
Modeling preferences and conditional preferences on
resource consumption and production in ASP

Stefania Costantini

Dipartimento di Informatica, Università di L’Aquila

Via Vetoio, I-67010, L’Aquila, Italy

Andrea Formisano

Dipartimento di Matematica e Informatica, Università di Perugia
Via Vanvitelli 1, I-06123, Perugia, Italy

Abstract

In this paper, we extend our previous work on Resourced ASP, or for short RASP,
where we have introduced the possibility of defining and using resources in ASP. In
RASP, one can define resources with their amounts, where available resources can be
used for producing other resources and the remaining amount, if any, can be used in a
different way. In this paper, we introduce P-RASP (RASP with Preferences) where it
is possible to express preferences about which resources should be either consumed or
produced. Moreover, conditional preferences, of different forms, allow one to express
preferences according to certain conditions, that are to be evaluated “dynamically”,
namely, with respect to the specific answer set at hand. The semantic of conditional
preferences is given in terms of (non-conditional) preferences, though the translation
is not straightforward and thus the new features are not syntactic sugar. Complexity of
P-RASP is also discussed.

Key words: Answer set programming, quantitative reasoning, preferences,
non-monotonic logic programming, language extensions

1. Introduction

As it is well-known, Answer Set Programming (ASP) is a form of logic program-
ming based on the answer set semantics [16], where solutions to a given problem are
represented in terms of selected models (answer sets) of the corresponding logic pro-
gram [21]. ASP is nowadays applied in many areas, including problem solving, config-
uration, information integration, security analysis, agent systems, semantic web, and
planning (see, among others, [5, 2, 20, 24, 15] and the references therein).

Email addresses: stefcost@di.univaq.it (Stefania Costantini), formis@dipmat.unipg.it
(Andrea Formisano)

Preprint submitted to JALGOR January 22, 2009

However, the possibility was lacking of performing some kind of quantitative rea-
soning which is instead possible in non-classical logics such as, for instance, Linear
Logics [17] and Description Logics [3]. In recent work [11], an extension of ASP,
called RASP (standing for Resourced ASP), has been proposed so as to support declar-
ative reasoning on consumption and production of resources.

In this paper, we go further in this direction, by adding declarative preferences to
the specification of production/consumption processes. In particular, in performing the
same process (modeled through the firing of rules), one may prefer to produce and/or
consume certain resources rather than others. This extension can be particularly useful
in configuration applications where one can, for instance, prefer to save money while
spending more time or vice versa or may prefer to employ a certain amount of cheap
components rather than a little amount of expensive parts, etc.

Let us briefly recall syntax and intended semantics of RASP programs through
a simple example. We will then modify this example so as to informally introduce
preferences. A RASP program is composed of r-facts and r-rules, where numbers asso-
ciated with the heads of r-facts and rules indicate which amount of a certain resource is,
respectively: available, in case of r-facts; produced, in case of r-rules. Available or pro-
duced resources can in turn be consumed: quantities are associated to atoms occurring
in the bodies of r-rules as well.

The example concerns the preparation of desserts. We may notice that different
solutions stem in this case from the fact that, with the available ingredients, one may
prepare either a cake or an ice-cream, but not both. Atoms of the form q:a are called
amount-atoms. The amount-symbol a specifies the quantity of resource that is either
produced (if the amount atom is in the head of a rule) or consumed (if it is in the body),
or available (if it is a fact), respectively. In RASP, one can specify that any given
rule can be repeatedly fired, where the writing [N-M]: prefixed to a rule indicates the
minimum N and the maximum M of times a rule can be used (here, to produce from
2 to 4 cakes). Clearly, a suitable quantity of required resources must be available for
each firing of a rule.

[2-4] : cake:1 ← egg:3, flour:4, sugar:3.
ice cream:1 ← egg:2, sugar:2, milk:2.
egg:3. flour:8.
sugar:6. milk:3.

Usual ASP literals (possibly involving negation-as-failure) may occur in rules. Se-
mantics of a RASP program is in fact determined by interpreting usual literals as in
ASP (i.e., by exploiting stable model semantics) and amount-atoms in an auxiliary al-
gebraic structure (that supports operations and comparisons). For instance, we could
modify one the above rules by requiring, e.g., that ice-cream can be made only if there
is a fridge and there is someone who is a good cook:1

1Linguini plus Remy makes a good cook (cf., Ratatouille by Pixar Animation Studios, 2007).

2

ice cream:1← egg:2, sugar:2, milk:2, fridge, a cook is here.
a cook is here← is here(remy), is here(linguini).
is here(remy).
is here(linguini).

Intuitively, the first rule of this program is applicable only in correspondence of models
that satisfy the literals fridge and a cook is here.

RASP offers some constructs to express limited forms of preferences on resource
consumption/production. For instance, a number of budget policies are exploitable to
control rule firings and, consequently, to influence what resources to produce and in
which quantity, and whether the firing of r-rules is optional or mandatory. The various
policies can be combined in a mixed strategy by choosing one of them for each single
rule of the program. These features, among others, are fully dealt with in [11]. In what
follows, we develop a general and more expressive form of preferences on resource
usage.

Recall the initial example and suppose you might prepare a cake either with plain
corn flour or with potato flour. The following rules express the two possibilities, but do
not say which one you would prefer, assuming both of them to be feasible:

cake:1← egg:3, flour:4, sugar:3.
cake:1← egg:3, potato flour:3, sugar:3.

We propose in this paper P-RASP (RASP with preferences), to allow one to explic-
itly state which resource (s)he would prefer to use, e.g., the formulation

cake:1← potato flour:3>flour:4, egg:3, sugar:3.

indicates that consuming potato flour is preferred onto consuming corn flour. Or also,
if the recipe includes milk, one might prefer to use skim milk if available:

cake:1← egg:3, sugar:3,
potato flour:3>flour:4,
skim milk:2>whole milk:2.

In this reformulation, we have two preference lists (or for short p-lists). Actually, p-
lists may involve any number of amount-atoms. The intuitive reading is that leftmost
elements of a p-list have higher priority. P-lists may also occur in the head of r-rules,
as shown in the example below, where one prefers to employ available ingredients to
make an ice-cream instead of two cups of zabaglione:

ice cream:1>zabaglione:2← egg:2, sugar:3,
skim milk:2>whole milk:2.

The introduction of p-lists requires a notion of preferred answer set. In case several
p-lists occur either in one rule or in different r-rules, it is necessary to establish which
answer set better satisfies the preferences. Intuitively, if we choose to consider as “bet-
ter” the answer sets which satisfy the higher number of leftmost elements, in the last

3

example we would have: producing an ice-cream with skim milk is the best solution.
Producing: (a) an ice-cream with whole milk or (b) two zabagliones with skim milk
would be equally good (but worse than the previous solution) as each of them employs
the leftmost element of one p-list. Producing two zabagliones with whole milk is the
less preferred solution. Clearly, one has to choose the best possible solution, given
the available resources. One might choose other strategies, e.g. one might give higher
priorities to p-lists in rule heads, where consequently solution (a) above would become
better than (b). One may also imagine to introduce a choice among different strategies
to be employed in different contexts.

P-RASP also provides conditional preferences of various kinds. Assume, e.g., that
one prefers skim milk when on a diet. The last rule above may become:

ice cream:1>zabaglione:2 ← egg:2, sugar:3,
(skim milk:2>whole milk:2 pre f when diet).

If diet does not hold, then the preference list reduces to a disjunction, i.e. either skim
milk or whole milk can be indifferently used. The above rule becomes equivalent to
the couple of rules:

ice cream:1>zabaglione:2 ← skim milk:2, egg:2, sugar:3.
ice cream:1>zabaglione:2 ← whole milk:2, egg:2, sugar:3.

All the above generalizes to several p-lists, that we now call cp-lists, for “conditional”
p-lists, like in the example below:

(ice cream:1>zabaglione:2 pre f when summer) ← egg:2, sugar:3,
(skim milk:2>whole milk:2 pre f when diet).

Assume now that one would like to add either vanilla or cinnamon, but this is not
possible in case of allergy. The example above may become:

ice cream:1>zabaglione:2 ← egg:2, sugar:3,
(skim milk:2>whole milk:2 pre f when diet),
(vanilla:1>cinnamon:1 only when not allergy).

If allergy holds, and then the only when condition is false, the p-list is ignored. This
means that a only when cp-list specifies the additional level of preference which
implies including or not the given p-list according to the condition.

Moreover, as we will see in Section 6, in both pre f when and only when cp-
lists one may order the inner p-list according to the value of a binary predicate: in the
above examples, among the ingredients listed in a p-list one will be able to prefer, e.g.,
the less caloric, the less expensive, the one with most vitamins, etc. This is in our
opinion a significant improvement of wide applicability.

The plan of the paper is the following: in Section 2 we review some closely related
work in order to motivate our approach. Sections 3 and 4 summarize the basic P-RASP
syntax and semantics. In Section 5, conditional preferences are introduced and their
semantic rendering in terms of plain P-RASP is discussed. In Section 6, a further
extension is defined which allow preferences to be dynamically established according

4

to the value of a binary predicate which determines an order among the alternatives.
The semantic rendering of this extension is again in terms of plain P-RASP. Notice
however that the translation is not straightforward and thus the new features cannot be
considered syntactic sugar. In Section 7 we discuss the complexity of our approach
and give some hint on the implementation, where in Section 8 we discuss more widely
the related work. Finally, we draw some conclusions.2

2. Previous Related Work on Preferences and Motivation

In Section 8 many existing approaches to preferences are mentioned and briefly
discussed. In ASP however, the main distinction is among approaches that define pri-
orities/preferences among atoms (facts), and typically introduce some form of priorities
in the head of rules, and approaches that express instead priorities among rules. Be-
low we briefly recall the two frameworks that are in our view the most relevant to the
present work. Both of them introduce prioritized disjunction among atoms in the head
of rules.

In the approach of [22], a preference, or priority, between two ground literals e1, e2
is expressed in the form e1 ≺ e2. An answer set S 2 of a given program is preferable
onto another answer set S 1 iff S 2 \ S 1 contains an element e2 whose priority is higher
than some element e1 in S 1 \ S 2, and the latter does not contain another element e3
whose priority is strictly higher that e2. Then, preferred answer sets are a subset of the
traditional ones, that can be seen as a special case corresponding to void priorities.

An interesting application is that of priority with preconditions. For instance, bor-
rowing the example from [22], the situation where a person drinks tea or coffee, but
(s)he prefers coffee to tea when sleepy, can be represented as follows:

tea | coffee.
tea ≺ coffee← sleepy.

Assuming that sleepy holds, this program has the preferred answer set {sleepy, coffee}.
In LPOD [7], one can write expressions such as A × B in the head of rules, where

the new connective × stands for ordered disjunction. The expression intuitively stands
for: if possible A, but if A is impossible then (at least) B. If there are several disjuncts,
the first one represents the best preferred option, the second one represents the second
best option, etc. The following is an example where a person who wishes to spend the
evening out and has money, prefers to go to theatre, or else (if impossible) to go to the
cinema, or else (if both previous options cannot be taken) to go to dine at a restaurant.

theatre × cinema × restaurant ← want to go out, have money.

For selecting the preferred answer set(s) of a program P, one obtains the possible split
programs of P, where a split program P′ is obtained from P by replacing each disjunc-
tive rule by one of its options. Then, the answer sets of P are taken to be the answer

2It is worth noticing that this paper synthesizes and improves research partially presented in two workshop
papers, namely [8, 9]. The full account of basic RASP can be found in [11].

5

sets of the split programs. To choose the preferred ones given that there may be several
disjunctions, a notion of degree of satisfaction of disjunctive rules must be defined.
This induces a partial ordering on answer sets. Preferred answer sets are those that
satisfy all rules of P to the better degree.

The two formalisms have the same complexity (cf., Section 7) and this means that,
in principle, one formalism could be translated into the other. However, as discusses
in [7], despite the similarities a translation is far from being trivial in either direction.
Moreover, handling such a translation in proving properties would make the task more
complex. Along this line, instead of trying to adapt one of the above approaches for
application in RASP, we decided to design an approach to preferences specifically in-
tended for the RASP context. Notice, moreover, that resource consumption/production
is local to each RASP rule as the same resource might be, e.g., consumed in various
though independent contexts represented by different rules. Correspondingly, we have
devised an approach where the preference on which resource to consume (if different
choices are possible) is local to each rule. This allows a high flexibility in defining pos-
sible usage of resources also because, as seen in the above examples, preferences can
be expressed conditionally. In Section 7, in order to study the complexity of P-RASP,
we introduce a transformation into LPOD that should emphasize the validity of our
choice as it should be apparent that the translation is far from clear.

3. P-RASP: Syntax

To accommodate the new language expressions that involve resources and their
quantities, the underlying language of (P-)RASP is partitioned into Program symbols
and Resource symbols. Precisely, let 〈Π,C,V〉 be an alphabet where Π = ΠP ∪ ΠR is
a set of predicate symbols such that ΠP ∩ ΠR = ∅, C = CP ∪ CR is a set of symbols
of constant such that CP ∩ CR = ∅, and V is a set of variable symbols. The elements
of CR are said amount-symbols, while the elements of ΠR are said resource-predicates.
A program-term is either a variable or a constant symbol. An amount-term is either a
variable or an amount-symbol.

Let A(X,Y) denote the collection of all atoms of the form p(t1, . . . , tn), for p ∈ X
and {t1, . . . , tn} ⊆ Y . Then, a program atom (i.e., an usual ASP atom) is an element of
A(ΠP,C ∪ V). An amount-atom is a writing of the form q:a where a is an amount-
term and q ∈ ΠR ∪ A(ΠR,C ∪ V). Let τR = ΠR ∪ A(ΠR,C). We call elements of τR

resource-symbols. Some examples: in the two expressions p:3 and q(2):b, p and q(2)
are resource-symbols (with p, q ∈ ΠR and 2 ∈ C) aimed at defining two resources which
are available in quantity 3 and b, resp., (with 3, b ∈ CR amount-symbols). Expressions
such as p(X):V where V, X are variable symbols are also allowed, as quantities can be
either directly defined as constants or derived. The set of variables is not partitioned,
as the same variable may occur both as a program term and as an amount-term.

Ground amount-atoms contain no variables. As usual, a program-literal L is a
program-atom A or the negation not A of a program-atom (intended as negation-as-
failure).3 If L = A (resp., L = not A) then L denotes not A (resp., A).

3We will only deal with negation-as-failure. Though, classical negation of program literals could be used

6

Below we introduce the possibility of expressing preferences:

Definition 1. A preference-list of amount-atoms (p-list, for short) is a writing of the
form q1:a1> · · ·>qh:ah, with h > 2 and q1, . . . , qh pairwise distinct symbols. We say
that qi:ai has degree of preference i in the p-list.

We now extend the definition of literal, including the new syntactic elements:

Definition 2. A resource-literal (r-literal) is either a program-literal or an amount-
atom or a p-list.

Therefore, we do not allow negation of amount-atoms (see [11] for a discussion
about this point). Finally, we distinguish between program-rules (plain ASP rules,
including the case of ASP constraints, i.e., rules with empty head) and resource-rules
which differ from program rules in that they may contain amount-atoms.

Definition 3. A resource-proper-rule γ has the form

Idx : H ← B1, . . . , Bk

where B1, . . . , Bk (k > 0) are r-literals, H is either a program-atom, an amount-
atoms, or a p-list, and at least one amount-atom occurs in γ. Idx is of the form
[N1,1-N1,2, . . . ,Nh,1-Nh,2], with h > 1, and each N j,` is a variable or a positive inte-
ger number.

Intuitively, when all the N j,` s are integers, Idx denotes the union of h (possibly void)
intervals in N+ = N \ {0}. It is intended to restrain the number of times the rule can
be used: such number must be in Idx or the rule cannot be used at all. For the sake
of generality, we admit that each N j,` is a variable. Then, after grounding (see below),
each N j,` has to be instantiated to a positive integer.

A piece of notation: we will not write the list Idx when all N j,` s are intended to
be the constant 1 (meaning that at most one use of the rule is admitted). Without loss
of generality, in what follows we always assume h = 1 in resource-proper-rules. The
treatment of the general case is essentially the same.

The following definition introduces the notion of resource-facts. Resource-facts
are not supposed to be iterable, since they are intended to model the fixed amounts of
resources that are available “from the beginning”.

Definition 4. A resource-fact (r-fact, for short) has the form H ← , where H is an
amount-atom q:a and a is an amount-symbol.

According to the definition, the amount of an initially available resource has to be
explicitly stated. Thus, in an r-fact the amount-term a cannot be a variable.

Definition 5. A resource-rule (r-rule, for short) can be either a resource-proper-rule
or a resource-fact. A rule is either a program-rule or a resource-rule. An r-program is
a finite set of rules.

in (P-)RASP programs and treated as usually done in ASP.

7

The grounding of an r-program P is the set of all ground instances of rules of P, ob-
tained through ground substitutions over the constants occurring in P. As it is well-
known, ASP solvers produce the grounding of the given program as a first step, as they
are able to find the answer sets of ground programs only.4

Remark 6. The kind of preference among alternative uses of resources expressed by p-
lists has a local scope: each p-list is seen in the context of a particular rule (which mod-
els a specific process in manipulating some amounts of resources). Clearly, such a lo-
cal aspect is strictly related to the constraints on global resource balance and resource
availability. Consequently, preferences locally stated for different rules might/should be
expected to interact “over distance” with those expressed in other rules. Nevertheless,
different preference orders on the same amount-atoms can be expressed in different
p-lists.

Example 7. Assembling different PCs requires different sets of components (mother-
board, processor(s), ram modules, etc.) and preference might be imposed depending
on the kind of PC. For instance, in case of servers one might prefer SCSI disks rather
than EIDE disks and vice versa for normal PCs:

main unit(server):1← cpu:2, (scsihd:2>eidehd:2),
motherboard:1, ram module:4.

main unit(desktop):1← cpu:1, (eidehd:2>scsihd:2),
motherboard:1, ram module:2.

cpu:5.
scsihd:5. eidehd:9.
motherboard:7. ram module:20.
computer(T):1← main unit(T):1, monitor:1, mouse:1,

keyboard:1, pc type(T).
pc type(server).
pc type(desktop).
monitor:3. mouse:8. keyboard:4.

Notice that completely antithetic orders are expressed in the bodies of the first two r-
rules. However, both r-rules might be fired at the same time, since enough resources
are available.

4. Semantics of P-RASP

Semantics of a (ground) r-program is determined by interpreting program-literals
as in ASP and amount-atoms in an auxiliary algebraic structure that supports opera-
tions and comparisons. For lack of space, here we have to summarize many semantic
aspects. The reader may refer to [11] for a full discussion. The rationale behind the
proposed semantic definition is the following. On the one hand, we translate r-rules

4Work is under way both theoretically and practically to overcome at least partially this limitation. How-
ever, at present almost all ASP solvers perform the grounding.

8

into a fragment of a plain ASP program, so that we do not have to modify the defini-
tion of stability which remains the same: this is of some importance in order to make
the several theoretical and practical advances in ASP still available for RASP and P-
RASP. On the other hand, an interpretation involves the allocation of actual quantities
to amount-atoms. In fact, this allocation is one of the components of an interpretation:
an answer set of an r-program will model an r-rule only if it is satisfied (in the usual
way) as concerns its program-literals, and the correct amounts are allocated for the
amount-atoms. A last component of an interpretation copes with the repeated firing of
a rule: in case of several firings, the resource allocation must be iterated accordingly.

In order to define semantics of r-programs, we have to fix an interpretation for
amount-symbols. This is done by choosing a collection Q of quantities, and the opera-
tions to combine and compare quantities. A natural choice is Q = Z: thus, we consider
given a mapping κ : CR → Z that associates integers to amount-symbols. Positive
(resp. negative) integers will be used to model produced (resp. consumed) amounts of
resources.

For the sake of simplicity, in what follows we will identify CR with Z (and κ being
the identity). This will not cause loss in the generality of the treatment.

Notation.
Before going on, we introduce some useful notation. Given two sets X,Y , let

FM(X) denote the collection of all finite multisets of elements of X, and let YX de-
note the collection of all (total) functions having X and Y as domain and codomain,
respectively. For any (multi)set Z of integers,

∑
(Z) denotes their sum. E.g.,∑

({[2, 5, 3, 3, 5]}) = 18.
Given a collection S of (non-empty) sets, a choice function c(·) for S is a function

having S as domain and such that for each s in S , c(s) is an element of s. In other
words, c(·) chooses exactly one element from each set in S .

In order to deal with the disjunctive aspect of p-lists and to model the degrees
of preference, we mark each amount-atom with an integer index. For each p-list its
composing amount-atoms are associated, from left to right, with successive indices
starting from 1. For single amount-atoms, the index will always be 0. So, any amount-
atom will be represented as a pair in N×Q that we call an amount couple. For example:
an interpretation for skim milk:2>whole milk:2, occurring in the head of an r-rule, will
involve one of the couples 〈1, 2〉 and 〈2, 2〉, where the first components of the couples
reflect the degree of preference and the second elements are the quantities. For single
amount-atoms (in a head of an r-rule), such as egg:2, no preference is involved and a
potential interpretation is 〈0, 2〉.

Given an amount couple r = 〈n, x〉, let degree(r) = n and amount(r) = x. Notice
that the amount can in principle be negative (e.g., if Q = Z). We extend such a notation
to sets and multisets, as one expects: namely, if X is a multiset then degree(X) is
defined as the multiset {[n | 〈n, x〉 is in X]}, and similarly for amount(X). E.g., if X =

{[〈1, 2〉, 〈3, 1〉, 〈1, 2〉]} then degree(X) is {[1, 3, 1]} and amount(X) is {[2, 1, 2]}.

Interpretation of P-RASP Programs.
In what follows, we will apply a syntactical restriction on the form of the r-rules.

Namely, we impose that each amount-atom cannot occur in more than one p-list within

9

the same rule. (Clearly, a q:a can occur in several p-lists of different rules.) Though
this restriction is not strictly needed, for the sake of simplicity we focus on this case.

An interpretation for an r-program P must determine an allocation of amounts for
all occurrences of such amount symbols in P. We represent produced quantities (i.e.,
amount-atoms in heads) by positive values, while negative values model consumed
amounts (i.e., amount-atoms in bodies). For each resource symbol q, the overall sum
of quantities allocated to (produced and consumed) amount-atoms of the form q:a must
not be negative. The collection SP of all potential allocations (i.e., those having a non-
negative global balance)—for any single resource-symbol occurring in P (considered
as a set of rules)—is the following collection of mappings:

SP =
{
F ∈ (FM(N × Q))P | 0 6

∑(⋃
γ∈P

amount
(
F(γ)

))}
The rationale behind the definition of SP is as follows. Let q be a fixed resource-
symbol. Each element F ∈ SP is a function that associates to every rule γ ∈ P a
(possibly empty) multiset F(γ) of amount couples, assigning certain quantities to each
occurrence of amount-atoms of the form q:a in γ. All such Fs satisfy (by definition of
SP) the requirement that, considering the entire P, the global sum of all the quantities
F assigns must be non-negative. As we will see later, only some of these allocations
will actually be acceptable as a basis for a model.

An r-interpretation of the amount symbols in a ground r-program P is defined by
providing a mapping µ : τR → SP. Such a function determines, for each resource-
symbol q ∈ τR, a mapping µ(q) ∈ SP. In turn, this mapping µ(q) assigns to each rule
γ ∈ P a multiset µ(q)(γ) of quantities, as explained above. The use of multisets allows
us to handle multiple copies of the same amount-atom: each of them corresponds to a
different amount of resource to be taken into account.

Let B(X,Y) denote the collection of all ground atoms built up from predicate sym-
bols in X and terms in Y . We have the following definition.

Definition 8. An r-interpretation for a (ground) r-program P is a triple I = 〈I, µ, ξ〉,
with I ⊆ B(ΠP,C), µ : τR → SP, and ξ a mapping ξ : P→ N+.

Intuitively: I plays the role of a usual answer set assigning truth values to program-
literals; µ describes an allocation of resources; ξ associates to each rule an integer
representing the number of times the (iterable) rule is used. By little abuse of notation,
we consider ξ to be defined also for program-rules and r-facts. For this kind of rules
we assume the interval [N1-N2] = [1-1] as implicitly specified in the rule definition, as
a constraint on the number of firings.

The firing of an r-rule (which may involve consumption/production of resources)
can happen only if the truth values of the program-literals satisfy the rule. We reflect
the fact that the satisfaction of an r-rule γ depends on the truth of its program-literals
by introducing a suitable fragment of ASP program γ̂. Let the r-rule γ have L1, . . . , Lk

as program-literals and R1, . . . ,Rh as amount-atoms (or p-lists). The ASP-program γ̂ is
so defined:

10

γ̂ =


{← L1, . . . ,← Lk } if the head of γ is an amount-atom or a p-list
{← L1, . . . ,← Lk, if γ has the program-atom H as head

H ← L1, . . . , Lk } and h > 0
{ γ } otherwise (e.g., γ is a program-rule).

Def. 9, to be seen, states that in order to be a model, an r-interpretation that allocates
non-void amounts to the resource-symbols of γ, has to model the ASP-rules in γ̂. Some
preliminary notion is in order.

So far we have developed a semantic structure in which r-rules are interpretable
by singling-out suitable collections of amount couples. Different ways of allocating
amount of resources to an r-program are possible. To be acceptable, an allocation has
to reflect, for each p-list r in P, one of the admissible choices that r represents. In order
to denote such admissible choices we need some further notation. Let ` be either an
amount-atom or a p-list in an r-rule γ. Let

setify(`) =

{
{〈0, q, a〉} if ` is q:a

{〈1, q1, a1〉, . . . , 〈h, qh, ah〉} if ` is q1:a1> · · ·>qh:ah

We will use setify to represent the amount-atoms of rules as triples denoting: the po-
sition in each preference list where they occur; the resource-symbol they contain; the
amount that is required for this resource-symbol in that preference list. We general-
ize the notion to any multiset X of amount-atoms and p-lists: setify(X) = {[setify(`) |
` in X]}.

Let r-head(γ) and r-body(γ) denote the multiset of amount-atoms or p-lists occur-
ring in the head and in the body of γ, respectively. To distinguish, in the representa-
tion, between amount-atoms occurring in heads and in bodies, we define setifyb(γ) and
setifyh(γ) as the multisets {[setify(x) | x ∈ r-body(γ)]} and {[setify(x) | x ∈ r-head(γ)]},
respectively.

We associate to each r-rule γ, the following set R(γ) of multisets. Each element of
R(γ) represents a possible admissible selection of one amount-atom from each of the
p-lists in γ and an actual allocation of an amount (taken in Q via the function κ) to the
amount-symbol occurring in it. Notice that the quantities associated to amount-atoms
occurring in the body of γ are negative, as these resources are consumed.5 Vice versa,
the quantities associated to amount-atoms occurring in the head are positive, as these
resources are produced.

R(γ) =
{
{[〈i, q, κ(a)〉 | 〈i, q, a〉 = c1(S 1) and S 1 in setifyh(γ)]}
∪ {[〈i, q,−κ(a)〉 | 〈i, q, a〉 = c2(S 2) and S 2 in setifyb(γ)]}

| for c1 and c2 choice functions for setifyh(γ) and setifyb(γ), resp.
}

5To be precise, the assigned quantity corresponds to the negation, in Q, of the amount occurring in an
amount-atom of the body. One may also specify negative byproducts in the body, which are produced and
not consumed: in such a case, the assigned quantity will be positive (cf., [11]).

11

where c1 (resp. c2) ranges on all possible choice functions for setifyh(γ) (resp.
for setifyb(γ)).

In order to account for multiple firing of rules, we need to be able to “iterate” the
allocation of quantities for a number n of times: to this aim, for any n ∈ N+ and q ∈ τR,
let

Rn(γ) =
{⋃

{[X1, . . . , Xn]} | {[X1, . . . , Xn]} ∈ FM
(
R(γ)

)}
and

Rn(q, γ) =
{
{[〈i, v〉 | 〈i, q, v〉 is in X]} | X ∈ Rn(γ)

}
.

While R(γ) represents all the different ways of choosing one amount-atom from each
p-list of γ, the collection Rn(γ) represents all the possible ways of making n times this
choice (possibly, in different manners). Fixed a resource-symbol q, the set Rn(q, γ)
extracts from each alternative in Rn(γ) the multiset of amount couples relative to q.
Def. 9 exploits the set Rn(q, γ) to impose restrictions on the global resource balance,
for each q.

Definition 9. Let I = 〈I, µ, ξ〉 be an r-interpretation for a (ground) r-program P. I is
an answer set for P if the following conditions hold:

• for all rules γ ∈ P(
∀ q ∈ τR

(
µ(q)(γ) = ∅

))
∨

(
∀ q ∈ τR

(
µ(q)(γ) ∈ Rξ(γ)(q, γ)

)
∧

(
N1,16ξ(γ)6N1,2

))
• I is a stable model for the ASP-program P̂, so defined

P̂ =
⋃{

γ̂

∣∣∣∣∣∣ γ is a program-rule in P, or
γ is a resource-rule in P and ∃ q ∈ τR

(
µ(q)(γ) , ∅

) }
The two disjuncts in the formula in Def. 9 correspond to the two cases: a) the rule
γ is not fired, so null amounts are allocated to all its amount-symbols; b) the rule γ
is actually fired ξ(γ) times and all needed amounts are allocated (by definition this
happens if and only if ∃ q ∈ τR

(
µ(q)(γ) , ∅

)
holds). Notice that case b) imposes that

the amount couples assigned by µ to a resource q in a rule γ reflect one of the possible
choices in Rξ(γ)(q, γ).

Finally, we say that an r-interpretation I is an answer set of an r-program P if it is
an answer set for the grounding of P.

Note that the above definition however does not in general fulfill the preferences
expressed through p-lists.

In order to impose a preference order on the answer sets of an r-program, we need
to provide a preference criterion to compare answer sets. Such a criterion should im-
pose an order on the collection of answer sets by reflecting the (preference degrees
in the) p-lists. Any criterion PC has to take into account that each rule determines a
(partial) preference ordering on answer sets. In a sense, PC should aggregate/combine
all “local” partial order to obtain a global one. Fundamental techniques for combining
preferences (seen as generic binary relations) can be found for instance in [1]. Re-
garding combination of preferences in Logic Programming, criteria are also given, for
instance, in [4, 7, 6, 23].

12

Here we will just consider for P-RASP two of the simpler criteria among the variety
of alternative possible choices. As a first example, we directly exploit the ordering
of amount-atoms in the p-lists (i.e., their relative position). For any multiset m in
FM(N × Q) and i ∈ N, let be βi(m) = |{[〈i, v〉 | 〈i, v〉 is in m]}|. A partial order on
answer sets can be defined as follows. Given two answer sets I1 = 〈I1, µ1, ξ1〉 and
I2 = 〈I2, µ2, ξ2〉 for an r-program P, with µ1 , µ2, let mi be the multiset

mi =
⋃

γ∈P, q∈τR

µi(q)(γ),

for i ∈ {1, 2}, and let j be the minimum natural number such that β j(m1) , β j(m2). We
put I1 ≺1 I2 if and only if β j(m1) > β j(m2).

Our first preference criterion PC1 states that I1 is preferred to I2 if it holds that
I1 ≺1 I2. The preferred answer sets with respect to PC1 are those answer sets that are
≺1-minimal. In a sense, the criterion PC1 has a “positional flavor”: the answer sets that
selects the highest possible number of leftmost elements (in the p-lists) are preferred.

Our second criterion brings into play the magnitude of the preference degrees. This
can be done by considering the degrees as weights and by optimizing with respect to the
global weight expressed by the entire answer set. (Clearly, more complex assignments
of weights are viable.) For any answer set I = 〈I, µ, ξ〉 let

ω(I) =
∑

γ∈P, q∈τR

degree
(
µi(q)(γ)

)
.

Given I1 and I2 as before, we put I1 ≺2 I2 if and only if ω j(m1) < ω j(m2). Conse-
quently, our second preference criterion PC2 states that I1 is preferred to I2 if it holds
that I1 ≺2 I2. As before, the preferred answer sets, with respect to PC2, are those that
are ≺2-minimal.

5. Conditional preferences on resources.

Let us extend the syntax of r-rules by admitting p-lists (or amount-atoms) whose ac-
tivation is subject to the truth of a conjunctive condition. We will call cp-lists (standing
for conditional p-list) the construct for expressing conditional preferences in P-RASP.

Definition 10. A cp-list is a writing of the form (r pre f when L1, . . . , Lm), where r is
a p-list or simply an amount-atom, and L1, . . . , Lm are program-literals.

The intended meaning of a cp-list occurring in the body of an r-rule γ (the case of the
head is analogous) is that whenever γ is fired, one of the resources occurring in r =

q1:a1> · · ·>qh:ah has to be consumed. If the firing occurs in correspondence of an
answer set that satisfies L1, . . . , Lm, then the choice of which resource to consume is
determined by the preference expressed by r. Otherwise, if any of the Li is not satisfied,
a non-deterministic choice is performed. (Hence the conjunction L1, . . . , Lm does not
need to be satisfied in order to fire γ.) More precisely, if L1, . . . , Lm does not hold, the
r-rule containing the cp-list becomes equivalent to h r-rules, each containing exactly
one of the amount-atoms q1:a1, . . . , qh:ah, in place of the cp-list.

13

Such an extension of P-RASP can be treated by translating the rules involving cp-
lists into regular r-rules. The generic r-rule

H ← B1, . . . , Bk, (r pre f when L1, . . . , Lm)

is translated into this fragment of r-program:

(1) p← not np.
(2) np← not p.
(3) ← np, L1, . . . , Lm.

(4) ← p, Li. for i ∈ {1, . . . ,m}
(5) H ← B1, . . . , Bk, r, p.
(6) H ← B1, . . . , Bk, q j:a j, pq j, np. for j ∈ {1, . . . , h}
(7) npqi ← pq j. for i, j ∈ {1, . . . , h}, i , j
(8) pq j ← not npq j. for j ∈ {1, . . . , h}

where p, np, npq j and pq j (for each j ∈ {1, . . . , h}) are fresh program atoms. In
particular, p and np are used to discriminate between application of preference list and
non-deterministic choice of one resource, respectively. In the latter case, the truth of
each atom pq j (for j ∈ {1, . . . , h}) enables the firing of the jth rule listed at line (6).
Note that at most one of such rules can be fired. In fact, rules at lines (7)–(8) determine
that at most one of the atoms pq j (for j ∈ {1, . . . , h}) can be true in any answer set of
the program.

Consequently, the semantics of cp-lists is given in terms of that of p-lists.
If more than one cp-list occurs in a rule, then the above translation has to be gener-

alized by introducing distinct fresh atoms for each cp-list.
A slightly modified translation must be used to handle multiple firing of a rule.

Consider a rule of the form (assuming 1 6 N1 6 N2 be natural numbers):

[N1-N2] : H ← B1, . . . , Bk, (r pre f when L1, . . . , Lm).

Together with rules (1)–(4) we need the following substitutes for rules (5)–(8):

(9) np z← not np nz, np.
(10) np nz← not np z, np.
(11) u:N2.
(12) low← np z.
(13) low← v:N1, np nz.
(14) ← not low, np.
(15) [N1-N2] : H ← B1, . . . , Bk, r, p.
(16) [1-N2] : H ← B1, . . . , Bk, q j:a j, np nz, u:1, v: –1. for j ∈ {1, . . . , h}

where u, v are fresh resource symbols, while low, np z, and np nz are fresh atoms.
The rationale in this translation is as follows. As before, atoms p and np discriminate,
respectively, between the cases in which the preference list is used and those in which
a non-deterministic choice of one resource is performed. Considering those answer
sets in which np is true, the atom np z (resp., np nz) is used to distinguish the cases in
which none (resp., some) of h rules in line (16) is fired. The auxiliary resource symbol

14

u is used to bound the overall maximum number of firings of rules defined in line (16),
because each of these firings consumes one instance of resource u, while rule (11)
makes at most N2 of such instances available. The lower bound N1 on the number
of firings is imposed through the balance on the (auxiliary) resource v. Notice that
each firing of rules (16) actually produces one instance of such a resource (because
the amount is negative, cf., [11]). The atom low is then exploited to weed out those
answer sets in which a low (but not null) number of firings of the rules at line (16) is
performed, through the constraint (14).

Let us now introduce another form of cp-lists with a slightly different semantics.
We want to model a preference that imposes use of resources only when a condition
holds. More specifically, we introduce a conditional p-list of the form

(r only when L1, . . . , Lm)

with this intended meaning: let such a cp-list occur in the body of an r-rule γ (the
case of the head is analogous). If γ is fired in correspondence of an answer set that
satisfies all of the literals L1, . . . , Lm, the firing of the rule has to consume an amount of
a resource from r. Which resource is determined by the preference expressed through
the p-list. As before, the conjunction L1, . . . , Lm does not need to be satisfied in order
to fire γ. In case some Li does not hold, the firing can still be performed but this does
not require any consumption of resources in r.

Also this extension of the P-RASP language can be treated by translating the rules
involving cp-lists into regular r-rules. Again, the semantics of cp-lists is given in terms
of p-lists. The generic r-rule

[N1-N2] : H ← B1, . . . , Bk, (r only when L1, . . . , Lm).

is translated into this fragment of r-program (with p and np fresh atoms):

p← not np. np← not p.
← np, L1, . . . , Lm.

← p, Li. for i ∈ {1, . . . ,m}
[N1-N2] : H ← B1, . . . , Bk, r, p.
[N1-N2] : H ← B1, . . . , Bk, np.

Both forms of cp-lists can be admitted in the same program. In translating rules
involving more that one cp-list, the above described translations have to be generalized
and combined to take into account the different combinations of truth values for the
auxiliary atoms (e.g., p, np, etc.) associated to each cp-list. (A naı̈ve way of proceeding
consists in selecting a cp-list and in applying the described translation. This generates
a number of new rules that involve the remaining cp-lists. Then, one simply repeats the
same step until no more cp-lists occur.)

6. Generalizing p-lists: expressing arbitrary preferences

In general, there might be cases in which (conditional) preferences are not express-
ible as a linear order on a set of resources. Moreover, preferences might depend on
specific contextual conditions that are not foreseeable in advance.

15

A simple example: for reaching my office, I prefer walking both to driving a car
and catching a bus. But I have no preference between car and bus. This simple case of
preference order, being not linear, cannot be modeled by p-lists.

We introduce now a generalization of p-lists, named p-sets, that allows one to use
a partial order in expressing (collections of) p-lists. A p-set may occur in any place
where a p-list does and is a writing of the form: {q1:a1, . . . , qk:ak | p} where p is a
binary program predicate (defined elsewhere in the program).

Considering a specific answer set M, a particular extension is defined for the pred-
icate p (namely, the set of pairs 〈a, b〉 such that p(a, b) is true in M). Let X be the set
of resource symbols {q1, . . . , qk}. We consider the binary relation R ⊆ X2 obtained by
restricting to X the extension of p in M. R is interpreted as a preference relation over X:
namely, for any qi, q j ∈ X the fact that 〈qi, q j〉 ∈ R models a preference of qi on q j. The
case of p-lists is a particular case of p-sets, obtained when R describes a total order.6

Notice that, in general, R does not need to be a partial order, e.g., for instance,
it may involve cycles. In such cases we consider equivalent (w.r.t. preferences) those
resource symbols that belongs to the same cycle in R. Moreover, there might exist
elements on X that are incomparable (cf., driving a car and catching a bus, in the above
mentioned example).

Because of the presence of incomparable resources and equivalent resources, R can
be seen as a representation of a collection of p-lists, one of them originating from an
alternative total order on X compatible with R.

In order to take into account of all such possible total orders, a p-set in a P-RASP
program is translated into a fragment of RASP as follows.

(17) domp(qi). nump(i). for i ∈ {1, . . . , k}
(18) clp(X,Y)← p(X,Y), X , Y.
(19) clp(X,Y)← domp(X), domp(Y), domp(Z), clp(X,Z), clp(Z,Y), X , Y.
(20) eqp(T1,T2)← clp(T1,T2), clp(T2,T1), domp(T1), domp(T2).
(21) 1{idxp(T,N) : nump(N)}1← domp(T).
(22) usedp(N)← domp(T), idxp(T,N), nump(N).
(23) ← domp(T), idxp(T,N), nump(N),N > 1,N1 = N − 1, not usedp(N1).
(24) ← domp(T1), domp(T2), idxp(T1,N1), idxp(T2,N2), nump(N1), nump(N2),

clp(T1,T2), not clp(T2,T1),N2 6 N1,T1 , T2.
(25) ← not eqp(T1,T2), domp(T1), domp(T2),

idxp(T1,N), idxp(T2,N), nump(N),T1 , T2.
(26) idxp(T2,N)← eqp(T1,T2), domp(T1), domp(T2), idxp(T1,N), nump(N).
(27) orderp(T,N)← idxp(T,N), not otherp(T,N), domp(T), nump(N).
(28) otherp(T,N)← orderp(T2,N),T , T2, domp(T), domp(T2), nump(N).

where: line (17) defines two domain predicates that enumerate the (relevant) arguments
of p (the elements in X) and a collection of possible indices (as we will see, different
indices represent different preference degrees), respectively. Rules at lines (18)–(19)

6Notice that, here, we are introducing a change in the syntax of (P-)RASP. Namely we are admitting
resource symbols as arguments of program predicates.

16

evaluate the transitive closure of the relation R defined by p. Line (20) determines the
equivalences between resource symbols. Rules at lines (21)–(23) index the elements
of X with consecutive (possibly repeated) integers. Lines (24)–(26) restrict the possi-
ble indexing to those that do not violate the (closure of) the relation R: elements are
assigned equal indices if and only if they are equally preferred (i.e., equivalent in R).
Higher indices are assigned to less preferred resource symbols. Finally, rules (27)–(28)
generate (compatibly with the extension of p) all admissible orders for X. Each of these
orders admits a corresponding p-list. Such indexing of resource symbols can be used,
in the context of a specific answer set, while applying a preference criterion, e.g., PC1
as described in Section 4 (page 12).

Let us consider the last example mentioned in the Introduction. Assume that, in
making ice-cream or zabaglione, among some ingredients, e.g., chocolate, nuts and
coconut, one would prefer the less caloric. This can be so formalized:

ice cream:1>zabaglione:2 ← (skim milk:2>whole milk:2 pre f when diet),
(vanilla:1>cinnamon:1 only when not allergy),
{chocolate:1, nuts:1, coconut:1 | lesscaloric},
egg:2, sugar:3.

lesscaloric(X,Y) ← calory(X, A), calory(Y, B), A < B.
calory(X,Y) ← ...

That is, the preference among chocolate, nuts and coconut, i.e., a particular p-list, is
determined depending on the extension of the predicate lesscaloric, which might be
different for different answer sets and has to be established dynamically.

7. On Complexity and Implementation of P-RASP

In [11], credulous reasoning for plain RASP has been proved to be NP-complete.
Namely, to determine whether there exists an answer set of a given ground r-program
is an NP-complete problem. In particular, according to [11], a polynomial translation
from RASP into ASP can be exhibited. In such an encoding different occurrences of
amount-atoms are replaced by different plain (fresh) atoms. Then, a correspondence is
established between the answer sets of r-programs and the answer sets of suitable ASP
programs (see [11] for a detailed description).

Similarly, the analysis of the complexity of P-RASP can be made by establishing a
relationship between P-RASP and LPOD [7].

Let us first consider P-RASP without conditional preferences.
In LPOD, one can define rules of the form:7

A1 × A2 . . . × An ← Body.

meaning that one or more of the Ai’s can be derived provided that Body holds, where
A1 is the best preferred option, A2 the second best, and so on. These preferences can

7Without loss of generality, we can restrict ourselves to programs without classical negation.

17

be expressed only in the head of rules and have a global flavor, i.e., their scope is the
entire program.

Apart from the notation, there is a similarity with p-lists when occurring in the head
of r-rules. Moreover, any P-RASP program can be transformed into an LPOD program
and vice versa. Roughly speaking, an LPOD program can be converted into a P-RASP
program by substituting in each ordered disjunction of the form A1 × A2 . . . × An, each
Ai by Ai:n, where n is the number of occurrences of Ai in the bodies of rules. Similarly,
any Ai in the body of a rule is replaced by Ai:1. This produces a P-RASP encoding
of the given LPOD program. An answer set of the LPOD program can be obtained
from an answer set I of its P-RASP encoding, by considering true an Ai if I allocates
non-null amounts to Ai:n.

As regards the converse translation, we can complete the embedding introduced
in [11] in order to deal with p-lists and obtain a translation from P-RASP to LPOD. Let
us sketch the translation by focusing on the simpler case of r-rules containing just one
p-list, say r, and no other amount-atoms. There are two cases:

• The P-RASP rule has the form H ← L1, . . . , Lh, q1:a1> . . . >qk:ak. Then, it is
translated into the following rules:

s← not ns.
ns← not s.
sr,1 × . . . × sr,k ← L1, . . . , Lh, s.
s← sr, j. for each j ∈ {1, . . . , k}
← not pr, s.
pr ← sr, j, q j:a j. for each j ∈ {1, . . . , k}
H ← L1, . . . , Lh, s.

where s, ns, pr, and all the sr, j’s are fresh program atoms.

• The P-RASP rule has the form q1:a1> . . . >qk:ak ← L1, . . . , Lh. Then, it is trans-
lated as in the previous case, except that the last two lines of the above translation
are replaced by the following one (observe that the negated amount –a j in the
body or the rule denotes production instead of consumption of resources):

pr ← sr, j, q j: –a j. for each j ∈ {1, . . . , k}.

Such a translation can be generalized to handle an r-rule containing more than one p-
list. In this case a slightly more complex translation is needed in order to ensure that
either all or none of the ordered disjunctions are satisfied (i.e., either all or none of
the auxiliary atoms pr’s are true). Notice that this translation also works for simple
amount-atoms (that can be seen as p-lists involving just one option).

We may notice that, by applying this translation, the size of the resulting program
is polynomially larger than the size of the original P-RASP program.

The program resulting from the above outlined steps does not contain any p-list,
but it might contain both ordered disjunctions and amount-atoms. To get rid of these
amount-atoms, we proceed by mimicking the embedding of RASP into ASP presented
in [11]. This step completes the (polynomial) translation of the given program into

18

LPOD and allow us to establish a correspondence between the answer sets of the given
P-RASP program and those of the target LPOD program. (The interested reader can
also refer to [10] for a direct, but more involved, embedding of P-RASP into ASP.)

Complexity of credulous reasoning for LPOD depends on the chosen preference
criterion for selecting preferred answer sets. Three main criteria for LPOD are in-
troduced in [7]. Namely, the cardinality-, the inclusion-, and the Pareto- criterion.
Credulous reasoning turns out to be Σ2

P-complete in the first two cases, while stays in
∆2

P in the latter one.
Let us consider the PODS programs obtained by transforming P-RASP programs as

described above. Observe that the criterion PC1 (cf., Section 4) corresponds to the car-
dinality preference criterion of [7]. Moreover, a Pareto-like criterion for P-RASP could
be properly introduced. Then, in analogy to [7], we can inherit the same complexity
results for credulous reasoning in P-RASP (without conditional preferences).

The approach of [22] has the same complexity of LPOD, which means that each
of the three formalisms (LPOD, [22] and P-RASP) can in principle be translated into
each other (but only as far as preferences are concerned, as neither [22] nor [7] deal
with resources). However, if one considers the programming style, then P-RASP is sig-
nificantly different from the mentioned approaches as they provide global preferences,
i.e., imposed all over the program, while in P-RASP preferences are local to rules: i.e.,
the same amount-atoms might be ordered differently in different p-lists, cf., Example 7.
Reflecting such a “locality” character by means of global preferences would originate,
as seen above, an unnatural representation, also making it harder to design an efficient
implementation and to prove its correctness. Therefore, we have chosen to provide an
“autonomous” semantics which better reflects, in our opinion, the intuitive meaning
that a programmer assigns to resources and quantities.

The translation into LPOD outlined above can be used also when conditional pref-
erences are involved, by exploiting the rendering of cp-lists and p-sets in terms of
p-lists, as described in Sections 5 and 6. However, such a naı̈ve encoding of cp-lists
(and p-sets) might introduce an exponential growth of the size of the resulting P-RASP
program. The existence of a polynomial translation from P-RASP with conditional
preferences into LPOD is still object of investigation.

As regards the implementation, a solver for (P-)RASP built on top of an existing
ASP-solver is described in [11] (where completeness and correctness of the basic en-
coding are also shown). Essentially, a preliminary translation converts an r-program
into ASP, by rendering the semantics presented in Section 4. This ASP program is then
joined to an ASP specification of an inference engine which performs the real reason-
ing on resources allocation and that remains independent from the particular r-program
at hand. Preference criteria (as well as some cost-based features and budget policies)
are encoded in the inference engine by exploiting optimization statement commonly
supported by ASP-solvers.

8. Related Work

In RASP, we adopt the original intuition of linear logic, i.e., “Give as many A’s as
I might need and I will give you one B” in the context of the ASP semantics. Despite

19

of the limitations (e.g., finite domain) we stay within a decidable setting. For a com-
parison between RASP and the various approaches to resource-based reasoning, the
interested reader can refer to [11]. Concerning preferences, we are not aware of ap-
proaches to preferences in linear logic. Thus, in order to understand whether P-RASP
might be rephrased as a fragment of linear logic, a direct comparison would be needed,
that can be a subject of future work.

Concerning preferences in logic programming and non-monotonic reasoning, we
briefly mention here some of the existing approaches (see [13] for a comprehensive
treatment). As interesting attempts to introduce preference in (constraint) prolog-like
logic programming, we mention [19, 18, 12].

Various forms of preferences have also been introduced in ASP (see [13]). Most of
the proposed approaches are based on establishing priorities/preferences among rules.
In [4], A-Prolog (a language of logic programs with the answer set semantics, cf., [14])
is enriched with ordered disjunction and preferences among rules are handled by means
of a rule-naming mechanism. In ordered logic programs [25], preferences are ex-
pressed through a partial order imposed on the set of rules. The order is used to im-
plement defeating of less-preferred rules. Other approaches express priorities among
answer sets. Intuitively, this is done by declaring those atoms whose truth is “preferred”
(typically, in these cases some forms of disjunction in the heads of rules is introduced).
In prioritized logic programs [22], a set of priorities determines preferences on literals:
from priorities, a preference relation on answer sets is drawn. In [7], as already men-
tioned, preferences on atoms are modeled by ordered disjunction in the head of rules.
Considering a given answer set of a program, for each rule a degree of satisfaction
is determined depending on which atom of the head is satisfied. Satisfaction degrees
of all rules are then combined, according to some criterion, to rank the answer sets.
Through similar ideas, a Preference Description Language is defined in [6] to formal-
ize penalty-based preference handling in ASO. A comparison of these approaches can
be found in [25].

Notice that in almost all the above mentioned cases, preferences are expressed glob-
ally, e.g., by providing an order relation that applies on all the rules (or atoms) of the
program. In P-RASP, as shown, preferences are imposed, by using p-lists, on some
of the atoms of a rule. In this sense preference in P-RASP has a local character, cf.,
Remark 6 and Example 7.

9. Conclusions

According to our study of related work (cf. [11]), the proposed approach dealing
with resources and preferences exhibits novel features that might be of use in many
cases. Conditional preferences allow one to make either the preference or even the use
of certain resources optional, according to given conditions. A further extension allow
preferences to be defined according to the value taken (at run-time) by a binary predi-
cate which establishes the actual order. As future work, we also mean to by introduce
more complex conditions/constraints for parametric preferences.

20

Acknowledgements
The authors would like to thank Wolfgang Faber, Georg Gottlob, Nicola Leone,

and the anonymous referees for their useful suggestions and comments. This research
has been partially supported by GNCS (Gruppo Nazionale per il Calcolo Scientifico).

References

[1] Hajnal Andréka, Mark Ryan, and Pierre-Yves Schobbens. Operators and laws for
combining preference relations. Journal of Logic and Computation, 12(1):13–53,
2002.

[2] Christian Anger, Torsten Schaub, and Miroslaw Truszczyński. ASPARAGUS –
the Dagstuhl Initiative. ALP Newsletter, 17(3), 2004. See http://asparagus.

cs.uni-potsdam.de.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. The Description Logic Handbook. Cambridge University Press,
2003.

[4] Marcello Balduccini and Veena S. Mellarkod. CR-Prolog2 with ordered disjunc-
tion. In Proc. of ASP’03, 2003.

[5] Chitta Baral. Knowledge representation, reasoning and declarative problem solv-
ing. Cambridge University Press, 2003.

[6] Gerhard Brewka. Complex preferences for answer set optimization. In Proc. of
KR’04, pages 213–223, 2004.

[7] Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen. Logic programs with
ordered disjunction. Computational Intelligence, 20(2):335–357, 2004.

[8] Stefania Costantini and Andrea Formisano. Conditional preferences in P-RASP.
In Proc. of LANMR’08, 2008.

[9] Stefania Costantini and Andrea Formisano. Modeling preferences on resource
consumption and production in ASP. In Proc. of ASPOCP’08 Workshop of
ICLP08, 2008.

[10] Stefania Costantini and Andrea Formisano. Modeling preferences on resource
consumption and production in ASP. Technical Report 09, Dip. di Matemat-
ica e Informatica, Univ. di Perugia, 2008. Available in www.dipmat.unipg.it/

~formis/papers/report2008_09.ps.gz.

[11] Stefania Costantini and Andrea Formisano. Answer set programming with re-
sources. Journal of Logic and Computation, 2009. To appear. Draft avail-
able as Report-16/2008 of Dip. di Matematica e Informatica, Univ. di Peru-
gia: www.dipmat.unipg.it/~formis/papers/report2008_16.ps.gz.

21

[12] Baoqiu Cui and Terrance Swift. Preference logic grammars: Fixed point seman-
tics and application to data standardization. Artificial Intelligence, 138(1-2):117–
147, 2002.

[13] James Delgrande, Torsten Schaub, Hans Tompits, and Kewen Wang. A classifica-
tion and survey of preference handling approaches in nonmonotonic reas oning.
Computational Intelligence, 20(12):308–334, 2004.

[14] Michael Gelfond. Representing knowledge in A-prolog. In Antonis C. Kakas and
Fariba Sadri, editors, Computational Logic: Logic Programming and Beyond,
Essays in Honour of Robert A. Kowalski, Part II, volume 2408 of Lecture Notes
in Computer Science, pages 413–451. Springer, 2002.

[15] Michael Gelfond. Answer sets. In Handbook of Knowledge Representation, chap-
ter 7. Elsevier, 2007.

[16] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert Kowalski and Kenneth Bowen, editors, Proc. of the 5th
Intl. Conference and Symposium on Logic Programming, pages 1070–1080. The
MIT Press, 1988.

[17] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[18] Kannan Govindarajan, Bharat Jayaraman, and Surya Mantha. Preference queries
in deductive databases. New Generation Computing, 19(1):57–86, 2000.

[19] Hai-Feng Guo and Bharat Jayaraman. Mode-directed preferences for logic pro-
grams. In Proc. of ACM-SAC’05, pages 1414–1418, 2005.

[20] Nicola Leone. Logic programming and nonmonotonic reasoning: From theory to
systems and applications. In Chitta Baral, Gerhard Brewka, and John Schlipf, ed-
itors, Logic Programming and Nonmonotonic Reasoning, 9th International Con-
ference, LPNMR 2007, page 1, 2007.

[21] Victor W. Marek and Miroslaw Truszczyński. Stable logic programming - an
alternative logic programming paradigm, pages 375–398. Springer, 1999.

[22] Chiaki Sakama and Katsumi Inoue. Prioritized logic programming and its ap-
plication to commonsense reasoning. Artificial Intelligence, 123(1-2):185–222,
2000.

[23] Tran Cao Son and Enrico Pontelli. Planning with preferences using logic pro-
gramming. Theory and Practice of Logic Programming, 6(5):559–607, 2006.

[24] Miroslaw Truszczyński. Logic programming for knowledge representation. In
Verónica Dahl and Ilkka Niemelä, editors, Logic Programming, 23rd Interna-
tional Conference, ICLP 2007, pages 76–88, 2007.

[25] Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered
logic programs. Theory and Practice of Logic Programming, 6(1-2):107–167,
2006.

22

