4.3, shift-down)

il
n

In summary, a base level goal A can be attempted both via base-level rules such

as A:-B,, ... Bn, and via meta-evaluation rules solve(f A):- 51, ... Sn; conversely,

a meta-evaluation level goal solve( f A) can be attempted via both meta-evaluation

rules and base-level rules.l
The resolution procedure implemented in the interpreter of Reflective Prolog

follows a generalized depth-first strategy, where cases (i) and (iii) have higher

priority than (ii): each goal is first attempted at the base level and then at the

meta-evaluation level. In practice, the interpreter applies the standard Prolog

strategy to an internal representation of the program, in which base clauses

always precede meta-evaluation clauses. The predefined predicate theory-clause

is handled accordingly, with priority to cases (in) and (vii): a call to

theory_clause($A,$B), or to theory-clause( t solve($A),$B), with $B unbound, will
generate, on backtracking, first the conditions of base-level clauses whose

óonclusion g-unifies with $A, and then the conditions of solve clauses whose

G

0

G

î
(-

0

a

0

G'
î
0

LJ' (empty clause, success)
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conclusion unifies with solve($A), according in both cases to the order of clauses

in the program'
Theresolutionprocedureincludestwokindsofchecks(implementedinthe

fung*g" interpreter), defined below' Given an object- or metavariable' say X'

X íppíoo in ftre term/atom A if either X or one of the corresponding quoted

name constants (..X,,, 
((..x,,),, etc.) occurs as a subterm in A. Let a g-variant of

a goal M be a goal M,with the Same structure (they unify without instantiations),

where either the set of variables appearing in M and the set of variables appearing

in M, are disjoint, or every common uu.iubl" appears in the same position in

both M and M'; e.g., P(X, 1, Y) is a g-variant of p(A, L' B) and of p(X' 1' B)

but not of p(Y, 1, X). blì courss' the only g-variant of a ground goal is the goal

itself.

(a) Let G,, ..., Gn be the sequence of goals generated in an RSlD-derivation
' ' of e u 1._c1, and let é, b" th" first goal of the sequence containing a

*"ru-"uàtuutíon atom M:solve("') as a subgoal' The derivation fails

whenever a goal M1:solve("') appears in G1 for some k)i' where M'l is

ag-variantofM.Thatis,meta-evaluationofgoalswhichhavealready
beenmeta-evaluatedinapreviousstepalongthesamebranchofthe
prooftreeisprevented,,in""itwouldleadtoaninfiniteloop.This
check is sound since it considers goals which are identical, up to variable

renaming.
(b)Thederi-vationofPUi-p(...)}failswheneverasubgoalp(.'.,(p),...)

appears in G; forco." l. This óheck is sound since' by the definition of

a ieflective model, no such atom belongs to RMp'

These checks are not comparable with the more general approaches to loop

detectionappearingintheliterature(amongthelatest'(Aptetal'1989'Bol
1gg0)). They only ipply to meta-evaluation goals for specific purposes, leaving

untouched the loop pióUt"rn at the base levèI. Check (b) is aimed at verifying

the condition stated syntactically in definition 2.5, and semantically in definition

3.4. Check (a) is aimed at handiing those simple loops which arise from a specific

conceptual i"uron, though 
""p,"tt"d 

in clausal form' solve rules are often meant

to exiress equivalences,"at in example i" Check (a) then applies to those solve

subgoals to which a rewriting system would apply simplification'

An RSlD-derivation of È U {*M} is successful (and is called an RSLD-

refutation) if it is nnite anO its iast goal is the empty clause. The computed

answer0isthecomposition(restrictedtothevariablesappearinginM)ofthe
mgusand/orgmgusassociatedwiththenresolutionsteps'AfaíIedRSLD-
derivation is a finite derivation that ends in a non-empty goal to which either

noneofthecases(i)-(vii)ofresolutionisapplicable'oroneofchecks(a)and
(b) is applicable'

Some comments are in order about the syntactic distinction' introduced in

section 2, between base level and meta-evaluation level, and the corresponding

restriction that forbids the use of meta-evaluation predicates at the base level'

This is related to the choice of implicit rather than explicit reflection: in fact, a

call to a meta-evaluation predicaie at the base level would correspond to a

ipossiUf' indirect) call to sàlve. Such a call is in contrast with the principles of

Reflective Prolog (since solve is meant Io declarutively extend the meaning of
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base-level relations) and also unnecessary. Consider for instance a base-level
clause such as p(X):- solve((qX"a")), which violates definition 2.7: it is easy to
see that it is equivalent to p(X):- q(a), since the subgoal q(a) is attempted at
both the base level and the meta-evaluation level, by the definition of RSLD-
resolution. In conclusion, we believe that implicit reflection encourages a more
declarative attitude in using the language, having the same or greater expressivity
than explicit reflection and a simpler and more natural semantics, A comparison
is not in order here with the uses of explicit reflection for reasoning with multiple
theories (e.g. with the predicate demo ("T", "G")), since this paper deals with
the definition and use of metaknowledge within a single theory.

The distinction, at the base level, between object level and metalevel (metalevel
predicates cannot be used in object-level clauses) is motivated by the point of
view that, at each level, the levels below are visible, but not the levels above.

Results about soundness and completeness of RSlD-resolution w.r.t the least
reflective Herbrand model of a program are presented in the Appendix.

5. Sample applications
In this section we outline a characterization of one kind of problems for which
Reflective Prolog is especially appropriate. As mentioned in the introduction,
two kinds of metaprogramming applications can be (roughly) distinguished. A
first one has to do with metaprograms in the strict sense, i.e. programs that take
other programs as data and either apply transformations to them, or perform
some kind of computation according to the structure of proofs (affect unification/
control, count inference steps, build the proof tree, etc). A second one deals
with representing information on different but related conceptual levels in one
and the same program (this is not however to be intended as a sharp distinction,
since more experience is needed to discover where the border line, if any, is).

For the first kind of applications, it is still possible in RP to write meta-
interpreters which, due to the naming capabilities of RP, enjoy a neat declarative
semantics. The basic version is the followins:

demoRP([]).
demoRP([$A[SB]) :-demoRP($A),demoRP($B],
demoRP($A) : -theory-cl ause($A,$B ),demoRP($B).

For the second kind of applications, no meta-interpreter is needed in RP, due
to its reflection capabilities. In these cases, RP allows cleaner and easier
definitions, and also avoids (as discussed later) procedural and expressiveness
problems that often arise when trying to combine different definitions. It is worth
noting that there are applications, apparently of the first kind, which in RP can
be treated like those of the second kind. For instance, a 'query the user' capability
can be introduced in an RP program (without using a meta-interpreter), by
simply adding to it the following meta-evaluation rule, which is automatically
applied, on failure, to any goal (by the definition of RSlD-Resolution):

solve(#P($A)) : -askabl e(#P),ask(#P($A)).

We do not discuss RP meta-interpreters in this paper. Rather, we intend to
illustrate the enhanced expressivity, due to reflection, in dealing with those
metaprogramming tasks which are not concerned with the proof process in itself.
In this section, we discuss two sample kinds of applications of sufficient generality
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and cornplexity to illustrate what programming in RP is like. Other significant

applications are discussed in Costantini and Lanzarone (1989,1992).

5.1. Calculus of relations
The theory, or calculus, of relations constitutes a classical part of basic logic

(Carnap 1958, Tarski 1965). It involves properties of relations; mainly, classes

(unary relations) and binary relations are considered. This subsection begins with

the question of transforming classes into binary relations and vice versa, and

then it deals with problems of representation and use of properties of binary
relations in a logic program. Several sources of limitations that arise in Prolog

with respect to these issues are discussed, and it is shown how Reflective Prolog's

capability of objectifying relations is suitable to appropriately overcome those

limitations.
The ontological assumption of predicate logic is that the world can be described

in terms of individuals, classes and relations. Classes, or types, are collections of
individuals satisfying one property, and a property is traditionally represented by

a unary predicate. When describing a world, one has to decide which entities to
represent as individuals, which ones as classes and which ones as relations. For

example, the collection of all men may be either represented as a class, like in:

man(john).

or treated as an individual, like in:

is-a(john,man).

(s.1)

(s.2)

The choice is usually based on the purpose of the description (Kowalski, 1979).

Representation (5.2) enables one to consider superclasses, like in:

is-a(man.human).
is-a(human,animal).

(s.3)

and to refer to them by means of variables in rules. For instance, together with
(5.2) and (5.3) we may have the rule:

is-a(X,Y) : -is-a(X,Z),is-a(Z,Y).

This expresses the transitivity of the relation is-a, thus allowing inference chains

through subclasses and superclasses. (In Prolog, however, this definition involves

procedural problems, which will be discussed in the following.) In place of (5'3)

we may define the following rules:

is-a(X,human) : -is-a(X,man ).

is-a (X,ani mal ) : -is-a(X,h u man ).

from which inference chains are automatically obtained, due to the implicit
transitivity of the operator :-. Transitivity rules cannot be expressed, and inference

chains cannot be obtained, if classes are treated as properties.

Prolog allows a non-uniform representation, where the same symbol is used

as a class in one place and as an individual in another, like in:

man(john).
human(man).
animal(human).
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but this is an abuse of logic. It is known (Deliyanni and Kowalski 1979) how to
pass from the representation as property to the representation as binary relation
(for instance, from (1) to (2)): the unary predicate symbol (man) becomes a

constant symbol, and a new binary predicate is introduced (is-a), which expresses
how the original predicate symbol (man) is related to its argument (john).
However, this transformation, or the choice between the two representations,
must be made in advance. It is an a priori of a given description, and cannot be
modified from the inside of the description itself.

The Reflective Prolog's naming device allows one to reify relations, i.e. to
associate metalevel constants with predicate symbols, so that the two represen-
tations can coexist without the above-mentioned lack of uniformitv. like in:

man(iohn).
is-a(bob,(man)).
is-a ((man),(human)).

is-a(X,(animal)) :-is-a(X,(huma n)).

(s.4)

In addition, automatic reflection permits passing from constant symbols to
predicate symbols and vice versa. It is, therefore, possible to transform one
representation into the other, and to use each of them in the appropriate context.
These transformations can be made explicit in the prograrn by means of the
following meta-evaluation rules:

solve((is-a)($X.$Y)):-theory-fact((is-aX$2,$Y)),solve((is-aX$X,$Z)).
so lve((is-a)($X,$Y) ) : -ref($Y,# P),solve(# P($X)).

solve(#P($Xl) : -ref($X,Y),is-a(Y,#P).

Notice that theory-fact($F) is a specialization of the predefined predicate
theory-clause($A,$B) for unit clauses. Here, and in the subsequent examples as

well, it can be considered as defined by

theo ry-f act($ F) : -th eo ry-cl a use ($F, [ ).

With these, a positive answer is obtained from (5.4) e.g. to the queries

?-is-a(john,(man)).
?-man(bob).
?-is-a(bob,(human)),

by the application of the second, third and first rule, respectively. Note that,
since some facts have arguments at different levels, it is necessary to use the ref
predicate in the last two solve rules dealing with those cases.

In the following, we will consider binary relations only, recalling Kowalski
(1979) and Deliyanni and Kowalski (1979) and that every n-ary relation (n>2)
can be replaced by n*l binary relations.

The Horn-clause language allows the definition of first-order relationships
(relations among individuals) by means of facts, and, partially, of second-order
relationships (relations among classes or among relations), by means of the
following rules:

r2(X,Y):-r1(X,Y). (inclusion: (VX,Y) X r1 Y + X 12 Y\

r(X,Y):-r1(X,Y).
r(X,Y):-r2(X,Y). (union:(V X,Y) X r Y <> X 11 Y ! X 12 Y)



A metalogic programming language 263

r(X,Y):-rL(X,Y),r2(X,Y). (intersectíon: (y X,Yl X r Y e X 11 Y A X 12 Y)

r(X,Y):-r1(X,Z),r2(Z,Y).(composition:($ X,Y)l Z Xr Y eX 11.Z AZ12Yl
r2(X,Y):-r1(Y,X). (inverse relation: (VX,Y) X 11 Y + Y r2 Xl

In the above cases, the declarative interpretation of Horn clauses is in agreement
(for one direction of the double implication) with the definitions of the theory
of relations (Carnap 1958, Tarski 1965), and the procedural interpretation
(implemented by the Prolog interpreter) allows the inference of all couples

belonging to the relation according to the already known ones (asserted in facts)
and to the given rules. Representing general properties of binary relations such

as reflexivity, symmetry and transitivity is, however, a different matter. They
can be declaratively expressed, but their procedural interpretation is rather
troublesome.

In the following, the problems that arise are pointed out, and different possible

solutions are discussed. The properties of a relation r are meant as def,ned over
the class C of the individuals appearing in facts concerning that relation, according
to the defrnitions below.

rreflexive in C: (V X e C) X rY + X TXAYTY
rsymmetric in C: (V X,V e C) X rY+YrX
rtransitive in C: (Y X,Y,Z e C) X rYA Y rZ+XrZ.

Reflexivity in a class can be expressed neither in the simple form

r(X,X).

since this would apply to all the individuals of the Herbrand lJniverse, nor in
the declaratively correct form

r(X,X):-r(X,-).
r(X,X):-r(-,X).

since procedurally this definition could lead to infinite loops, e'g. with:

r(a, b).

?-r(b,b).

It is necessary to introduce an auxiliary relation:

rr(X,X):-r(X.-).
rr(X,X):-r(-,X).

Similarly, symmetry cannot be expressed by the rule:

r(X,Y):-r(Y,X).

since this can determine infinite loops, for instance when arguments are

instantiated to constants that do not belong to the class. Again, an auxiliary
relation is needed:

rr(X,Y):-r(X,Y).
rr(X,Y):-r(Y,X).

The direct representation of transitivity:

r(X,Y) : -r(X,Z),r(Z,Yl.
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causes infinite loops with (partially) unistantiated calls. Transitivity has be be

expressed as:

rr(X,Y):-r(X,Y).
rr(X,Y) : -r(X,Zl,r r (Z,Y\.

Thus, for each reflexive or symmetric or transitive relation, an auxiliary relation

must be introduced, which obscures the declarativeness of the representation.

Moreover, for those transitive relations which can naturally be expressed as

transitive closures of subrelations, it is not always possible to represent all the

desired connections. Given, for instance, the following clauses and query:

parent(a,b).
parent(c,d).
ancestor(b,c).
ancestor(X.Y) :-parent(X,Y).
ancestor(X,Y) : -parent(X,Z),ancestor(Z,Y).
?-ancestor(X,Y).

the solutions (a,d) and (b,d) are not obtained. To yield thern, Îhe clause:

ancestor(X,Y) : -parent(Z,Y),ancestor(X,Z)'

(which generates repetitions) must be added. But in this case, by also adding

the fact:

ancestor(c,e).

the query above fails to generate the couples (a,e) and (b,e).
These problems become even more serious when properties of relations are

considered not in isolation, as before, but combined. In fact, given the clauses:

p(X,Y):-p(Y,X).
p(X,Y) : -p(X,Zl,p(Z,Y I'
p(a,b).
p(c,b).

the Prolog interpreter enters an infinite loop with the query:

?-p(a,c).

though the program is declaratively correct and p(a,c) is a logic consequence of
it. It is well-known (Lloyd 1987) that no clause reorder and no predefined

selection and search rules can solve this problem. It is also worth noting that the

same problems occur not only with Prolog, but with other representation and

inference systems too (Shapiro 1986)'
In Reflective Prolog, we can specify which relation has which property by

means of assertions like:

ref lexive((r1)).
symmetric((12)).
tra nsitive((13)).

and then use the following meta-evaluation rules.

For reflexivity:
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solve(#P($X,$X) ) : -ref lexive(#P),solve-1 (#P,$X).

so lve-1 (# P,$X) : -theo ry-fact( #P($X,-) ).

solve-1 (#P,$X) : -theory-fact(#P(-,$X) ).

For symmetry:

solve(#P($X,$Y)):-symmetric(#P),solve(#P($Y,$X)). (5.5)

For direct transitivity:

solve(#P($X,$Y)):-transitive(#P),theory-fact(#P($X,$Z)), solve(#P($2,$Y)).
(s.6)

For transitivity of a relation r expressed as transitive closure of a subrelation r1,

we first assert:

subsumes{(r),(r1)).

and then use the following rules:

solve(#P($X,$Y)) : -fact(#P($X,$Y)).

solve(#P($X,$Y)) : -tra nsitive(#P),fact(#P($X,$Z)),so lve(#P($2,$Y)).
fact(#P($X,$Y)):-theory-fact(#P($X,$Y)). (5.7)
fact(#P($X,$Y) ) : -su bsumes(#P,#O),theory-fact(#O($X,$Y)).

In order to combine symmetry and direct transitivity, it suffices to replace (or
to add before) clause (5.7) with the clause:

fact(# P($X,$Y)) : -sym metric( #P),theory-fact(#P($Y,$X) ).

Now we call attention to the consequences of the already-mentioned fact that
some second-order relationships can be expressed at the object level in one
direction only ('if', not 'iff'). The inverse relation cannot be expressed in both
directions:

r2(X,Y):-r1(Y,X).
r1 (X.Y) :-r2(Y,X).

since this would lead to infinite loops. In Reflective Prolog there are two
possibilities. The first one is to represent the 'if' part at the base level, and the
'only if' part at the meta-evaluation level:

r2(X,Y):-r1(Y,X).
inverse((r1),(r2)). (5.8)
solve(#P($X,$Y)):-inverse(#P,#O),solve(#O($Y,$X)). (5.9)

The second possibility is to have clause (5.8) together with the following:

svmmetric((i nverse)).

and to use rule (5.9) together with the symmetry rule (5.5).
In addition to representing second-order relationships (more extensively than

in Prolog), Reflective Prolog also allows the representation of definitions and
theorems of relational calculus. Similarly to inverse relation, inclusion cannot be
expressed at the object level in both directions. Thus, the identity rule (if 1L C
r2 and r2 C rl, then r1 : 12) cannot be represented. In RP, mutual inclusion
can be specified by two assertions:

265
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includes(( 1),(r2)) .

includes((r2),(r1)). (5'10)

and identity can be represented by the meta-evaluation rule:

solve((identityX#P,#O)):-includes(#P,#O),includes(#O,#P)' (5 ' 1i )

An alternative solution is to directly specify the identity of two relations:

identity((r1),(r2)). (5 ' 12)

sym merric((identity)).

and then to use these assertions to assign the known extension of one of the two

relations to the other one by means of the rule:

solve(#P($X,$Y)) : -identity(#P,#O),solve(#O($Y'$Y)).

Note that the last rule is usable both when the identity of two relations is directly

asserted with clauses (5.I2), and when it is derivable via rule (5.11) from

assertions (5.10). We now proceed to consider other metatheorems.

Every symmetric and transitive relation is also reflexive (on its domain):

reflexive(#P) : -sym metric(#P), transitive(#P).

If a relation is symmetric, then its inverse relation is also symmetric:

symmetric(#P):-inverse(#P,#o),symmetric(#o). (5.13)

More generally, if a relation has one property, then its inverse has the same

property. Metarules similar to (5.13) could be added, for example for reflexive

and transitive. But the metatheorem can be expressed at its proper level of

generality by means of the following metarule only:

property(#P,#O):-inverse(#P,#R),property(#R,#O). (5 ' 14)

Rule (5.14) assumes that a property is represented in the form:

property((rel),(Pro P) ).

rather than:

property((rel)).

However, according to the results of the beginning of this Subsection, it is

possible to pass from one form to the other by means of the following meta-

evaluation rules:

solve(#P($X)):-ref($X,#o),propertv(#o,#P). (5.15)

solve((propertyX$X,$Y)):-ref($Y,#P),solve(#P($X)). (5.16)

Given, for example:

sym metric((r I )) .

property((r1),(ref I exive)).

inverse((r2),(r1)) .

by using (5.14), (5.15) and (5.i6) the following can be derived:

symmetric((12)).
property((12),(sym metric)).
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reflexive((12)).
property((12),(ref lexive)).

Another important metatheoretical notion is the following (Carnap 1958, p. 146).
A property p is hereditary with respect to a relation r (or p is preserved under
r) if, whenever a member of r has property p, then so do all the other members
of r:

p hereditary w.r.r. r: (V X,Y € C) pX A X r Y + py (5.17)

For each relation r which preserves some property p (and for each property p

preserved by r), we can express the Prolog rule:

p{Y):-r(X,Y),p(X). (5,18)

or else, representing a property with a binary predicate:

p(Y,Value):-r(X,Y),p(X,Value). (5.19)
p(Y,Value) : -r(Y,X),p(X,Value).

In RP we can declaratively assert which relation preserves which property:

hereditary((r),(p)).

and define hereditary by either the rule:

so lve(#P($Y)) : -hereditary(#R,#P),solve(#R($X,$Y) ),solve(#P($X)).

or the rule:

so lve(#P($Y,$V) ) : -hered it ary WR,#Pl,
so lve(#R($Y,$X) ),solve(# P($X,$V) ).

(s.20)

(s.21)

The RP representation (5.21) has several advantages over the Prolog representation
(5.19), that we show in the following comparison between Prolog and Reflective
Prolog solutions.

One advantage is that several object-level rules of type (5.19) are condensed
into one, both for different predicates and the same relation (first and second
case below), and for different relations and the same predicate (second and third
case below):

owne r(Y,V) : -pa rt-of (Y,X),owner(X,V).

owner(car,o).
pa rt-of(battery,car).
?-owner(battery,V). l* V : o*l
in (Y,V) : -parrof(Y,X),in(X,V).
in(car,location).
pa rt-of(battery,car).
?-in(battery,Vl. l* V : location */

in(Y,V) : -on(Y,X),in(X,V).
in(truck,location ).

on (box,truck).

?-in(box,V). l* Y : location */

Given, together with the same facts as above:
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hered ita ry((Pa rt_of),(owner)).
heredita ry((pa rt-of),(i n)).

hereditary((on),(in)).

by using rule (5.21) the same answers to the previous queries are obtained. The

sécondiduuntug" is that rule (5.21), having two solve calls in its body, can be

combined with any other meta-evaluation rule. For instance, it allows transitivity

of both the property and the relation:

in(truck,ma nhattan).

on(box.truck).
on(dog,box).
pa rt-of ( ma n h atta n, new-yo rk-N-Y).
pa rt_of ( new-york-N-Y,n ew-yo rk).

tra nsitive((on)).
tra nsitive((Pa rt-of)).

By using, together with rule (5.2I), the solve rule (5'6) for direct transitivity,

the following query is answered affirmatively:

?-in(dog,new-york).

As an additional advantage, an 'upward' heredity, in place of the previous
,downward' heredity, can be expressed by means of inverse relations:

hereditary((contai ns),(def ective)).

i nverse((co ntai ns),(Pa rt-of)).
defective(batterYl.
parLof(batterY,car),

By using rule (5.20) in combination with rule (5.9), the following query gets a

positive answer:

?-defective(ca r).

Finally, rules like (5.18) can be

example:

symmetric((friend)).
translation((amico),(friend)).

extended to second-order relationships. For

hereditary((translation),(sym metric)).

It may be noted that (5.21) generalizes the most common forms of inheritance

used in semantic nets. Let is-a(X,Y) mean that element X belongs to set (or type,

or kind) Y, and a-k-o(X,Y) (short for 'a kind of') that set X is a subset of Y.

Then, by instantiating #R to (is-a) or (a-k-o) in (5.21), we have

solve( #P($Y,$V)) : -heredita ry((is-a),#P),

solve((is-a)($Y,$X)),solve(#P($X,$V) ).

so lve(#P($Y,$V) ) : -heredita ry((a-k-o),#P),
solve((a-k-o)($Y,$X))'solve(#P($X,$V ))'

(s.22)

(s.23)

which express the inheritance laws of is-a and a-k-o (thus giving the semantics

of these predicates):

if X has relation P to V and Y is an X, then Y has relation P to V (s.24)
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if X has relation P to V and Yis a kind of X, then Yhas relation P to V (5.25)

In semantic-net systems, these rules have to be either represented as auxiliary
nets, or implemented in the net interpreter. Note that rules (5.22) and (5.23)
require, to be applied, the presence of assertions of the form

hereditary((is -a),#Pl.
hered ita ry((a-k-o),#P),

Such assertions enable the differentiation of a distributive property (a property
that is true of the members of a group) and a collective property (a property
that is true of a group itself, not its members). Properties of the first kind, but
not of the second kind, are to be asserted as hereditary. Given, for instance

origin-period(mammals,triassic),
a-k-o(equ ines,ma m mals).
tem perament(domestic-ani mal,docile).
a-k-o(cat,do mestic-a n i m a | ).

he redita ry((a-k-o),(tem perament)).

from rules (5.22) and (5.23) temperament(cat,docile) can be correctly derived,
since this is a distributive and therefore hereditary property. Instead,
origin-period(equines,triassic) (false in the intended interpretation) cannot and
must not be derived, since origin-period is a collective property and therefore
has not been asserted as hereditary. (The terms 'collective' and 'distributive'
properties and the last example are taken from Richards (1989).)

5.2. Equality by function names
In this subsection we show some examples about using names of function symbols
and metavariables ranging over them, and discuss how they can approximate a

kind of equality in Horn clauses.
First, the following simple example illustrates the use of the three types of

names and metavariables:

d ive rte nte(spettaco lo ( bu ratti n i ) ).

tra nslation ((amusi n g),(divertente)).
tra nslation ( { performance}, {spettacol o} ).

(s.26)

tra nslation ( " puppets ", " bu rattin i " ).

solve(#P($X)) : -translation(#P,#O),solve(#(O($X)).
solve(#P(%F($X))) :-translation(%F,%G),solve(#P(%c($X))).
solve(#P(%F($X))) :-translation($X,$Y),solve(#P(%F($Y))).

From fact (5.26), all the eight ground atoms can be derived, which are obtained
by representing either in Italian or in English any of the three (predicate, function
and constant) symbols.

It is worth noting that in RP a query can be expressed at any level. With
respect to the above example, the following (meta) queries:

?-translation ($X,$Y),

?-solve(#P(%F($X))).

obtain three and eight (meta) solutions, respectively.
We will now reconsider, and extend, the representation of equality of some

269
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geometric figures, discussed in Kornfeld (1983). We summarize the problem as

follows:

(i) there is a class of objects, regular polygons, which consists of various

subclasses (equilateral triangles, squares, pentagons, etc');
(ii) the subclasses are characterized by an attribute (side length), and the

class by two attributes (number of sides, side length)l
(iii) the elements of the class, and thus of the subclasses, have geometric

features, like area and perimeter, represented by binary predicates

having a (sub)class as the first argument and a value as the seconcl

argument;
(iv) thé values of those geometric features are computable from the values

of the mentioned attributes, with the known geometric rules;

(u) each subclass has a proper name which can be considered as synonymous

with the name of the class, qualified by the corresponding number of

sides; e.g., square can be considered as synonym of regular-polygon

$);
(ui) we wish to use the same geometric rules given for the class to compute

the geometric features of any subclass, identified by its proper name.

The rules mentioned in point (iv) can be represented at the object level:

perimeter(regular-polygon(Sides-Number,Side-Length),Peri meter: -

Perimeter is Sides-Number * Side-Length.

area( regula r-polygon{Sides-N u mber,Side-Length),Area } : -

LSquare is Side-Length *Side-Length,

Cot is cotangent(180/Sides-Number),
Area is (LSquare * Sides-Number * Cot) / 4.

The synonymy features mentioned in point (v) can be represented by the meta-

assertions:

equivalent( { equilateral-triangle} ($L),{regular-polygon} ( "3",$L))'

equivalent( {square} {$L), {regula r-polygon} ( "4",$L))'

equivalent({ pentagon} ($L), { reg ular-polygon} ("5",$L)}'

or, still better, by parametrizing the equivalent assertion and separately representing

the association between the proper name of a subclass and the number of sides

of the corresponding regular polygon:

equ ivalenr(%F($L),{regular-polygon} ($N,$L)}:-nu mber-of-sides(%F,$N ).

number-of-sides({equilateral triangle},"3")' number-of-sides({square}"'4")'

num ber-of-sides( { Penta gon }, " 5 " ).

Given the clauses above, the objective mentioned in point (vi) is reached by

means of the simple meta-evaluation clause:

solve( #P($X,$Y)) : -equivalent($X,$Z),solve(#P($2,$Y) )'

We have. for instance

(s.21)
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?-peri meter(sq uare( 1 0),P).

?-area(equilatera l-triangle( 1 00)'A).

In a similar way, we can represent other
figures:
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l*P=40*l
/* A: 4330 xl

classes and subclasses of geometric

a re a ( e I I i pse ( M a j o r-Ax i s, M i n o r-Axi s ),Area ) : -

Area is 3.14 * (Major-Axis / 2) * (Minor-Axis / 2)'

times(X,Y,Z);-Z is X * Y.

equivalent( {circle}($Radius),{ellipse} ($Diameter,$Diameter)) : -

solve((times)( " 2 ",$Radius,$Diameter)).

By means of the same rule (5.27), a query about the area of a circle is solved

by using the rule for the area of an ellipse:

?-area(circle(10),A)' l* A : 314 *l

On the other hand, as also was the case in Kornfeld (1983), the area rule for

ellipses will not interfere in any way with goals asking for the areas of regular

poiygont, because there is no assertion that allows us to derive equivalence

between ellipses and regular polygons.

It may bó noted that rule (5.27) expresses the important higher-order logic

postulató that 'identical objects share the same properties' (Rogers 1971).

Kornfeld (i983) has discussed how his Prolog-with-equality (inclusion of

assertions about equality, used to prove two terms equal when their unification

is attempted and fails syntactically) is a natural extension to the power'

expressibility and generality of standard Prolog. Equality theorems corresponding

to those expressibìe in Kornfeld's Prolog-with-equality are in RP just a special

case of solve rules. In this regard, RP is not only more powerful' but also has

procedural and logical semantics, lacking in Prolog-with-equality'

6. Discussion
We have already argued that Prolog's metalinguistic features are unsuitable as a

full naming Oevice, since they do not allow both a clear distinction and an

adequate Jommunication among different representation levels. We have also

meniioned that a part of the logic programming community has critically analysed

the language in túis regard, and is actively working toward its evolution' In this

section we compare Reflective Prolog with the well-known meta-interpreters

approach. Then we discuss the matter of efficiency of RP, also with respect to

meta-interpreters.

6.1,. Comparison with Prolog meta-interpreters

In order to examine more closely the Prolog limitations mentioned above, let us

reconsider example 1 of section 2. Since properties of relations (symmetry,

equivalence) areìnvolved, a representation at the object level would suffer from

the shortcomings discussed in the previous section. A general solution can only

be expressed aithe metalevel, by defining a meta-interpreter, like the following:

demo(true):-!.
demo((A.B)) :-!,demo(A)'demo(B).
demo(A) :-clause(A,B),demo(B)'
duro(A)'-A=..IP,X,Y],symmetric(P),8 :,' IP,Y,XI,demo(B).
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demo(A) :-A:..IP,X.Y],equivalent(P,P1 ],8:..IP1,X,Y],demo(B)'

to be used, in the example, with the clauses

friend(g iorgio,mary).
symmetric(friend).
equivalent(amico,friend).
sym metric(equ ivalent).
amico(lucy,albert).
happy(X) : -friend(X,lucy).

The queries have now to be expressed through the predicate demo

?-demo(amico(mary,giorgio)). (6.1)

This solution is inefficient, since all subgoals are meta-interpreted, not only those

that need to be so treated. This is better seen by adding the following clauses:

play-tennis(X,Y) : -plays-tennis(X),plays-tennis(Y),amico(X,Y).
plays-ten nis( g iorg io).
plays-tennis(mary).

The query

?-demo(play-tennis(mary,giorgio)).

leads to meta-interpret not only the third subgoal, but also the first two. On the

other hand, if the alternate solution

play-ten n is(X,Y) : -plays-ten n is(X),plays-ten nis(Y),demo(a mico(X'Y) ).
?-play-tennis(mary,giorgio).

is adopted, one has to decide in advance which goals are to be meta-interpreted

and which are not, the former needing to be included in predicate demo.

Another problem is the difficulty in avoiding the possibility of infinite loops,

which arises when the basic ('vanilla') interpreter is augmented with several

additional clauses. In the example, the additional clauses are those for symmetry

and equivalence, and an infinite loop arises e.g. with the queries

?-demo(friend(cha rles,anna)). (6.2)

?-demo(amíco(charles,anna)). (6.3)

because the symmetry clause is applied indefinitely. This difficulty can be

overcome neither by adding cuts in the meta-interpreter's code, e.g. in the clause

before the last:

demo(A) : -A:..IP,X,Y],symmetric(P], !,B:..IP,Y,X],demo(B).

nor by pushing the execution of the new subgoals to the object level, i.e. by

replacing the last two clauses with the following:

demo(A) :-A:..IP,X,Y],symmetric(P),B:..IP,Y,X],8.
demo(A) :-A:..IP,X,Y],equivalent(P,P1 ],8 =..IP1,X,Y],8.

These techniques inhibit the combined application of properties, For instance,

the query (6.1) cannot be proved. In fact, once the equivalence clause is applied,

the goal friend(mary,giorgio) fails: to succeed, the application of the symmetry
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clause would be needed, but is precluded. In order to solve the problem, it is

necessary to extend the meta-interpreter with control features, so that it records

which clauses have already been applied and avoids using them over and over:

demo(true) : -retract(used(-) ),fail.
demo{true):-!.
demo((A,B)) :-!,demo(A),demo(B).
demo(A) :-clause(A,B),demo(B).
demo(A) :-A:..IP,X,Y],symmetric(P),not used(symmetric(P)),

assert(used(symmetric( P)) ),B =.. IP,Y,XI,demo( B).

demo{A) :-A=..IP,X,Y],equivalent(P,P1 ],not used(equivalent(P,P1 ]],
assert(used(equivalent(P,P1 ))),8 =..tP1,X,Yl,demo(B).

This second version of the meta-interpreter rules out the occurrence of infinite
loops, such as those arising with queries (6.2) and (6'3), but while the first

version was already procedural in nature, this one is almost unreadable. Still
more important is that it gives an incorrect (negative) answer to queries like:

?-demo(ha ppy(al bert)). (6.4)

since it is unable to apply the assertion symmetric(equivalent) in order to derive

the conclusion equívalent(friend,amico) that is needed for the proof. The problem

is that, while in the RP solution the two rules for symmetry and equivalence are

expressed independently of each other, and they only interact at run-time, this
does not occur with the above meta-interpreter. An alternative possibility is that

of combining symmetry and equivalence into additional meta-interpreter rules.

With respect to coping with the mentioned loop problems, instead of using assert

and retract, another way is that of introducing an additional parameter in the

meta-interpreter, representing the list of the already meta-interpreted goals, and

forcing to failure the meta-interpretation of a goal belonging to the list. The

resulting meta-interpreter (Yalcinap 1991) is the following:

derno(true,-S):- !.

demo((A,B),S) :-!,demo(A,S),demo(B,S).
derno(Goal,S) ;-clause(Goal,Body),demo{Body,S).
derno(Goal,S) :-symmetric-goa ls(Goa l,New-Goa | ),

not in-stack(Goal,S),
demo(New-Goal,IGoallSl).

dern o ( Goa l,S ) : -eq u iv-goa I s( G oa l, N ew-G oa | ),

not in-stack(Goal,S),
demo(New-Goal IGoallS]).

equiv-goals(G1,G2) :-G1 =.. INamelArgsl,
eq u ivalent(Name,N a me2),
62:.. IName2lArssl.

equiv-goals(G 1,G2) :-G 1 :.. IName2lArgsl,
equivalent(Name,Name2),
c2:.. INamelArssl.

sym metric-goa ls( G 1,G2) : -6 1 : . . I Name,Arg 1,Arg2],
symmetric(Name),
G2:.. IName,Arg2,Arg1].

in-stack(Goal,IGoalBlS]) : -variant(Goal,GoalB), !.
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in-stack( Goal,[-lSI ) : -i n-stack(Goa I,S].

(with variant(G1,G2) suitably defined).
This meta-interpreter is more readable than the previous one, and gives the

correct positive answer to query (6.4). However, it does so not by using the

assertion symmetric(equivalent) (that could therefore be dropped from the

database), but because of the two clauses for equiv-goals, which try an equivalent

assertion in both directions. The knowledge about symmetry and equivalence

properties of relations has thus been turned from declarative to procedural form.

Moreover, this formulation is not only longer, but also less general than the one

in RP. Given, for instance

equ iva lent(sym metric,i nverti ble).

invertíble(r).
r(a,b).

the meta-interpreter fails to positively answer the query:

?-demo(r(b,a)). (6.s)

because the subgoals symmetric(r), equivalent(r,Name2), equivalent(Name,r) all

fail. To accommodate this case, another, perhaps inevitably again ad hoc,

reformulation of the meta-interpreter would be needed. It seems that there is

no way of writing a meta-interpreter capable of treating in full generality the

combination of properties accomplished by the RP solution. The reason is that,

while each subgoal is attempted in all possible ways by the RP's reflection

mechanism before failing definitively, it is abandoned by the rneta-interpreter on

the first failure to proceed to other clauses. In the last example, RP correctly

handles query (6.5) because, when the subgoal symmetric((r)) fails at the object

level, the subgoal equivalent(symmetric,#O) is generated, which instantiates #O

to (invertible), so that invertible((r)) can be used.

In general, Reflective Prolog programs are easier to develop than the

corresponding Prolog meta-interpreters for at least two reasons. First, the aspects

related to the proof process need not be made explicit in those metaprogramming

applications which are not concerned with them, Second, it is not necessary to

còpe explicitly with procedural problems related to the combination of rules,

which are automatically dealt with at the interpreter level.

Explicit loop controls are not needed in a Reflective Prolog program. The

interpreter of RP automatically inhibits the repeated meta-evaluation of the same

goal, by means of the checks(a) and (b) illustrated in section 4. In the above

example, it proves all of the queries by never reapplying the same property to
the same subgoal.

We now briefly summarize the main aspects illustrated by the previous

examples. First, Reflective Prolog has a general naming device, whereby lower-

level terms are represented by higher-level names, which are terms themselves.

This feature overcomes the syntactical limitations of Prolog, and makes its

metalogical predicates unnecessary. Semantic ambiguities are avoided by having

different representations for constant, function and predicate symbols' and the

only way to pass from one representation to the other (e.g' from an object-level

predicate symbol to a metalevel name constant) is by means of the reference/

àereference operation, which is automatically performed by the extended

resolution procedure.
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The role that the various levels of knowledge play in a demonstration is

determined by a general and powerful inference device, which uses reflection to

switch the computation context betwen the base level and the meta-evaluation

level. This mechanism cannot be simulated by a Prolog meta-interpreter. Prolog

allows two rudimentary forms of reflection, schematizable as follows:

(6.6)
(6.7)

demo(A):-4.
B:-demo(B).

Rule (33) pushes to the object level the execution of A and of all the subgoals

generated by resolution during the proof of A, Further meta-interpretation is,

therefore, impossible, unless it is planned in advance for specific subgoals by

means of rules like (6.7). On the contrary, rule (6.7) forces meta-interpretation
of all the subgoals of B, except those excluded in advance by means of rules like
(6.6). In Reflective Prolog, a continuous interleaving between base level and

meta-evaluation level occurs automatically, with no need for planning ahead in

the program: every subgoal generated by a resolution step is attempted at the

base level first, and only if this fails, it is meta-evaluated.

6.2, Remarks on efficiency
As discussed in the previous sections, reflection allows metalevel knowledge to

be expressed directly, without defining a meta-interpreter, and thus without the

extra level of interpretation. In Reflective Prolog, non-failing computations,

being dealt with directly by the interpreter, can in principle be as efficient as in

Prolog. The situation is, however, different in case of failures. Consider an RP

prograrn with typical solve clauses like those for symmetry and transitivity, shown

in section 5, and with the following usual definition of membership:

member(E,IEl-T]),
member(E,[-HlTl ) : -mem ber{E,T}'

With the query ?-member(X,[a,b,cl), X is quickly bound to a, b and c' Now

consider the subsequent failure: the interpreter will try to determine if member

is symmetric, transitive, etc., for any property of binary predicates the meta-

evaluation level knows about. Presumably, all these will fail, but meta-evaluation

will be very costly even for such a simple objectlevel operation.

Explicit reflection, allowing to plan ahead a shift among levels, might in some

cases reduce inefficiency, but in our opinion is not a suitable general solution,
because of the reasons discussed in section 6.1. What we think can really help

are program analysis and transformation techniques.

We have defined a program analyser and transformer for RP programs
(Costantini et al. l99l), which performs two tasks. First, it identifies those

predicates to which no meta-evaluation rule is applicable (i'e. all of them would

iail); for these predicates, it generates a predefined direetive which is accepted

by the interpreter, and prevents their meta-evaluation. This directive would of
course be potentially unsafe if issued by the user in an uncontrolled way. Second,

it identifies the subset of meta-evaluation rules applicable to each of the other
predicates, and (on request) specializes solve rules accordingly.

We have proved the correctness and completeness of this analyser for 'pure'

RP programs (i.e. programs containing no extra-logical features), in the sense

that it never rules out, for a predicate, meta-evaluation clauses that might be



276 S. Costantini and G. A. Lanzarone

applicable to it, while it always succeeds in detecting that a given predicate
cannot be meta-evaluated at all, or that it cannot be meta-evaluated by a certain
rule. For programs with extra-logical predicates, however, the analyser is not
complete, though covering most cases in practice. The analyser has been written
in RP itself, also in order to show the applicability of RP to this class of
metaprogramming applications. It is based on an elaboration of the basic RP

meta-interpreter shown at the beginning of section 5.

7, Conclusions and future directions
This paper has presented Reflective Prolog, a new logic programming language
that addresses the problem of representing knowledge and metaknowledge in a

uniform, declarative way. It avoids the creation of a superior/inferior relationship
between levels, which, on the contrary, are defined so as to be able to interleave
and cooperate. Reflective Prolog extends the Horn-clause language with an

appropriate naming relation and a form of logic reflection, The extension is
syntactically minimal and natural, and has semantically all the classical properties.
The treatment of reflection with comparatively few semantics extensions is one
result of this research, since up to now reflection has been considered as a
feature desirable in principle, but semantically troublesome.

In effect, one main effort in developing the language has been that of not
departing significantly from the conventional declarative and procedural semantics
of logic programming languages (Lloyd 1987). One basic reason for this is to be

able to inherit those theories of program transformation, partial evaluation,
abstract interpretation, etc., that have been developed on that basis. Not
considering the naming features (and the related extensions to unification), since

a naming device is necessary in every language which allows declarative
metaprogramming, the main differences are those aimed at modelling reflection,
i.e. the following. For declarative semantics, we consider a subset of the set of
conventional Herbrand interpretations (thus a restriction rather than a

modification); we employ the usual notion of model and logical consequence on

an extended version of the program (augmented by the reflection axioms). This
means that we do not modify the logic, but rather the prograrn. For procedural
semantics, resolution has (aside from the predefined predicates) three cases

instead of one. The proofs appearing in this paper show that, with respect to
the conventional semantics, some of them remain unchanged, and others need

only minor technical modifications, within the same conceptual framework.
In parallel with the theoretical work, we have also carried on the implementation

of the ianguage interpreter. A first prototype was written in Prolog and enabled

us to refine the language definition through experimentation of its use. A second

implementation, in C language, was made by modifying the public-domain C-
Prolog interpreter. Both interpreters have been equipped with debugging facilities.

The work presented in this paper is part of an ongoing wider project, proceeding

along the following lines.

o Self-reference and reflection are introduced into a Horn-clause language as a

first step, which is the content of the present paper. Names are given to terms
and predicates only. A class of interesting problems can be coped with this
'core' Reflective Prolog, as exemplified in section 5.

o As a second step, this language is extended with a 'metalevel negation'. This
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means the declarative definition of what is intended not to hold in a theory
and the inferential use of such information to restrict the reflective models of
the theory. Metalevel negation does not rely on a negation operator, but
rather on negative metarules, which allow the definition of negative knowledge
and the drawing of negative conclusions. By means of these rules, either
operators (such as negation as failure) or other ways of treating negative
information can be defined. Negative metarules are integrated in the inference
process by means of reflection, in the style of RP: positive and negative
information can therefore fully interact with each other. Semantics of Reflective
Prolog with metalevel negation is based on the kind of treatment of logic
reflection presented in this paper. Several problems of non-monotonic reasoning
can be represented with such augmented Reflective Prolog. First results on

this topic are reported in Costantini and Lanzarone (1990).

Self-reference is then extended to clauses, so that several reasoning agents

can be represented, by means of multiple theories. This requires constructs

for the representation and manipulation of object-level clauses at the metalevel,
more sophisticated than the simple one (theory-clause) that was used in the
present paper. Primitives for communication among theories are also defined,
again having logical reflection as the underlying procedural and semantic
principle. An initial definition of communicating agents in RP is reported in
Costantini et al. (1992), where problems like the three wise men puzzle are

solved using these primitives.
A further stage is to endow the language with the capability of representing
and reasoning with propositional attitudes, such as knowledge and belief. The
idea is to build this capability on top of the already existing features of the
language, in the line of syntactic treatments of modalities. This work is

currently just beginning.

We intend to pursue these aims with regard to all linguistic, semantic,
implementation and application aspects, as we have done up to now. We have

started to study the applicability of Reflective Prolog to the treatment of
incomplete knowledge and of assumption-based reasoning, like defaults, non-
monotonic reasoning (Costantini and Lanzarone 1990), some forms of inheritance
and of analogical reasoning (Costantini and Lanzarone 1992). The long-term goal

of this research is, in fact, to enhance logic programming capabilities in order to
deal with complex and sophisticated problems, like those encountered in the

development of knowledge-based systems.
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Appendix
We present here the results of soundness and completeness of RSlD-resolution
w.r.a. the least reflective Herbrand model of a program. In the following, let P
be a Reflective Prolog definite program, RMp the least reflective Herbrand model

of P and G a definite goal. The proofs resemble those for classical SLD-

resolution, which can be regarded as a particular case of RSlD-resolution where

definition 4.3 is restricted to point (i)'
The definitions of RslD-refutation, success set, answer' computed answer aÍe

exactly as usual (Lloyd 1987), where 'definite program' must be intended as

'Reflective Prolog definite program', 'SlD-resolution' as 'RSlD-resolution' and
,mgu' as ,mgu or gmgu'. We report below the definition of computed ansrwer for
the sake of clarity.

Definition A.1 Let P be a Reflective Prolog definite program and G a definite

goal. A computed answer for P U iG) is the substitution obtained by restricting

ihe composition 0r, ..., 0n to the variables of G, where 0t, ..',0. is the sequence

of mgus and/or gmgus used in an RSlD-refutation of P U {C}'f

The definition of correct answer differs from the usual one, since it deals with

reflective logical consequence.

Definition A.2. Let P be a Reflective Prolog definite program' G a definite goal

€Ar, ..., A1 and I an answer for P U {G}. We say that 0 is a correct answer

for P U {G} if V(A'A...AAi)0) is a reflective logical consequence of P.l

As usual, we say that the answer 'no' is correct if P U {G} is satisfiable' It is

straightforward to prove (as in Lloyd 1987, Theorem 6.6, p. 40) that an answer

0 is correct iff (A1 , ..., A*)g is true w.r.t. every reflective Herbrand model of P,

iff (Ar, ..., A*)g is true w.r.t. the least reflective Herbrand model of P.

In the following, we say that an atom Ais non-distinguished if A=p(...), p*solve

A p*theory-clause A p*ref. We abbreviate reflective logical consequence with
rlc. It is also useful to recall that a reflective Herbrand model (definition 3.5)

is, in particular, an extended Herbrand interpretation (definition 3.4).
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Theorem A.1 (Soundness of RSlD-resolution). Every computed answer for
P U {G} is a correct answer for P U {G}.

Proof. Let G be the goal <-A.', ..., An and 0r, ...,0n the sequence of mgus and/
or gmgus used in a refutation of P U {G}. We prove that V((A., ..., Ar)0' ...
d.) is a rlc of P by induction on the length of the refutation.

Suppose first that n : I. This means that G is a goal of the form <-A.,, and
one of the following cases holds.

(i) P has a unit clause of the form A<- and At01=Ad1 . Since Ar0' is an

instance of a unit clause in P, it follows that tr(A161) is a rlc of P.
(ii) A, is non-distinguished; P has a unit clause of the form solve(a)<-- and

î (at0r) : aît. Since solve( î (At0t)) is an instance of a unit clause in
P, it follows that S(solve(î (Ar0r))) is a logical consequence of P, and

then, by the reflection axioms, V(At0r) is a rlc of P.
(iii) Ar : solve(M); P has a unit clause of the form A<- and î (A0r) : MOr.

Since A<- is a program clause, V(A) is a rlc of P and so is tr(A01);
then, by the definition of reflective Herbrand model (which is in
particular an extended Herbrand interpretation), y(solve( î (A0r))) is

also a rlc of P.
(iv) A1 = theory-clause(M,B); P has a clause of the form A<-Br, ..., Bn and

î (AOt) = M|r, [î (Br0t), ..., î (B"gi)] = B0r. Since A<-8.,, ..., Bn is a
program clause, by the definition of reflective Herbrand model

f(theory-clause( f (Rer),[î (Br0t), ..., î (B,0t)])) is a rlc of P.
(v) 41 : theory-clause(M,B); P has a clause of the form solve(A)-B,, ...,

Bn and A01 : M0r, [î (Bt0.), ..., î (8"0t)] : B0r. Since solve(A)<-Br,
..., Bn is a program clause, by the definition of reflective Herbrand
model

V(theory-clause((Adr),It (Brgr), ..., î (B"0,)])) is a rlc of P.
(ui) 41 : theory-clause(M1,B), M1 : f solve(M); P has a clause of the

form A<-B.,, ..., Bn and f (Aor1 = M0r, [î(Br0r), ..., î (8"0r)] = Bù.
Since A<-81, ..., Bn is a program clause, by the definition of reflective
Herbrand model

!(theory-clause(f (solve(î (A0l))),tî Br0r), ..., î (B.0r)])) is a rlc of P.
(vii) Al = ref(a,A), 41 is safe, and î (AOt) : aît. By the definition of

reflective Herbrand model, !(ref(a,A)01), which is the same as

ref(a,A)O1, is a rlc of P.

Next, suppose that the result holds for computed answers coming from
refutations of length n-1, and that 01, ..., 9n is the sequence of mgus and/or
gmgus used in a refutation of length n. Let C be the first input clause and A-
the selected atom of G. One of the followine cases holds.

(i) C is A<-B', ..., Bo(q > 0).
By the induction hypothesis, V((Ar, ..., A--r,Br, ..., Bq,Am+r, ..., Au)or

... 0") is a rlc of P. Thus, if q > 0, V((Bt, ..., Bo)0r ... 0") is a rlc of
P. Consequently, y((A-)Ot... 0,), which is the same as 17((4)01 ...
d"), is a rlc of P. Hence V((At, ..., An)Or ... 0.) is a rlc of P.
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(ii) C is solve(o)<-S,, ..., S* (w = 0), A- is non-distinguished.
By the induction hypothesis, V((A,,..., A-_r,Sr, ..., S*,A-*r, ..., A*)
is a rlc of P. Thus, if w > 0, V((S,, ..., S*)0, ... 0") is a rlc of P.
Consequently, !((solve(a))01 0n), which is the same as

17(solve(î((A-)0, ... d"))), is a rlc of P, and, by the reflection axioms,
V((A-)O, .., 0") is a rlc of P. Hence V((A,, ..., A*)0, ... 0") is a rlcof
P.

(iii) C is A<-8', ..., Bo(q > 0). A- is solve(M).
By the induction hypothesis, V((Ar, ..., A-_r,Br, ..., Bq,Am+1, ..., A*)0,
... d") is a rlc of P. Thus, if q > 0, V((9,, ..., Bo)9, ... g") is a rlc of
P. Consequently, y((A)îr... 0^) is a rlc of P. Then, by the definition
of reflective Herbrand model, V((A-)0, ... 0,), which is the same as

[(solve(î((A)0, ... 0"))), is a rlc of P. Hence V((A,, ..., Ak)01 ... p")

is a rlc of P.
(iv) C is A<-B1, ..., Bo, A- is theory-clause(M,B).

By the induction hypothesis, V((A,,..., A-_,,A-+1)..., AJ01 ... g") is
a rlc of P. By the definition of reflective Herbrand model, V((A-)0,
... 0n), which is the same as V(theory-clause( î ((e)8, ... 0"),[î (8')0,
... 0.), ..., î ((8.(0t ... 0")l)) is a rlc of P.

(u) C is solve(A)+-Br, ..., Bq, A- is theory-clause(M,B).
By the induction hypothesis, V((A,, ..., A-,, Am+l, ...A*)d, ... g") is a

rlc of P. By the definition of reflective Herbrand model, V((A-)0, ...
0"), which is the same as V(theory-clause(((A)0, ... 9J,[î((B,)9, ...
0n), ..., î ((8")9r .. 0")l)) is a rlc of P.

(vi) C is A<-81, ... Bq, A- is theory-clause(M1,B), M1 : î (solve(M)).
By the induction hypothesis, V((A',..., A-_r,A-*., ... A*)dr ... g") is
a rlc of P. By the definition of reflective Herbrand model, V((e-)O,
... 0n), which is the same as V(theory-clause( f (solve( î ((A)0, ... 0"))),
[î ((8,)0, ".. 0n),..., î ((8")0, ... d")])) is a rlc of p.

(vii) C is Q, A- is ref(a,A), A- is safe, and f (A0r... 0n): a|y...0n.
By the induction hypothesis, V((Ar,..., A*_r,A-+i, ..., A*)0, ... 0") is
a rlc of P. By the definition of reflective Herbrand model, y((ref(a,A)01
... 0.)), which is the same as ref(o,A)0, ... 0n, is a rlc of P. Hence
V((Ar, ..., A*)0, ... 6.) is a rlc of P.I

Corollary A.1. Suppose there exists an RSlD-refutation of P U {G}. Then P
U {G} is unsatisfiable.I

Corollary A.2. The success set of Prolog is contained in RMp.I

Now we strengthen corollary A.2, showing that if A e BpE and P U i<-A) has
an RSlD-refutation of length n, then A C Tpe f n. This is an extension of the
result due to Apt and van Emden, reported in Lloyd (1987, theorem 7.4,p.44).

If A is an atom, we put [A] : {A' € Bpe : A' : Ag, for some substitution 0}.
Thus [A] is the set of all ground instances of A.

Theorem 4.2. Let G be a definite goal <-d, ..., An.Suppose that P U {G}
has an RSlD-refutation of length n and that 0r, ...,0. is the sequence of mgus
and/or gmgus of the RSlD-refutation. Then

Ulr [A;or...o"]E îeel n.
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Proof. The result is proved by induction on the length of the refutation. suppose

first that n = l. Then G is a goal of the form <-Ar, and one of the following

cases holds.
(i) P has a unit clause of the form A<- and A',Ot - Aù'Clearly, [A] C

Tee f 1, and so does [A101]'
(ii) 41 is non-distinguished; P has a unit clause of the form solve(a)<- and

î (A,g,) = o0rlclearly, [solve( î (At0t))] e Tnr | 1, and so does [A'0'],
by the definition of TPr.

(iii) A, = solve(M); the program has a unit clause of the form A<- and

î (A0r) = Mor. clearly, [A101] c Ter f 1, and so does [solve(M)]' which

is the same as [solve( î (At0r))], by the definition of Tpe'

(iu) A1 : theory-claìse(M,B); P has a clause of the form A<-8,, "', Bn and

f (Ar0,) Mgr, [î (Br0t), ...' î (B"dr)i = B0r' Then'

[theory-clause( f (A01),[î (B,0,), î (8"0')])) g Ter f 0 by the

àefinition of Ter, and Tpr f 0 e Tee î 1 by the monotonicity of Tee.

(n) A1 : theory-clause(M,B); P has a clause of the form solve(A)-B', "',
Bn and Ail M0r, [Bt0r, B"0r] : Bù' Then'

[theory-clause((A)01,[î (B,gr), ..., î (B.gt)])] C Tee | 0 by the definition

òf Ttt, and Ter t 0 e Ter î 1 by the monotonicity of Tee'

(ui) 41 : theory-clause(M1'B)' M1 = tsolve(M); Phas a clause of the form

A<-Br, Bn and î (Argr) MOr, [î (Btgt), "'' î (8.0t)]

80,. Then, [theory-clause(t (solve(î (A01))),[î Bl0r), ..., î (B"01)])] C

rrilO by the definition of Tee' and Terf0 c Teefl by the

monotonicitY of Tee'

(vii) 41 : ref(a,A), A1 is safe' and (Agr) : ail.Then' [ref(tr,A)01] e Tee0

uy ttre definition of Ter, and TpE f 0 E Tee î 1 by the monotonicity of

Tpr.

Next, suppose that the result holds for refutations of length n-1 and consider a

refutation of length n. Let A; be an atom of G. Suppose first that 41 is not the

selected atom of G. Then A;01 is an atom of Gr, the second goal of the refutation'

The induction hypothesis implies that [Ai01 ... 0"] E Tee f (n-1) and Tpr î (n-1)

e Treî(n), by ihe monotonicity of Tpe. Now suppose that A1 is the selected

atom of G. Let C be the first input clause. One of the following cases holds.

(i) C is A<-B1, ..., Bo(q > 0)'
Then A;01 is an instance of A. If q = 0, we have [A] c Tee ] 1' Thus

[4g, ... r"] E [Aj01] E [A] e TpEf 1 e Ter I n' If q > 0, by the

induction hypothesis, [B'0, ... 0"] e Tpe în-1, for i:1, "', q' By the

definition of'Tr., *" huu. legr... 0.] C Teef n, and so does [Ai0t...
o^1.

(ii) C is solve(a)-S,, ..., S*(w > 0), Ai is non-distinguished'

Then î (4ér) is an instance of a' If w : 0, we have [solve(a)] e
Tee f L, which is the same as [solve( î (ni9t))] e Tee f 1' Thus by the

definition of Tee, we have [Ai0r] E Ter f 1" Then, [40t "' 0"] e [4i0t]

e Terî1. If w ) 0, by the induction hypothesis, [S,gt "'0"] e
Ter f n_1, for i=1, ..., w, By the definition of Tee, we have [so|ve(c)91

.,. 0;] E Tnr I n, which is the same as [solve( î (Aigt "' 0.))] e Tee f n'

thus, again by the definition of Tre, [Ai0t "' 0.] e Teef n'
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(iii) C is A<-Bt, .,., Bo(q > 0). A is solve(M).

Then M01 is an instance of | (Ag1)' If Q : 0, we have [A01] g [A] E
Tee f 1. Thus by the definition of Tee, we have [solve( î Aq)] C

Tee | 1. Then, [solve(M)d1 0"] [solve( î ((A)0' 0'))] E
[solve(î(Aet))] e Teeî1 E Teeln. If q > 0, by the induction
hypothesis [8,0, ... 0^] e TrE î r-I, for i:1,, ..., q. By the definition
of Tee, we have [A9r ... 0.] E Îeel n. Again by the definition of Tre,

we have [solve(M)0r ... 0"] : [solve(î ((a)Ar .'. 0.)] C Tee f n.

(iv) C is A<-Br, ..., Bn, A; is theory-clause(M,B).
Then M01 is an instance of t (Adr), and B9r is an instance of If (Bt0t),

..., î (8"0,)]. by the definition of Tee, we have [theory-clause( | (A01),

[î (Brgr), ..., î (B^0t)])l g rpe t 0. Then, [theorv-clause((lvt)0r ... 0.'
(B)0t ... 9")] : [theory-clause( î (A0r ... 0"),[ î (B'0r .'- 0n),.'., f (B"0r

... 0,)l)l C [theory-clause( f (Ag'),[î (B'0'), '.., f (B.dr)])l C Tee t 0
e Teetn.

(u) C is solve(A)€Bl, ..., Bn, A; is theory-clause(M'B).
Then M01 is an instance of Ag1, and B01 is an instance of It (Bt0r), ...,

î {8"01)]. By the definition of Tee, we have [theory-clause((A0i),[(Br0r),
..., (8.91)l)] e Tref 0. Then, [theory-clause((Mgr '.. 0"),(B0r ... 0^)] :
[theory-clause((A01 ... 9.),[î (Bt0r ... 0n), ..., | (B"9r ... 9.)])] g

[theory-clause((A01),[î(arat), ..., î(8.01)])l e Tee f 0 c reetn'
(vi) C is A<-8,, ..., Bn, A; is theory-clause{M1, B)' M1 : f (solve(M)}.

Then M0, is an instance of f (A01), and B9, is an instance of If (8101),

î (8.91)]. By the definition of TPE, we have

[theory-clause( | solve( î (A0'))), [î (B'd'), '.., î (B.0')])l ( Tee f 0'

Then, ftheory-clause((tutet 9,),(801 0.)] :
[theory-clause( t (solve( î (A0r ... 0")),[î (Bt6t ... e^), .'., f (Bn0r '..
0")l)l E [theory-clause( f (solve( î (A0r))),[î (Bt0r), ...' î (B"0,)])l E
Terf 0 C Teetn.

(vii) C is Q, A- is ref(a,A), A- is safe, and f (A0t ... 0n): aA1 ..' 0n'

Then ag1 is an instance of f (A01). By the definition of Tee, we have

[(ref(c,A)91)] E Teef 0. Then, [(ref(a,A)O1 ." 0")] C [(ref(a,A)0')] e
Tref 0 e Teef n.l

A.2. Completeness
An unrestri6ed RSlD-refutation is an RSlD-refutation, except that the substi-

tutions fl are no longer required to be most general unifiers or g-unifiers, but

are only required to be unifiers or g-unifiers.

Lemma A.1. (Extended Mgu lemma) suppose that P u {G} has an unrestricted

RSlD-refutation. Then P U {G} has an RSlD-refutation of the same length

with mgus and/or gmgus 0'r, ...,01 such that, if 0r ..., 0n are the unifiers and/or

g-unifiers from the restricted RSlD-refutation, then there exists a substitution 7
such that 0, ... 0n : 0t ... 0'"y.

Proof. The result is proved by induction on the length of the unrestricted

refutation. Suppose first that n : l. Thus P u {c} has an unrestricted RSLD-
refutation Go: G, Gr : ! with input clause C1 and unifier or g-unifier 01' One

of the followine cases holds,
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(i) d1 is a unifier of the atom in G and the head of the unit clause C';
(ii) C1 is solve(a)*, 9, g-unifies A and a, where A is the atom in G;
(iii) C1 is A<--, the atom in G is solve(M), 01 g-unifies M and A;
(iv) C1 is A<-8,,, ..., Bn, the atom in G is theory-clause(M,B), 01 g-unifies M

and A as well as B and [81, ..., B,];
(u) Cr is solve(A)<-Br, ..., Bn, the atom in G is theory-clause(M,B), 0r

unifies M and A and g-unifies B and [81, ..., Bn];

(vi) C1 is A<-B',..., Bn, the atom in G is theory-clause(M1,8), M1 :
îsolve(M), 0, g-unifies M and A as well as B and [Br, ..., B.];

(vii) Cr is Q, the atom in G is ref(a,A), d1 g-unifies a and A.

Assume respectively that:

(i) gi is an mgu of the atom in G and the head of the unit clause C';
(ii) 0l is a gmgu of A and a;
(iii) 0i is a gmgu of M and A;
(iu) 9i is a gmgu of M and A as well as of B and [8,, ..., 8,];
(u) gî is an mgu of M and A as well a gmgu of B and [81, ..., B.];
(ui) 0i is a gmgu of M and A as well as of B and [81, ..,, Bn];

(vii) 0i is a gmgu of a and A.

Then 01 : |'ry, for some 7, and P U {G} has an RSlD-refutation G6 : G, Gt
: X with input clause Ci and mgu or gmgu fi.

Now suppose that the result holds for n-1. Suppose that P U {G} has an

unrestricted RSlD-refutation G6 : G, Gr ..., Gn: n with input clauses C'',

..., Cn and unifiers and/or g-unifiers 0r, ...,0". There exists one of the following:

(i) an mgu 0i for the selected atom in G and the head of C1

(ii) a gmgu gi for A and a, where A is the selected atom in G. and solve(a)
is the head of Ct

(iii) a gmgu 0i for M and A, where solve(M) is the selected atom in G, and
A is the head of Ct

(iu) a gmgu 0'1 for M and A as well as for B and [B.,, ..., Bn], where
theory-clause(M,B) is the selected atom in 6, and A<-Br,..., Bn is the

clause C1

(u) an mgu 9i for M and A which is also a gmgu for B and [Bt, ..., Bn],

where theory-clause(M,B) is the selected atom in G, and solve(A)<-B,',
..., B" is the clause C.l

(ui) a gmgu gi, for M and A as well as for B and [B1, ..., Bn], where
theory-clause(M1,8) is the selected atom in G, M1 : f solve(M), and
A<-81, ..., Bn is the clause Cr.

(vii) a gmgu 0i for a and A, where ref(a,A) is the selected atom in G, and
C., is Q

such that ù : 1lp, for some p. Thus P U {G} has an unrestricted RSLD-
refutation Go : G, G|, ..., Gn : I with input clauses C,, ..., Cn and unifiers
and/or g-unifiers 0'r, p1r, ..., 0n, where Gt: Gip. By the induction hypothesis,
P U {G{} has an RSlD-refutation G6 : G, Gl,Gi, ..., G|: n with mgus and/

or gmgus 0L, ...,9i such that pA2... 0n: 02... 0',y, for some 7. Thus P U {G}
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has an RSlD-refutation G6 : G, Gr,... G. : ! with mgus and/or gmgus 0i,
..., gi such that 01 ... 0n : 0ip0z ... 0": 9iy.l
Lemma A.2. (Extended lifting lemma) Lef G be a definite goal and 0 a

substitution. Suppose there exists an RSlD-refutation of P U {G0}. Then there
exists an RSlD-refutation of P U {G} of the same length such that, if 0t, ...,
0, are the mgus and/or gmgus from the RSlD-refutation of P U {G0}, and 0i,
..., 0|are the mgus and/or gmgus from the RSlD-refutation of P U {G}, then
there exists a substitution 7 such that îil... 4 = 0i ... e3.

Proof. Suppose that the first input clause for the refutation of P U {G0} is C1,

that the first mgu or gmgu is 61 and that the goal resulting from the first step is

G1. We can assume that 0 acts on no variable of Cr. Now Ofu is a unifier or g-

unifier for one of the following:

(i) the atom in G which corresponds to the selected atom in G0 and the

head of C.';

(ii) A and a, where A is the atom in G which corresponds to the selected

atom in G0, and solve(a) the head of C1;

(iii) M and A, where solve(M) is the atom in G which corresponds to the

selected atom in G0, and A the head of C1;

(iv) M and A as well as B and [81, ..., Bn], where theory-clause(M'B) is the

atom in G which corresponds to the selected atom in G0, and A<-B1,

..., Bn is the clause C1;

(v) M and A as well as B and [81, ..., B"], where theory-clause(M'B) is the

atom in G which corresponds to the selected atom in G0, and

solve(A)<-Br, ..., Bn is the clause Cr;
(vi) M and A as well as B and [B1, ..., B.], where îheory-clause(M1,B) is

the atom in G which corresponds to the selected atom in G0, M1 =
f solve(M), and A<--B.', ..., Bn is the clause C1 ;

(vii) a and A, where ref(A,a) is the atom in G which corresponds to the

selected atom in G0, and C,' is Q.

The result of resolving G and C., using 091 is exactly Gr.Thus we obtain an

unrestricted RSlD-refutation of P U {G}, which looks exactly like the given

RSlD-refutation of P U {Ge), except that the original goal is different and the

first unifier or g-unifier is 001. Now we apply the extended mgu lemma.l
The saccess set of a Reflective Prolog definite program P is defined, as usual,

as the set of all A e Bpe such that P U {<-Ai has an RSlD-refutation. The

theorem below extends the result due to Apt and van Emden, reported in [Lloyd
1987, theorem 8.3, p. 48].

Theorem A.3. The success of P is equal to RMe.

Proof. By corollary A.2,it suffices to show that RMp is contained in the success

set of P. Suppose that A is in RMe. By theorem A.2 above, A € Tpe I n, for
some n € <,r. We prove by induction on n that A e Tprf n implies that P U

{<-A} has a refutation and hence A is in the success set.

Suppose first that n:1. Then A e Tprf 1 means one of the following.

(i) A is a ground instance of a unit clause in P. Then, by the definition of
RSlD-resolution (point (i)), P U {<-A} has an RSlD-refutation.

285
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(ii) A is non-distinguished; solve(a) is a ground instance of a unit clause in

P, and a= f A. Then, by the definition of RSlD-resolution (point (ii))'
P U {<-Ai has an RSlD-refutation.

(iii) A=solve(a)i B is a ground instance of a unit clause in P, and f B : a.

Then, by the definition of RSlD-resolution (point (iii)), P U {<-a}
has an RSlD-refutation.

(iv) A: theory-clause(a,B); T<-Br, .,., Bn is a ground instance of a clause

in P, and îT: o, [î8,,..., î8"] : B, Then, by the definition of
RSlD-resolution (point (iv)), P U {<-A} has an RSlD-refutation'

(v) A = theory-clause(a,B); solve(T)<-Br, ..., Bn is a ground instance of a

clause in P, and T: a, [îg,,..., î8.] : B. Then, by the definition
of RSlD-resolution (point (v)), P U {<-A} has an RSlD-refutation'

(ui) A = theory-clause(a,B); T<-Br, ..., Bn is a ground instance of a clause

in P, and î(solve(îT)) : a, [î8,,..., î8"] : p. Then, by the

definition of RSlD-resolution (point (vi)), P U {<-A} has an RSLD-
refutation.

(vii) A = ref(c,A)i î A : a. Then, by the definition of RSlD-resolution
(point (vii)), P U {<-A} has an RSlD-refutation.

Now suppose that the result holds for n-1.. Let A € Tee î ,. By the definition

of Tee, one of the following holds.

(i) There exists a ground instance of a clause B<-Br' ..., Bo such that A:
B0 and {B'0, ..., Bo0} e reel n-1, for some d.

(ii) A is non-distinguished; there exists a ground instance of a clause

solve(a)<-B1, ..., Bq such that î (A0) : a0 and iBr0, ..., Bo0} e
Tee f n-1, for some 0.

(iii) A is solve(M); there exists a ground instance of a clause B<-B1, .", Bq

such that î (80) : Mg and {Bt0' "', Bq0} c Tee f n-1, for some 0'

By the induction hypothesis, P U {<-B,} has a refutation, for i:1, .", q' Since

each 81 is ground, these refutations can be combined into a refutation of P U
{*(81, ..., Bo)g}.Thus P U {<-A} has an unrestricted RSlD-refutation and we

can apply the extended lifting lemma to obtain an RSlD-refutation of P U

{+-A}.I
The next theorem extends the result due to Hill, reported in [Lloyd 1987,

theorem 8.4, p. 48], and is proved in the same way.

Theorem A.4. Suppose that P U iG) is unsatisfiable. Then there exists an

RSlD-refutation of P U {G}.
proof. Let G be the goal <-Ar, ..., Ar. Since P u {G} is unsatisfiable, G is
false w.r.t. RMp. Thus {Ar0, ..., Ako} C RMe for some substitution d. By theorem

A.3, there is a refutation for P u {Ar0}, for i=1, ..., k. since each A;0is ground,

we can combine these refutations into a refutation for P U {G9}. Finally, we

apply the extended lifting lemma.l

Lemma A.3. Let A be an atom. Suppose that !(A) is a logical consequence of

P. Then there exists an RSlD-refutation of P U i<-AÌ with the identity

substitution as the computed answer.
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Proof. Suppose that A has variables X1, ..., x, (each of which can be indifferently
either an object variable or a metavariable). Let a1, ..., a,be distinct constants

appearing neither in P nor in A such that the substitution 0: {41a1, ..., xJa,)
satisfies the substitution rules given in definition 4.1. Then it is clear that A9 is

a logical consequence of P. Since A0 is ground, theorem A.3 shows that P U
{<-Ag} has an RSlD-refutation. Since a'is appear neither in P nor in A, by

replacing c, with .r; in this refutation, we obtain an RSlD-refutation of P U

{<--A} with the identity substitution as the computed answer.l
Now the main completeness result, originally due to Clark and reported in

Lloyd (1987), theorem 8.6, p. 49), can be proved in a way similar to classical

SLD-resolution.

Theorem A.5. (Completeness of RSlD-resolution) For every correct answer 0

for P U {G}, there exist a computed answer ofor P U {G} and a substitution

7 such that 0 : o^y.

Proof. Suppose G is the goal <'-A,, ..', A*. Since d is correct, V((A1A ... AAk)O)

is a logical consequence of P. By lemma A.3, there exists an RSlD-refutation
of P U {<--{0} such that the computed answer is the identity, for i=1, ..., k.

we can combine these RSlD-refutations into an RSlD-refutation of P u {<-G0}
such that the computed answer is the identity.

Suppose that the sequence of mgus and/or gmgus of the RSlD-refutation of
P U {<--G0} is 0r, ..., 9.. Then Geq...0,: G0. By the extendedlifting lemma,

there exists an RSlD-refutation of P U {<-G} with mgus and/or gmgus 0i, '..,
gi such that 00, ,.. 0n = 0'r..., 0'^7', for some substitution 7'' Let obe 0l "' 0L

restricted to the variables in G. Then 0 = oy, where 7 is an appropriate

restriction of 7'.I


