
Answer Set Programming with Resources

Stefania Costantini
Dipartimento di Informatica, Università di L’Aquila
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Abstract

In this paper, we propose an extension of Answer Set Programming
(ASP) to support declarative reasoning on consumption and production
of resources. We call the proposed extension RASP, standing for “Re-
sourced ASP”. Resources are modeled by introducing special atoms, called
amount-atoms, to which we associate quantities that represent the avail-
able amount of a certain resource. The “firing” of a RASP-rule involving
amount-atoms can both consume and produce resources. A RASP-rule
can be fired several times, according to its definition and to the avail-
able quantities of required resources. We define the semantics for RASP
programs by extending the usual answer set semantics. Different answer
sets correspond to different possible allocations of available resources. We
then propose an implementation based on standard ASP-solvers. The im-
plementation consists of a standard translation of each RASP-rule into a
set of plain ASP rules and of an inference engine that manages the firing
of RASP-rules.

Key words: Answer set programming, non-monotonic logic program-
ming, quantitative reasoning, language extensions.

Introduction

Answer Set Programming (ASP) is a form of logic programming based on the
answer set semantics [27], where solutions to a given problem are represented in
terms of selected models (answer sets) of the corresponding logic program [41,
47]. Rich literature exists on applications of ASP in many areas, including
problem solving, configuration, information integration, security analysis, agent
systems, semantic web, and planning (see among many [9, 3, 40, 60, 26] and the
references therein).
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The ASP formulations in these and other fields might take profit from the
possibility of performing (at least to some extent) forms of quantitative reasoning
like those that are possible in Linear Logics [29] and Description Logics [6].
In particular, in linear logics hypotheses are considered as resources: every
hypothesis can be consumed exactly once in a proof. This differs from usual
logics such as classical or intuitionistic logic where a true statement may be
freely used as many times as required. In description logics instead, cardinality
restrictions can express conditions on the number of elements that must exist
for an existentially quantified property (or “role”). In both cases, one can
deal with numbers that express significant aspects of whether a property is
verified or a rule can be applied. Concepts similar to cardinalities of Description
Logics can be found in some extensions of ASP such as Weight Constraint Rules
[51]. However, this is not the case (at least in a direct way) for resource-based
reasoning.

In this paper, we propose an extension of ASP to support declarative reason-
ing on consumption and production of resources. We call the proposed extension
RASP, standing for Resourced ASP. Resources are modeled by specific atoms
to which we associate quantities that represent the available amount. Thus, an
atom of the form q:n indicates a quantity n of resource q (where n stands for
any specific quantity to be chosen). The firing of a RASP-rule can both con-
sume and produce resources. If several tasks require the same resource, different
allocation choices may be possible.

After briefly recalling the basic ASP paradigm (Section 1), in Section 2 we
provide syntax of RASP programs. In RASP, we allow amount-atoms to occur
both in the head and in the body of rules. Amount-atoms in the body of a rule
(if present) indicate which resources are consumed by that rule, and in which
quantity. Amount-atoms that occur in the head of a rule indicate instead which
resources are produced by that rule, and in which quantity.

Let us focus on a simple example that should clarify the motivations of the
approach. Consider a situation where, if one has three eggs, three hundred
grams of flour and three hundred grams of sugar, then one can cook a cake.
Similarly, if one has three eggs, two hundred grams of sugar and two hundred
milliliters of milk, then one can prepare an ice-cream. Depending on the amount
of available ingredients, it might be the case that they are sufficient to prepare
both, one, or none of the desserts. Program P1 below could be a RASP program
encoding such a situation:

γ1 : have cake ← egg :3, flour :3, sugar :3.
γ2 : have ice cream ← egg :3, sugar :2, milk :2.
γ3 : egg :4.
γ4 : flour :8.
γ5 : sugar :6.
γ6 : milk :3.

The amounts occurring in the body of each rule correspond to resources which
are consumed whenever the rule is used. Facts γ3, . . . , γ6 describe which re-
sources are initially available. Notice that the heads of rules γ1 and γ2 do not
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involve resources, i.e., the two atoms have cake and have ice cream are plain
ASP atoms that simply model the fact of having a cake or an ice-cream avail-
able, respectively. We will see in the following that resources can explicitly
occur in heads, to model an actual production of some amount of resources.
Clearly, one could be interested in finding all possible alternative allocations of
resources, possibly subject to further specific constraints or consumption policies
(cf., Section 7).

Semantics for RASP programs is provided in Section 3, by combining usual
answer set semantics with an interpretation of resource amounts. In particular,
different allocation choices will correspond to different answer sets. In Section 4
we provide an encoding of RASP into ASP compatible with the semantics given
in Section 3. Completeness and soundness of such encoding are also assessed.
The complexity issue is dealt with in Section 5. Later on, we will discuss ex-
tensions to the basic RASP paradigm (Section 6). In particular, we allow the
same rule to be (optionally) fired more than once, if the available quantities of
consumed resources are sufficient for constructing more than one instance of the
produced resources. Also, we introduce various kinds of constraints on quanti-
ties and the possibility of defining negative quantities to model byproducts of
resources consumption/production.

In Section 7 we discuss how to introduce a filter on the answer sets of a
RASP program, to represent different policies for production and consumption
of resources. We identify three basic possibilities, among many which are in
principle possible. A general policy can be defined in terms of these three.
An implementation of RASP based on standard ASP-solvers is proposed in
Section 8. The implementation consists of a standard translation of each RASP-
rule into a set of plain ASP rules and of an inference engine that manages the
firing of RASP-rules. Related work is discussed in Section 9.

1 ASP in nutshell

In this section, we briefly recall the basics about Answer Set Programming [9, 41,
47]. In this logical framework, a problem can be encoded —by using a function-
free logic language— as a set of properties and constraints which describe the
(candidate) solutions. More specifically, an ASP-program is a collection of rules
of the form

H ← L1, . . . , Lm, not Lm+1, . . . ,not Lm+n.

where H is an atom m > 0, n > 0 and each Li is an atom. The symbol not
stands for negation-as-failure. Various extensions to the basic paradigm exist,
that we do not consider here all of them as they are not essential in the present
context. The left-hand side and the right-hand side of the clause are called head
and body, respectively. A rule with empty head is a constraint. Actually, a con-
straint ← L1, . . . , Lm, not Lm+1, . . . ,not Lm+n can be seen as a shorthand
for a rule of the form p ← L1, . . . , Lm, not p, not Lm+1, . . . ,not Lm+n (being
p is a fresh atom). Such a rule imposes that the literals in the body cannot be
all true, otherwise the whole rule would be falsified.
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The semantics of ASP is expressed in terms of answer sets (or equivalently
stable models, [27]). Consider first the case of a ground1 ASP-program P which
does not involve negation-as-failure (i.e., n = 0). In this case, a set of atoms X
is said to be an answer set for P if it is the (unique) least model of P . Such a
definition is extended to any ground program P containing negation-as-failure
by considering the reduct PX (of P ) w.r.t. a set of atoms X. PX is defined
as the set of rules of the form H ← L1, . . . , Lm for all rules of P such that
X does not contain any of the literals Lm+1, . . . , Lm+n. Clearly, PX does not
involve negation-as-failure. The set X is an answer set for P if it is an answer
set for PX .

Once a problem is described as an ASP-program P , its solutions (if any) are
represented by the answer sets of P . Unlike other semantics, a logic program
may have several answer sets, or may have no answer set, because conclusions
are included in an answer set only if they can be justified. The following program
has no answer set: {a ← not b. b ← not c. c ← not a.}. The reason is that
in every minimal model of this program there is a true atom that depends (in
the program) on the negation of another true atom. Whenever a program has
no answer sets, we will say that the program is inconsistent. Correspondingly,
checking for consistency means checking for the existence of answer sets. For a
survey of this and other semantics of logic programs with negation, the reader
may refer to [4].

Let us consider the program P consisting of the three rules

r ← p. p ← not q. q ← not p.

Such a program has two answer sets: {p, r} and {q}. If we add the rule (actually,
a constraint)← q. to P , then we rule-out the second of these answer sets, because
it violates the new constraint.

This simple example reveals the core of the usual approach followed in for-
malizing/solving a problem with ASP. Intuitively speaking, the programmer
adopts a “generate-and-test” strategy: first (s)he provides a set of rules describ-
ing the collection of (all) potential solutions. Then, the addition of constraints
rules-out all those answer sets that are not desired real solutions.

Given a rule γ in a language L, the grounding of γ w.r.t. L is the set of
all ground rules obtainable from γ through (ground) instantiation using the
constant symbols of L. Usually, given a program P and a rule γ ∈ P , we will
consider the grounding of γ w.r.t. the language underlying P . The grounding
of a set of rules is defined similarly. Given a (not necessarily ground) program
P , a set of atoms is an answer set for P if it is an answer set for the grounding
of P .

To find the solutions of an ASP-program, an ASP-solver is used. Several
solvers have became available [5], each of them being characterized by its own
prominent valuable features. As it is well-known, ASP solvers produce the

1As customary, a term (atom, literal, rule, . . . ) is ground if no variable occurs in it. A
ground program is a program that does not contain variables.
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grounding of the given program as a first step, as they are able to find the
answer sets of ground programs only.2

The expressive power of ASP, as well as, its computational complexity have
been deeply investigated. The interested reader can refer, for instance, to [20].
The reader can also see [9, 21], among others, for a presentation of ASP as a
tool for declarative problem-solving.

A deeply investigated extension of the ASP language involves the use of
aggregate functions in defining aggregate literals [36, 58, 23]. A simple form of
aggregate literal is the following:

n1 relop1 Agg{Var : Conj} relop2 n2

where Var is a variable, Conj is a conjunction of literals, each relopi is a rela-
tional operator (e.g., <,6,>, etc.), n1 and n2 are terms (called guards, usually
numbers), and Agg is an aggregate function. (One among the guards might
be absent.) Typical aggregate functions are sum, min, max , count , etc. The
intended meaning is as follows: given an interpretation, the aggregate function
Agg is applied to the multiset of all the values for Var that satisfy the con-
junction of literals Conj . Variables in Conj , different from Var , are considered
as being existentially quantified. The result of the function is then compared,
through relopi, with n1 and n2 to determine the truth value of the aggregate
literal. As an example, the program

t(1). t(2).
p(3). p(X) ← t(X).
r(N) ← N = sum{Z : p(Z)}.

has answer set {t(1), t(2), p(3), p(1), p(2), r(6)}.
Following [36], a notion of stratification can be introduced for programs in-

volving aggregate literals. Intuitively speaking, a program is aggregate stratified
if there is no predicate recursively defined through aggregate functions. For ex-
ample, the previous program is aggregate stratified, while a program containing
the rule q(X) ← X = sum{Z : q(Z)}. would be not.

Detailed treatment of the semantics of aggregates in ASP goes beyond the
scope of this brief description. The interested reader can refer, among others,
to [36, 58, 23]. For the purposes of this paper, it suffices to remark that the
notion of reduct of a program P w.r.t. a set of atoms X can be plainly generalized
to the case of aggregate stratified programs. This yields a definition of answer
set for aggregate stratified programs in complete analogy to the case of plain
ASP programs. In this paper, we deal with aggregate stratified programs only.

2Work is under way both theoretically and practically to overcome at least partially this
limitation (cf., [19, 39], for instance). However, at present almost all ASP solvers perform the
grounding.
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2 Syntax of RASP-programs

The first step of the definition of RASP syntax is that of partitioning the sym-
bols of the underlying language into Program symbols and Resource symbols.
Precisely, let 〈Π, C,V〉 be a structure where Π = ΠP ∪ ΠR is a set of predicate
symbols such that ΠP ∩ΠR = ∅, C = CP ∪CR is a set of constant symbols such
that CP ∩ CR = ∅, and V is a set of variable symbols.

The elements of CR are said amount-symbols, while the elements of ΠR
are said resource-predicates. A program-term is either a variable or a constant
symbol. An amount-term is either a variable or an amount-symbol.

The second step is that of introducing amount-atoms in addition to plain
ASP atoms, called program-atoms. Let A(X, Y ) denote the collection of all
atoms of the form p(t1, . . . , tn), with p ∈ X and {t1, . . . , tn} ⊆ Y . Then, a
program-atom is an element of A(ΠP , C ∪V). An amount-atom is an expression
of the form q:a where q ∈ ΠR ∪ A(ΠR, C ∪ V) and a is an amount-term. Let
τR = ΠR ∪ A(ΠR, C). We call elements of τR resource-symbols.

Example 2.1 In the two expressions p:3 and q(2):b, p and q(2) are resource-
symbols (with p, q ∈ ΠR and 2 ∈ C) aimed at defining two resources which are
available in quantity 3 and b, resp., (with 3, b ∈ CR amount-symbols).

Expressions such as p(X):V where V,X are variable symbols are also allowed,
as resources can be either directly specified as constants or derived. Notice that
the set of variables is not partitioned, as the same variable may occur both as
a program term and as an amount-term. Ground amount- or program-atoms
contain no variables. As usual, a program-literal L is a program-atom A or
the negation not A of a program-atom (intended as negation-as-failure).3 If
L = A (resp., L = not A) then L denotes not A (resp., A). A resource-literal
(r-literal) is either a program-literal or an amount-atom. Notice that we do not
admit negation of amount-atoms. The reasons will be discussed later.

Finally, we distinguish between plain rules and rules that involve amount-
atoms. In particular, a program-rule is defined as a regular ASP rule. Besides
program-rules we introduce resource-rules which differ from program rules in
that they may contain amount-atoms.

Definition 2.1 A resource-proper-rule has the form

H ← B1, . . . , Bk.

where B1, . . . , Bk, k > 0, are r-literals and H is either a program-atom or a
(non-empty) list of amount-atoms.

Definition 2.2 A resource-fact ( r-fact, for short) has the form H ← . where
H is an amount-atom q:a and a is an amount symbol.

3In this paper we will only deal with negation-as-failure. Nevertheless, classical negation
of program literals could be used in RASP programs and treated as usually done in ASP.
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According to the definition, the amount of an initially available resource has to
be explicitly stated. Thus, the amount term a cannot be a variable. (As usual,
we often denote the r-fact H ← simply by writing H.)

Definition 2.3 A resource-rule ( r-rule, for short) can be either a resource-
proper-rule or a resource-fact.

A RASP program may involve both program rules and resource-rules:

Definition 2.4 A RASP-rule ( rule, for short) γ is either a program-rule or a
resource-rule. An r-program is a finite set of RASP-rules.

Example 2.2 Let us consider the r-program P1 mentioned in the Introduction.
All the rules are r-rules. We identify CR with the set of integer numbers Z and
we have ΠR = {egg ,flour , sugar ,milk} and ΠP = {have cake, have ice cream}.

Remark 2.1 As Definition 2.1 states, in general, we admit several amount-
atoms in the head of a rule where the case in which a rule γ has an empty head
is admitted only if γ is a program-rule (i.e., γ is an ASP constraint).

Notice that the list of amount-atoms composing the head of an r-rule has to
be understood conjunctively, i.e., as a collection of those resources that are all
produced at the same time by firing the rule.

Example 2.3 The combustion reaction of methane can be described by the fol-
lowing equation:

CH4 + 2O2 ⇒ CO2 + 2H2O

where starting from a molecule of methane (CH4) and two molecules of oxygen
(O2), we obtain a molecule of carbon dioxide (CO2) and two molecules water
(H2O). The following r-rule encodes such a reaction:

carbDioxide:1,water :2 ← methane:1, oxygen:2.

where two amount-atoms in the head represent the simultaneous production of
carbon dioxide and water.

The grounding of an r-program P is the set of all ground instances of rules
of P , obtained through ground substitutions over the constants occurring in P .

Remark 2.2 Notice that in any r-program only a finite number of amount-
symbols of CR occurs, also because all r-facts must be ground. Hence, as far
as amount-atoms are concerned, a finite number of ground instances can be
generated by the grounding process. This is because all instances of amount-
terms are among the instances of the terms occurring in program atoms. A
“smart” grounder for RASP would avoid generating instances of r-rule where
variables occurring as amount-terms are instantiated to constants of CP instead
of constants of CR. Such “wrong” instances are however both semantically and
practically irrelevant (apart from the waste of space).

7



3 Semantics of RASP-programs

The semantics of a (ground) RASP program is determined by interpreting usual
literals as in ASP and amount-atoms in an auxiliary algebraic structure that
supports operations and comparisons. The rationale behind the proposed se-
mantic definition is the following. On the one hand, we translate each r-rule
into a fragment of a plain ASP program, so that we do not have to modify
the definition of stability which remains the same: this is of some importance
in order to make the several theoretical and practical advances in ASP still
available for RASP. However, an answer set of a RASP program will support
the firing of an r-rule only if: the rule is satisfied (in the usual way) as con-
cerns its program-literals; and the requested amounts are allocated for all the
resource-atoms. Hence, an interpretation (and consequently an answer set) for
an r-program has two components: a set of program atoms and an allocation of
actual quantities to amount-atoms.

In the semantics that we present below we do not consider negation-as-
failure applied to amount-atoms. The reason is not technical, as there might
be several possible approaches to assess this semantics. The problem is that it
is not clear to us which is the most intuitive meaning of saying, for instance,
that “an amount-atom q:a (occuring in the head) cannot be assumed to be
true”. Should it mean that the resource q is not produced at all? Or should it
mean that q can be produced in any amount different from a? Moreover, what
should be considered as the scope of this constraint? A single rule or the whole
program? Actually, some form of constrains conceptually involving negation
are expressible in RASP: one can use negated program atoms to impose that
an r-rule can produce some amount of the resource q, but this amount cannot
be equal to a specific value a. For instance, as in the following r-rule:

q:X ← q1:Y, X 6= a, p1(X, Y ), not p2(Y ).

where, similarly, further restrictions on the values of the consumed amount Y
of q1 can be imposed through the program predicates p1 and p2. Moreover,
one can impose constraints on the global balance of a resource (for example, to
impose that, globally, a certain amount of a resource has to be used/left). This
topic is discussed at some length in the next sections.
Below is an example of how negation can be (though in an indirect way) ex-
ploited in RASP programs without committing to a specific meaning of negation
of amount-atoms.

γ1 : happy wife ← cinema.
γ2 : cinema ← money :3.
γ3 : happy husband ← restaurant .
γ4 : restaurant ← money :6.
γ5 : trouble at home ← happy wife, not happy husband .
γ6 : trouble at home ← not happy wife, happy husband .

Rules γ2 and γ4 compete for the assignment of the resource money (and may
also compete with other rules that may be present in the rest of the program).
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If enough money is available or is produced, e.g., by the rule

γ7 : money :10 ← hour of work :3.

then there will be an answer set where both husband and wife are happy, and
there is no trouble at home. If the available money is insufficient for either uses,
none of them will be concluded to be happy. If the money is sufficient just for
one, only that one will be concluded to be happy by the above program fragment.
Answer sets where only one is happy can be ruled-out by the constraint:

γ8 : ← trouble at home.

In describing the semantics of an r-program P we will proceed as follows.
First we fix an algebraic structure to represent quantities and support operations
on them. Then, we develop a representation for collections of quantities with
positive balance. (Intuitively, negative amounts represent consumed resources,
while positive amounts denote productions.) Each of these collections will be
a potential allocation of quantities to all the amount-atoms relative to a single
resource symbol in P . Then, we introduce the notion of r-interpretation of P
by selecting an allocation of amounts for each resource symbol in P .

As mentioned, amounts are modeled by choosing a collection Q of quantities,
the operations to combine and compare quantities, and a mapping κ : CR → Q
that associates quantities to amount-symbols. A simple natural choice for Q is
the set of integer numbers. In what follows, unless differently specified, we will
assume that Q = Z.

Remark 3.1 Plainly, alternative options for Q are possible. For instance, one
could choose Q to be the set Q of rational numbers.

In general, amounts can be interpreted by choosing Q to be any set as carrier
of a structure Q = 〈Q,⊕Q,4Q, ∅Q〉 that is a totally-ordered Abelian group,
where ∅Q denotes the identity element in Q w.r.t. the additive operation ⊕Q,
and 4Q is a translation-invariant total order over Q (i.e., such that for all
x, y, z ∈ Q, x 4Q y → x⊕Q z 4Q y ⊕Q z).

Example 3.1 Consider the r-program P1 used in the Introduction and in Ex-
ample 2.2. By choosing Q to be Z (with the usual sum and total order relation),
since we have identified CR with Z, κ is the identity function over Z.

As will be discussed in Section 8, a solver for RASP can be obtained by
exploiting existing ASP-solvers through compilation into ASP. Once κ has been
chosen, it can be encoded in r-programs through program-predicates and usual
ASP-rules. Alternatively, one can directly use numerical terms and rely on the
built-in features of the specific ASP-solver. For the sake of simplicity, in the
rest of the presentation whenever it will be clear from the context (e.g., in the
examples), we will adopt a simplification by identifying CR with Z (and κ being
the identity).
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Before going on, we introduce some useful notation. Given two sets X, Y ,
let FM(X) denote the collection of all finite multisets4 of elements of X, and
let Y X denote the collection of all (total) functions having X and Y as domain
and codomain, respectively. Given a (multi)set Z of integers,

∑
(Z) denotes

their sum (e.g.,
∑

({[ 2, 5, 3, 3, 5 ]}) = 18).

We introduce now the notion of r-interpretation for r-programs, by consid-
ering the ground case in the first place. For any fixed resource-symbol, an inter-
pretation of a (ground) r-program P must determine an allocation of amounts
for all occurrences of such a symbol in rules of P . Since amounts and resource-
symbols are used to model production and consumption of “real-world” objects,
we must take into account the obvious constraint that any resource cannot be
consumed if it is not produced. In other words, for each resource symbol q, the
overall sum of quantities allocated to amount-atoms of the form q:a must not
be negative. The collection SP of all potential allocations (i.e., those having
a non-negative global balance)—for any single resource-symbol occurring in P
(considered as a set of rules)—is the following collection of mappings:

SP = {F ∈ (FM(Q))P | 0 6
∑ ( ⋃

γ∈P

F (γ)
)} (1)

The rationale behind the definition of SP is as follows: Let q be a fixed resource-
symbol. Each element F ∈ SP is a function that associates to each rule γ ∈ P
a (possibly empty) multiset F (γ) of quantities, assigning certain quantities to
each occurrence of amount-atoms of the form q:a in γ. All such F must satisfy,
by definition of SP , the requirement that, considering the entire P , the global
sum of all the quantities F assigns must be non-negative. As we will see later,
only some of these allocations will actually be acceptable as a basis for a model.

To interpret an r-program, we select a collection of elements of SP , one
element for each amount-symbol in τR. More formally, an r-interpretation of a
ground r-program P is defined by providing a mapping

µ : τR → SP .

Such a function µ determines, for each resource-symbol q ∈ τR, a mapping
µ(q) ∈ SP . In turn, each mapping µ(q) assigns to each rule γ ∈ P a multiset
µ(q)(γ) of quantities, as explained above. As we will see, the function µ is one
component of an interpretation I. The interpretation is allowed to be an answer
set only if the quantities assigned by µ are consistent with the firing of the rules.

The use of multisets allows us to handle multiple copies of the same amount-
atom: each of these copies must be taken into account, since it corresponds to a
different amount of resource consumed or produced. Notice that, it is possible
that the grounding of an r-rule actually produces multiple copies of the same
amount-atom within the same instance of the r-rule. Consider for example the

4A multiset (or bag) is a generalization of a set, where repeated elements are allowed.
Then, a member of a multiset can have more than one membership.
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r-rule q:X ← p(a):X, p(B):Y, r(B, X, Y ). Depending on how r(B, X, Y ) is
instantiated, the two amount-atoms in the body might become identical.

Recall that in characterizing the notion of r-interpretation for an r-program
we have to take into account two kinds of literals: resource-atoms and program
literals. Namely, two aspects have to be considered: the truth of program literals
and the allocation of resources. Let B(X, Y ) denote the collection of all ground
atoms built up from predicate symbols in X and terms in Y . We have the
following definition.

Definition 3.1 An r-interpretation for a (ground) r-program P is a pair I =
〈I, µ〉, with I ⊆ B(ΠP , C) and µ : τR → SP .

Intuitively: I plays the role of a usual answer set assigning truth values to
program-literals.

Example 3.2 Let us consider again the r-program P1 of Examples 2.2 and 3.1.
An r-interpretation for P1 is 〈I, µ〉 with I = {have cake} and µ such that

µ(egg)(γ1) = {[ − 3 ]}
µ(egg)(γ3) = {[ 4 ]}
µ(egg)(γi) = ∅ for i ∈ {2, 4, 5, 6}
µ(flour)(γ1) = {[ − 3 ]}
µ(flour)(γ4) = {[ 8 ]}
µ(flour)(γi) = ∅ for i ∈ {2, 3, 5, 6}
µ(sugar)(γ1) = {[ − 3 ]}
µ(sugar)(γ5) = {[ 6 ]}
µ(sugar)(γi) = ∅ for i ∈ {2, 3, 4, 6}
µ(milk)(γ6) = {[ 3 ]}
µ(milk)(γi) = ∅ for i ∈ {1, 2, 3, 4, 5}.

The firing of an r-rule (which may involve consumption/production of re-
sources) can happen only if the truth values of the program-literals satisfy the
rule. We reflect the fact that the satisfaction of an r-rule γ depends upon the
truth of its program-literals by introducing a suitable fragment of ASP pro-
gram γ̂. As we will see below, this fragment is taken into consideration only
if, in the interpretation I at hand, rule γ is fired (i.e., I assigns the correct
quantities to the amount-atoms in γ). The set of ASP rules γ̂ is used to state
that I is allowed to be an answer set only if, whenever γ is fired, its program
literals are satisfied in I. Let the r-rule γ, have L1, . . . , Lk as program-literals
and R1, . . . , Rh as amount-atoms. The ASP-program γ̂ is so defined:

γ̂ =





{← L1. , . . . ,← Lk. } if the head of γ consists of amount-atoms

{← L1. , . . . ,← Lk., if γ has the program-atom H as head
H ← L1, . . . , Lk. } and h > 0

{ γ } otherwise.
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Notice that if γ is a program-rule then γ̂ = {γ}.
Let us introduce a notation to indicate, for each given resource symbol q and

each r-rule γ, the multiset of amounts of q involved in the firing of γ (Negative
quantities are associated to amount-atoms of the body of γ, as these resources
are consumed.):

Alloc(q, γ) = {[ v ∈ Z | v = −κ(a) for q:a in the body of γ

or v = κ(a) for q:a in the head of γ ]} (2)

The following definition states that in order to be a model, an r-interpreta-
tion that allocates non-void amounts to the resource-symbols of γ, has to model
the ASP-rules in γ̂.

Definition 3.2 Let I = 〈I, µ〉 be an r-interpretation for a (ground) r-program
P . I is an answer set for P if the following conditions hold:

• for all rules γ ∈ P
(
∀ q ∈ τR

(
µ(q)(γ) = ∅)

)
∨

(
∀ q ∈ τR

(
µ(q)(γ) = Alloc(q, γ)

))
(3)

• I is a stable model for the ASP-program P̂ , so defined

P̂ =
⋃{

γ̂

∣∣∣∣
γ is a program-rule in P, or
γ is a resource-rule in P and ∃ q ∈ τR

(
µ(q)(γ) 6= ∅)

}

The two disjoints of formula (3) in Definition 3.2 correspond to the two cases:
a) the rule γ is not fired, so null amounts are allocated to all its amount-symbols;
b) the rule γ is actually fired and all needed amounts are allocated.

We now formally introduce the notions of resource balance:

Definition 3.3 Let I = 〈I, µ〉 be an answer set for a (ground) r-program P .
The resource balance for P , w.r.t. 〈I, µ〉, is the mapping ϕ : τR → Q defined
as:

ϕ(q) =
∑ ({[∑ (

µ(q)(γ)
) | γ ∈ P

]})

which summarizes consumptions and productions of all resources.

An r-interpretation I is an answer set of an r-program P if it is an answer
set for the grounding of P .

Example 3.3 Consider the r-interpretation 〈I, µ〉 of Example 3.2. The pro-
gram P̂1 is made of the single fact have cake (i.e., γ̂1). Hence, I is a stable model
for P̂1. Notice that this r-interpretation fires the rule γ1. The resource balance
ϕ is such that: ϕ(egg) = 1, ϕ(flour) = 5, ϕ(sugar) = 3, and ϕ(milk) = 3.

Another simple example involving r-rules that consume and produce the
same resource.

12



Example 3.4 Let us consider the following two r-rules:

γa : q:2 ← q:1.
γb : q:1 ← q:2.

Let Pa (resp., Pb) be the r-program made of the single r-rule γa (resp., γb) and
let Pab = Pa ∪ Pb. For each of the three r-programs, given an r-interpretation,
each r-rule might be fired at most once. In particular, for the r-program Pa

there are two possible answer sets. Namely, I1 = 〈∅, µ1〉 and I2 = 〈∅, µ2〉, with
µ1(q)(γa) = ∅ and µ2(q)(γa) = {[ 2,−1 ]}, so that ϕ(q) = 1. (Notice that I2 and
I1 correspond to the cases in which γa is fired or not, respectively.) For Pb there
is only one possible answer set: I3 = 〈∅, µ3〉 with µ3(q)(γb) = ∅ and ϕ(q) = 0.
(Actually, the r-rule cannot be fired because not enough resources are available).
For the r-program Pab there are several possibilities that correspond to these
situations: (i) no r-rule is fired, (ii) only γa is fired, and (iii) both r-rules are
fired. In the last case, the answer set is I4 = 〈∅, µ4〉 with µ4(q)(γa) = {[ 2,−1 ]}
and µ4(q)(γb) = {[ 1,−2 ]} and ϕ(q) = 0.

The following example illustrates a crucial difference between resource-atoms
and program atoms. We will use a slightly modified version P2 of the r-program
P1 used in Example 2.2. In this case, the firing of a rule will produce some
resource (i.e., one cake, see below) instead of making a program literal true
(i.e., have cake in Example 3.3).

Example 3.5 Let us consider the r-program P2 made of the rules γ3, . . . , γ6

seen in the Introduction and the following two rules in place of γ1 and γ2:

γ′1 : cake:1 ← egg :3, flour :3, sugar :3.
γ′2 : ice cream:1 ← egg :3, sugar :2, milk :2.

The crucial difference between γ′1,2 and γ1,2 is that in γ′1,2 we use amount-atoms
as heads, instead of program atoms. As for the r-program P1 we identify CR
with Z, but now we have ΠR = {cake, ice cream, egg ,flour , sugar ,milk} and
ΠP = ∅. An r-interpretation for P2 is 〈∅, µ′〉 with µ′ such that

µ′(egg)(γ′1) = {[ − 3 ]} µ′(egg)(γ′2) = ∅
µ′(flour)(γ′1) = {[ − 3 ]} µ′(flour)(γ′2) = ∅
µ′(sugar)(γ′1) = {[ − 3 ]} µ′(sugar)(γ′2) = ∅
µ′(milk)(γ′1) = ∅ µ′(milk)(γ′2) = ∅
µ′(cake)(γ′1) = {[ 1 ]} µ′(cake)(γ′2) = ∅
µ′(cake)(γi) = ∅ for i ∈ {3, 4, 5, 6}
µ′(ice cream)(γ′i) = ∅ for i ∈ {1, 2}
µ′(ice cream)(γi) = ∅ for i ∈ {3, 4, 5, 6}
µ′(q)(γi) = µ(q)(γi) otherwise

where µ is as in Example 3.2. The program P̂2 = γ̂1
′ is empty. Rule γ′1 is

fired (as for rule γ1 in Example 3.3). In this case the resource balance ϕ′ is:
ϕ′(egg) = 1, ϕ′(flour) = 5, ϕ′(sugar) = 3, ϕ′(milk) = 3, ϕ′(cake) = 1, and
ϕ′(ice cream) = 0.
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The next example involves interactions between r-rules and ASP rules:
through the use of variables, the values admitted for resource amounts can
be controlled by means of program predicates; also, compound program atoms
and terms can be used to define different ground instance of r-rules (cf., the first
rule of the program below).

Example 3.6 A simple example of a “toy heating system”. It is a dual-fuel
system and comprises two fuel sources: electricity as a primary system and
alternate fuel such as gas or fuel oil as a secondary source. The control switches
the electric heat off and the backup fuel on during peak load conditions, typically
on the coldest days of the winter. We can represent this situation by separately
modeling the knowledge base regarding the heating system, and the description
of specific weather situation. The generic domain knowledge is modeled through
this r-program (where we assume a1, a2, a3 ∈ Z):

warm ← fuel(Type):Q, load(Load),
requiredFuel(Load ,Type),needed(Type, Q).

load(low) ← temperature(Celsius),Celsius > 10, is winter .
load(high) ← temperature(Celsius),Celsius =< 10, is winter .
load(none) ← not is winter .
requiredFuel(high, oil).
requiredFuel(low , electricity).
needed(oil , a2).
needed(electricity , a1).
fuel(oil):a1 ← money :a3.
fuel(electricity):a2 ← money :a3.
← not warm.

The last rule, an ASP constraint, represents the desired goal: to warm the where-
abouts. This fragment of program can be seen as the inference engine to be joined
with a specific instance of the “heating problem”. Specific operating conditions
can be stated by describing the current weather (as well as the availability of
money). If it is a cold winter we write:

temperature(5).
money :a3.
is winter .

otherwise, for a mild winter we could assert the fact temperature(20) in place
of temperature(5). Finally, to obtain from a RASP-solver (see Section 8), both
models as (alternative) expected solutions of a single r-program, we could use
this fragment of program:

temperature(5) ← not temperature(20).
temperature(20) ← not temperature(5).
money :a3.
is winter .
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In this manner, one and only one among the atoms temperature(5) and
temperature(20) has to be true in any model. In the former case we have a
high peak load (load(high) is true) and oil is used. The other solution, when the
temperature is 20 degrees (load(low) is true), involves using electricity.

The next example shows, in a simplified context, how the products of a rule
can be used to sustain the firing of another rule.

Example 3.7 We take advantage from having (multi)sets of amount-atoms as
heads of rules, to model a chemical reaction. We consider a simplified descrip-
tion of the photosynthesis in green plants. Photosynthesis uses the energy of light
to convert carbon dioxide (CO2) and water (H2O) into glucose (C6H12O6) and
oxygen (O2). The process can be roughly described as two interleaved phases,
called respectively light-dependent reaction (which converts solar energy into
chemical energy stored in specific molecules, NADPH and ATP) and carbon
fixation (which captures carbon dioxide and makes the precursors of glucose).
Simple general equations that schematize the two phases are (adapted from [18]):

light-dependent reaction:

12H2O + light energy +
12NADP+ + 18ADP + 18Pi ⇒ 6O2 + 18ATP +

12NADPH + 12H+

carbon fixation:

6CO2 + 6O2 + 18ATP +
12NADPH + 12H+ ⇒ C6H12O6 + 6H2O +

12NADP+ + 18ADP + 18Pi

The following rules encode such reactions:

oxygen:A, atp:C,nadph:B, proton:B ← water :B, adp:C,nadp:B, pi :C,
light , B = 2 ∗A,C = 3 ∗A,
A = 6 ∗Moles,
reagents1(Moles, A, B,C, D).

glucose:D,water :A, adp:C,nadp:B, pi :C ← nadph:B, proton:B, atp:C,
oxygen:A, carbDioxide:A,
A = 6 ∗D, B = 2 ∗A,
C = 3 ∗A,
reagents2(A,B, C,D).

reagents1(V,W,X, Y, Z) ← . . .
reagents2(W,X, Y, Z) ← . . .

where we generically used the two predicates reagents1,2 (assumed to be defined
elsewhere in the program) to indicate that values for A, B, C, D, and Moles
can be obtained/restrained through other parts of the r-program.
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4 ASP Encoding of r-programs

In this section, we will describe an ASP-encoding of ground RASP programs.
This will characterize an abstract implementation of RASP. We will proceed by
providing a translation T from r-programs to ASP programs. By means of T ,
any answer set of an r-program S determines an answer set for T (S) (which
satisfies suitable constraints on resource balances), and vice versa.

Again, for the sake of simplicity, in what follows we will identify amount
symbols of CR with their interpretations in Z. (Consequently, the mapping κ
will be left implicit.)

4.1 A translation from RASP into ASP

Let be given a set of fresh predicate symbols ΠT such that ΠT ∩ Π = ∅ and
{notfired ,fired , use, r rule, a atom} ⊆ ΠT .

Some notation is needed. Given a ground r-program S, let SR ⊆ S be the
set of r-rules in S and let SP = S \ SR (i.e., the program rules). For any set of
ASP rules X, let atoms(X) denote the set of all atoms occurring in X. For any
ASP rule γ, let lits+(γ) (resp., lits−(γ)) be the set of atoms occurring positively
(resp., negatively) in the body of γ. Moreover, let head(γ) be the set of atoms
occurring in the head of γ.

The translation T is defined as follows. We start by univocally naming each
r-rule γ in SR. This is done by introducing a fresh constant symbol rγ (i.e., a
constant not appearing elsewhere) and the fact:

r rule(rγ). (4)

Let the r-rule γ be of the form

q0:a0, . . . , qh:ah ← qh+1:ah+1, . . . , qk:ak, L1, . . . , Ln. (5)

for some 0 6 h 6 k, n > 0, and (k−h)+n > 0, with L1, . . . , Ln program-literals.
For each amount-atom qi:ai in γ we introduce the ASP fact:

a atom(rγ , i, qi, âi). (6)

where âi = ai if 0 6 i 6 h and âi = −ai if h < i 6 k.5 These facts represent in
the ASP translation the amount-atoms occurring in SR. The second argument
of a atom is needed in the ASP translation to distinguish among different oc-
currences of identical amount-atoms of the r-rule. Recall, in fact, that multiple
copies of the same amount-atom must not be identified, since they correspond
to a different amount of resource. Keeping track of multiple copies of amount-
atoms reflects, in the translation into ASP code, the use of multisets in defining
the semantics of r-programs.

5With a little abuse of notation due to the identification of CR and Z.
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As mentioned, the two disjoints of formula (3) in Definition 3.2 discriminate
the two situations in which an r-rule γ is fired or not. These two situations are
modeled in ASP through the two rules

fired(rγ) ← not notfired(rγ).
notfired(rγ) ← not fired(rγ). (7)

Whenever an r-rule γ is fired, all of the resources mentioned in amount-atoms
in γ are consumed/produced. We represent the fact that a certain amount ai

of a resource qi (due to the amount-atom qi:ai in γ), is actually used (i.e.,
consumed or produced), if and only if γ is fired, by introducing the ASP rules

use(rγ , i, qi, âi) ← fired(rγ), a atom(rγ , i, qi, âi).
fired(rγ) ← use(rγ , i, qi, âi).
notfired(rγ) ← not use(rγ , i, qi, âi).

(8)

for each i ∈ {0, . . . , k}.
Finally, we impose that the firing of γ has to be enabled by the truth of the
literals L1, . . . , Ln, through the ASP rules:6

auxLi,γ ← not auxLi,γ , Li, fired(rγ). (9)

for each j ∈ {1, . . . , n}.
Summing up, the translation T (γ) of an r-rule γ of the form (5), is defined

as the ASP fragment made of the rules (4) and (6)-(9):

r rule(rγ).
a atom(rγ , i, qi, âi).
fired(rγ) ← not notfired(rγ).
notfired(rγ) ← not fired(rγ).
use(rγ , i, qi, âi) ← fired(rγ), a atom(rγ , i, qi, âi).
fired(rγ) ← use(rγ , i, qi, âi).
notfired(rγ) ← not use(rγ , i, qi, âi).
auxLi,γ ← not auxLi,γ , Li, fired(rγ).

where i and j range over {0, . . . , k} and {1, . . . , n}, respectively.
The above described translation has to be slightly modified in the case of

r-rules having a program atom as head. If γ has the form

H ← q1:a1, . . . , qk:ak, L1, . . . , Ln. (10)

where 1 6 k, n > 0, L1, . . . , Ln are program-literals and H is a program atom,
then its translation is constituted by the set of ASP rules (4), (6)-(9), together
with the following rule:

H ← fired(rγ), L1, . . . , Ln. (11)

6Here, to simplify the treatment in the following sections, we explicitly introduce the fresh
auxiliary atoms auxLi,γ , instead of adopting the shorthand notation for ASP constraints

mentioned in Section 1. (By using such a notation, (9) would be written as ← Li, fired(rγ).).
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We are left with the case in which γ is an r-fact. Facts are treated as r-rules
that are supposed to be fired in each circumstance. Hence, if γ is the r-fact

q:a.

then T (γ) is the set of the following ASP facts:

r rule(rγ).
a atom(rγ , 0, q, a).
fired(rγ).
use(rγ , 0, q, a).

(12)

(where, as before, rγ is a fresh constant symbol univocally associated to γ).
By defining T (γ) = {γ} for all program rules (namely, if γ ∈ S \ SR), the

translation T (S) an r-program S is then defined as the ASP program

T (S) =
⋃

γ∈S

T (γ).

Assume that a set M of atoms is a model of the program T (S). For some
resource symbols q, some of the atoms of the form use(rγ , i, q, a), occurring
in T (S), is true in M . These atoms are intended to represent the amounts of
resources involved in fired r-rules. To take into account the constraints on global
balance of the allocated amounts, we introduce a condition pos(M) so defined:

pos(M) = ∀q ∈ τR
( ∑ {[ a | use(rγ , i, q, a) ∈ M ]} > 0

)
(13)

This condition reflects the definition of SP as introduced in Section 3.
Notice that the condition (13) can be imposed in the ASP encoding of RASP

by means of an ASP constraint involving an aggregate sum, as follows:7

← sum{A : use(Rule, I, Q, A)} < 0, res symb(Q).

and, for each resource symbol q occurring in T (P ) a fact res symb(q). is added
to the ASP encoding.

Notice that we are introducing an aggregate literal in a constraint. Hence,
no literal in T (S) is defined depending on such aggregate. This ensures that the
resulting ASP program is aggregate stratified. Stable model semantics can be
smoothly extended to such class of programs by plainly generalizing the notion
of reduct of a program, see [36, 58, 23].

7Recall that variables Rule and I occurring in the aggregate literal are to be intended
as existentially quantified (whereas the value of Q is determined by the atom res symb(Q)).
Hence, for each q such that res symb(q) holds, the aggregate function sum is applied to
the multiset of those values A occurring in the facts use(Rule, I, q, A) that are true in the
interpretation at hand.

Often, real ASP-solvers require the use of domain predicates to restrain the set of values
for these variables, as in:

← sum{A : use(Rule, I, Q, A), idx(I), val(A), r rule(Rule)} < 0, res symb(Q).
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4.2 Completeness and soundness

Some notions (adapted from [42]) are needed. Consider two sets of atoms Z
and X and an ASP program G. For a rule γ ∈ G let γ′ denote the rule
obtained by removing those atoms belonging to Z from the body of γ. More
precisely, γ′ is such that head(γ′) = head(γ), lits+(γ′) = lits+(γ) \ Z, and
lits−(γ′) = lits−(γ) \ Z.

Then, given G, the program eZ(G,X) is defined as the following set of rules
eZ(G,X) = {γ′ | γ ∈ G, lits+(γ) ∩ Z ⊆ X, (lits−(γ) ∩ Z) ∩X = ∅}.

A splitting set Z for an ASP program G is a set of atoms such that for each
rule γ ∈ G, if head(γ) ∩ Z 6= ∅ then lits+(γ) ∪ lits−(γ) ⊆ Z. The set of rules
bZ(G) = {γ ∈ G | atoms(γ) ⊆ Z} is called the bottom of G w.r.t. Z.

Let Z be a splitting set for a program G. A solution to G w.r.t. Z is a pair
〈X, Y 〉 of sets of atoms such that X is an answer set for bZ(G) and Y is an
answer set for eZ(G \ bZ(G), X).

Let S = SP ∪ SR be an r-program. Observe that atoms(SP) ⊆
B(ΠP , C).8 For simplicity, we assume that all rules in SP have the form
H ← L1, . . . , Lm, not L1, . . . ,not Ln. (in particular, SP does not contain
ASP constraints, i.e., rules with empty head).

The ASP program T (S) can be partitioned as follows

T (S) = SP ∪ Š ∪ ST

where ST is the set of all rules of the forms (4),(6),(7), and (8), while Š is the
set of all rules of the forms (9) and (11), originating from the translation.

Let Πaux be the set of all the predicate symbols auxLi,γ introduced by the
translation (cf., (9) in page 17). We have that

atoms(Š) ⊆ B(ΠP , C) ∪ B({fired} ∪Πaux , {rγ | γ ∈ S})
and

atoms(ST ) ⊆ B(ΠT , {rγ | γ ∈ S} ∪ Z ∪ τR).

We can see that the set

US = B(ΠT , {rγ | γ ∈ S} ∪ Z ∪ τR)

is a splitting set for T (S) and the bottom of T (S) relative to US is

bUS
(T (S)) = {γ ∈ T (S) | atoms(γ) ⊆ US} = ST .

This is because no atom in US occurs as head in rules of SP ∪ Š.
At this point, we can establish a relation between the answer sets of an

r-program and those of its translation.
Let M be an answer set for T (S). By the Splitting Set Theorem [42], M =

X ∪ Y for X and Y such that 〈X,Y 〉 is a solution to T (S) with respect to US .
Hence, by the definition of a solution, we have that

8Recall that B(X, Y ) denotes the collection of all ground atoms built up from predicate
symbols in X and terms in Y .
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• X is an answer set for bUS (T (S)) = ST , and

• Y is an answer set for eUS (SP ∪ Š, X).

Notice that Y ⊆ atoms(T (S))\US ⊆ B(ΠP , C)∪B({fired}∪Πaux , {rγ | γ ∈ S})
and X ⊆ atoms(T (S)) ∩ US encodes the information about which r-rules are
fired in M .

Let us consider the r-interpretation IM = 〈Y, µM 〉, where µM is such that
for all q ∈ τR and γ ∈ S, µM (q)(γ) = {[ v | use(nγ , i, q, v) ∈ X ]}.

The following result holds.

Theorem 4.1 If M is an answer set for T (S) such that pos(M) holds, then
IM is an answer set the r-program S.

Proof. We have to show that IM = 〈Y, µM 〉 fulfills the requirements expressed
in the two items in Definition 3.2. Recall that, by the Splitting Set Theorem,
M = X ∪ Y , with 〈X, Y 〉 solution to T (S) with respect to US .

• Consider a rule γ ∈ S. Two cases are possible:

– If γ ∈ SP then µM (q)(γ) = ∅ for all q ∈ τR and condition (3) of
Definition 3.2 is satisfied.

– If γ ∈ SR then let q0:a0, . . . , qk:ak be the amount-atoms in γ. There
are two possibilities (i.e., γ is fired or not):

∗ for all i, use(nγ , i, qi, âi) ∈ X. Then condition (3) of Defini-
tion 3.2 is satisfied because pos(M) holds.

∗ for each i there is no atom of the form use(nγ , i, qi, âi) in X
and µM (q)(γ) = ∅ for all ∈ τR. Condition (3) Definition 3.2 is
satisfied.

• Recall that Y is an answer set for eU (SP ∪ Š, X). Observe that the pred-
icate symbols occurring in X do not occur in SP . Then eU (SP ∪ Š, X) =
SP ∪ eU (Š,X). Moreover, an atom of the form fired(rγ) belongs to X if
and only if the r-rule γ produces/consumes the resources described by its
amount-atoms (i.e., if and only if γ is fired, and by effect of rules (8), ex-
actly all needed atoms use(nγ , i, qi, âi) belong to M). On the other hand,
U contains all atoms of the form fired(rγ). Let ρ be a rule Š. By defini-
tion, ρ has the form (9) (or (11)) and originates from the translation of
an r-rule γ. If such γ is fired, then fired(rγ) belongs to X and occurs in ρ.
Let ρ′ be obtained by removing the atom fired(rγ) from ρ. The rule ρ′ is
in eU (Š, X) only if lits+(ρ) ∩ U = {fired(rγ)} ⊆ X. This shows (because
of the way µM has been defined, see above), that SP ∪ eU (Š,X) = Ŝ and
condition (2) of Definition 3.2 is satisfied.

2

Theorem 4.1 states the soundness of the ASP embedding of r-programs. We
now proceed by showing its completeness.
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Let I = 〈I, µ〉 be an answer set of an r-program S, For each γ ∈ SR one
and only one of the disjuncts in condition (2) of Definition 3.2 is satisfied. We
introduce these sets of atoms:

S(1) = {r rule(rγ) | γ ∈ SR}
S(3) = {a atom(rγ , i, qi, âi) | qi:ai is an amount-atom in γ ∈ SR}
S(4) = {fired(rγ) | γ ∈ SR and ∀ q ∈ τR (µ(q)(γ) = Alloc(q, γ))} ∪

{notfired(rγ) | γ ∈ SR and ∀ q ∈ τR (µ(q)(γ) = ∅)}
S(5) = {use(rγ , i, qi, âi) | qi:ai is an amount-atom in γ

and ∀ q ∈ τR (µ(q)(γ) = Alloc(q, γ))}
XS = S(1) ∪ S(3) ∪ S(4) ∪ S(5)

The following result states the completeness of the transformation.

Theorem 4.2 Let I = 〈I, µ〉 be an answer set of an r-program S and XS

defined as described above. Then, M = XS ∪ I is an answer set for T (S) and
pos(M) holds.

Proof. Observe that I is an answer set for Ŝ and that XS is an answer set
for bUS

(T (S)). By an argument similar to the one applied in the proof of
Theorem 4.1, we obtain that eUS

(T (S)\bUS
(T (S)), XS) = eUS

(SP∪Š,XS) = Š.
Hence, 〈XS , I〉 is a solution of T (S) w.r.t. US . It follows, by the Splitting Set
Theorem, that XS ∪ I is an answer set for T (S). We can conclude the proof by
observing that, by Definition 3.2 and by the definitions of S(5) and SP (cf., (1)
at page 10), pos(M) holds. 2

4.3 An inference engine for RASP

In Section 4.1 we outlined a translation from r-rules of an r-program S into
fragments of ASP code. Something better could be done by observing that part
of the rules in T (S), namely those of the forms (7) and (8), can be factorized
by exploiting variables. This allows us to design the core of an ASP-based
inference engine capable of reasoning on resource allocations. As we will see,
such an engine will be successively extended in Section 8, in order to deal with
more expressive constructs (to be introduced in Section 6).

The following code imposes correct usage of resources in firing each rule.

fired(Rule) ← not notfired(Rule), r rule(Rule).
notfired(Rule) ← not fired(Rule), r rule(Rule).
use(Rule, I,Res,Amount) ← fired(Rule),

a atom(Rule, I,Res,Amount).
fired(Rule) ← use(Rule, I,Res,Amount).
notfired(Rule) ← not use(Rule, I,Res,Amount).

The balance for each resource is evaluated by the following fragment of code.
Observe the use of an ASP constraint involving an aggregate function to evaluate
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sums and to impose the condition (13):9

res symb(Res) ← a atom(Rule, I,Res,Amount).
← sum{A : use(Rule, I,Q, A)} < 0, res symb(Q).

An ASP-based solver for RASP would act as follows: first each r-rule of
the RASP program is translated as previously explained in Section 4.1 (recall
that program rules are left unchanged); then, the rendering of all r-rules must
be joined with the above ASP program that acts as an inference engine and
performs the concrete reasoning activity on resource allocations; finally, the
answer sets (if any) of the obtained ASP program are calculated by means of a
standard ASP solver [5]. From each answer set M so computed, an answer set
IM of the original r-program can be extracted as described in Section 4.2.

5 Complexity

In order to determine the complexity of deciding about the existence of answer
sets of a RASP program (and about the existence of answer sets containing
a certain atom A), we will reduce the question to that of finding the answer
sets (in the usual answer set semantics) of an ASP version of the given RASP
program P , that we will call adapted program, and of establishing which of
these answer sets are admissible, i.e., satisfy the constraint that resources can
be consumed only if they have been actually produced. Deciding the existence
of an answer set has been proved NP-complete in [45] and the same for deciding
whether an atom is a member of some answer set (proved in [46]). In this section
we will prove that the complexity of RASP remains the same as for ASP, by
proving that the adapted program is not much larger than given program P ,
that admissibility of its answer sets can be checked in polynomial time and that
a correspondence between admissible answer sets of the adapted program and
answer sets of P can be established.

The two disjoints of formula (3) in Definition 3.2 show the two possible ways
a rule γ can be treated: a) the rule γ is not fired, so null amounts are allocated
to all its amount-symbols; b) the rule γ is actually fired and all needed amounts
are allocated. Consider again the program P1 in the introduction, that for the
sake of clarity we report below.

γ1 : have cake ← egg :3, flour :3, sugar :3.
γ2 : have ice cream ← egg :3, sugar :2, milk :2.
γ3 : egg :4.
γ4 : flour :8.
γ5 : sugar :6.
γ6 : milk :3.

9Alternatively, it would be possible to exploit cardinality and weight constraints [51] to
surrogate the aggregate literals.
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As only four eggs are available, it cannot be the case that both γ1 and γ2 are
fired. In fact, only one of the two can be fired (in alternative) while leaving one
egg unused.

The first problem with the above example is that the same atom egg :3 oc-
curs in the body of two rules, which might produce ambiguity in the resource
allocation. Therefore, it may be convenient to rewrite the program as follows:

γ1 : have cake ← egg1:3, flour1:3, sugar1:3.

γ2 : have ice cream ← egg2:3, sugar2:2, milk2:2.
γ3 : egg :4.
γ4 : flour :8.
γ5 : sugar :6.
γ6 : milk :3.

I.e., resource symbols occurring in the body of rules are standardized apart, by
substituting them by means of fresh resource symbols. This kind of elaboration
is formalized in the following definition:

Definition 5.1 Let P be a (ground) r-program, and let γ1, ..., γk be the rules in
P containing amount-atoms in their body. The standardized-apart version Ps

of P is obtained from P by renaming each amount-atom q:a in the body of γj,
j 6 k as qj :a. The qj’s are called the standardized apart versions of q.

Referring to the standardized-apart version of P1, the resource allocations
that may correspond to answer sets can be intuitively represented by means
of the following two rewritings. In the first one, resources are allocated to the
first r-rule by splitting each fact into two: one corresponding to the allocated
quantity of resource, the other one to what is left.

γ1 : have cake ← egg1:3, flour1:3, sugar1:3.

γ2 : have ice cream ← egg2:3, sugar2:2, milk2:2.
γ3 : egg1:3.
γ′3 : egg :1.
γ4 : flour1:3.
γ′4 : flour :5.
γ5 : sugar1:3.
γ5 : sugar :3.
γ6 : milk :3.

By considering amount-atoms as plain atoms, we can now compute the (unique)
answer set of this program, which is

{milk :3, sugar :3, sugar1:3, flour :5, flour1:3, egg :1, egg1:3, have cake}.

This answer set is admissible as for each resource the total quantity which has
been used does not exceed the available quantity. It can be reduced so as to
refer to the language of P1 by eliminating the standardized apart versions of
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amount-atoms. Thus, for each resource that has been to some extent consumed
the answer set reports the remaining quantity. In particular, we obtain milk :3,
sugar :3, flour :5, and egg :1, as unused amounts of resources. Analogously, the
second version allocates the resources to the second rule.

γ1 : have cake ← egg1:3, flour1:3, sugar1:3.

γ2 : have ice cream ← egg2:3, sugar2:2, milk2:2.
γ3 : egg2:3.
γ′3 : egg :1.
γ4 : flour1:3.
γ′4 : flour :5.
γ5 : sugar2:2.
γ5 : sugar :4.

γ6 : milk2:2.
γ6 : milk :1.

In this case, the answer set is

{milk :1, milk2:2, sugar :4, sugar2:2, flour :8, egg :1, egg2:3, have ice cream}

which determines these unused amounts: milk :1, sugar :4, flour :8, and egg :1.
By considering ground amount-atoms as plain atoms, we can now “simulate”

the rewriting shown above by adding, for each standardized-apart version of an
amount-atom, an even cycle which simulates this resource to be allocated to the
r-rule where it occurs or not. In order to save space, we will add such an even
cycle only if that resource can potentially be produced by some other r-rule.

Definition 5.2 Let P be a (ground) r-program, and let Ps be the standardized-
apart version of P . The adapted program P ′ for P is obtained by adding to
Ps for each qj :a occurring in the body of some r-rule of Ps and such that q:b
(for some b) occurs in the head of some r-rule of Ps the following pair of rules
(where no qj :a is a fresh atom):

qj :a ← not no qj :a.
not no qj :a ← not qj :a.

Theorem 5.1 Let P be a (ground) r-program, and let Ps be the standardized-
apart version of P . The size of adapted program P ′ for P grows linearly with
respect to the size of P .

Proof. Notice that P and Ps have the same size, and the same rules (apart from
the renaming). Then, for each r-rule in Ps, P ′ contains at most 2AB new rules,
where AB is the number of resource symbols which occur both in the body of an
r-rule and in the head of some other r-rule of Ps (and then of P ). The worst case
corresponds to a situation where all rules of P are r-rules and resource symbols
occurring in r-rule heads are distinct and all of them also occur in some r-rule
body. In this case, AB is equal to the number of the rules of P . Therefore, P ′
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may in the worst case be composed of AB + 2AB = 3AB rules, i.e., three times
the number of rules of P . 2

In the rest of this section, with some abuse of notation, for the sake of
conciseness when mentioning “RASP answer sets” of an r-program P we mean
answer sets in terms of the RASP semantics, while when mentioning “classical
answer sets” of the adapted program P ′ we refer to answer sets in the usual
answer set semantics obtained by considering amount-atoms as plain atoms.

Below we state that a classical answer set M of the adapted program is
admissible if the sum of the resources that have been used does not exceed
the sum of the resources that were available. Notice that for each resource
predicate q, the available quantity ta is obtained by summing all amounts of
atoms of the form q:a (that in the adapted program are found in the head of
rules), while the total consumed quantity is obtained by summing all amounts
of their standardized apart versions (that in the adapted program are found in
the body of rules).

Definition 5.3 Let P be a (ground) r-program and P ′ the adapted program P ′

for P . A classical answer set M of P ′ is admissible if

∀q ∈ τR
( ∑

{[ a | q:a ∈ M ]}) − (∑
{[ a | qj :a ∈ M for some j ]}) > 0

I.e., if the resource balance relative to M is non-negative.

Theorem 5.2 Let P be a (ground) r-program and P ′ the adapted program P ′

for P . Given a set M of atoms, checking whether M is an admissible answer
set of P ′ can be done in polynomial time.

In fact, as checking whether M is an answer set of P ′ can be done in poly-
nomial time and implies examining all atoms in P ′: then, the resource balance
can be computed and checked with the same time complexity.

We now have to formally state the relationship between RASP answer sets
of program P and classical answer sets of the admissible program P ′ for P . As
seen in Definition 3.1 and Definition 3.2, an interpretation and an answer set
of a RASP program is defined as a couple 〈I, µ〉 where I takes care of program
atoms, and µ : τR → SP is a function which assigns quantities to all occurrences
of resource symbols.

Therefore, given an admissible answer set M of the adapted program P ′ for
RASP ground program P , we have to identify in M the two components. The
particular set I obtained from M is identified as the subset of M including the
program-atoms only, obtained by removing from M all the amount-atoms.

Definition 5.4 Let M be an admissible answer set of the adapted program P ′

for RASP ground program P . Let H be the set of amount-atoms occurring in
P ′. We let P(M) = M \H.

The particular quantities-assignment function obtained from M is identified
by collecting the quantities associated to amount-atoms occurring in rules which
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are fired in M , i.e., such that the head is in M and the body literals are satisfied
in M . By the definition of SP (cf., (1), page 10), the global sum (considering
the entire P ) of all the quantities assigned to a resource symbol must be non-
negative: notice that this is ensured by the definition of admissible answer set.

Definition 5.5 Let M be a classical answer set of an admissible adapted pro-
gram P ′ for RASP ground program P . Let γ1, ..., γk be the r-rules in P ′ which
are satisfied in M (i.e., all literals in both their head and their body are true
w.r.t. M). We construct ν(M) : τR → SP as follows: for each resource symbol
q and 1 6 r 6 k we let ν(M)(q)(γr) = {[κ(a),−κ(a1), . . . ,−κ(as) ]} where q:a is
the occurrence of q in the head of γr and any of the qr:aw’s, w 6 s is the s-th
occurrence of one of its standardized-apart versions in the body, with and s > 0.
For all other r-rules, for any resource symbol q we let ν(M)(q)(γv) = ∅
In the above definition of ν(M)(q)(γr), κ(a) is (possibly) missing if q does not
occur in the head of γr, while the −κ(aw)’s are (possibly) missing if there is no
occurrence of a standardized apart version of q in the body of γr.

We are now able to state the desired result.

Theorem 5.3 〈I, µ〉 is a RASP answer set of a ground r-program P iff I =
P(M) and µ = ν(M) where M is an admissible answer set of the adapted
program P ′ for P .

Proof. Let M be an admissible answer set of the adapted program P ′ for
P . As M is a classical answer set of P ′, the first condition of the definition of
a RASP answer set given in Definition 3.2 is fulfilled by the construction of µ
= ν(M) where for any r-rule γr ν(M)(q)(γr) is non-empty only if this r-rule is
satisfied w.r.t. M . Then, a rule which is satisfied w.r.t. M will be fired w.r.t. I.
As M is a classical answer set of P ′, it satisfies all the rules in γ̂ by definition,
as on the one hand it satisfies all literals occurring in r-rules that are satisfied,
i.e., fired, and on the other hand it satisfies all program rules in P ′, which are
the same as in P . Therefore, the second condition of the definition of a RASP
answer set given in Definition 3.2 is also fulfilled and hence 〈I, µ〉 is a RASP
answer set of P .

Let 〈I, µ〉 be a RASP answer set of a ground r-program P . Notice that, by
the definition of a RASP answer set, µ will allocate to each rule γ in P either
the empty set (i.e., no resources) or exactly the required quantities (the ones
that occur in the rule, as P here is a ground program. By the second item of
Definition 3.2, I is an answer set of the subprogram of P including program rules
only, and satisfies (as expressed in the definition of γ̂) the program literals of
those r-rules that are fired, i.e., those where µ allocates the required quantities.
We can now construct M by first letting M = I. Then, we add to M all
amount-atoms obtained by reverting µ. I.e., for each fired rule γj in P with an
amount-atom in the head, we add to M this amount-atom q:a and for each fired
rule γj in P with an amount-atom in the body, we add to M the standardized
apart amount-atom qj :a. Then, by construction, M is an answer set of the
subprogram of P ′ consisting of the program rules and it satisfies the program
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literals occurring in r-rules which are fired in the given RASP answer set. It also
includes the (amount) atom in their head and all the amount-atoms occurring
in their body. Therefore, M is a classical answer set of P ′. 2

From the above results we can conclude the following, similarly to plain
ASP:

Theorem 5.4 The problem of deciding whether there exists an answer set of a
ground r-program P is NP-complete.

In fact, one has to guess a set of atoms among those occurring in the adapted
program P ′ for P , and then check whether it is an admissible answer set for P ′.
(Notice that, by definition, an ASP program is a RASP program.) Consequently,
again similarly to plain ASP, we can state the following:

Theorem 5.5 Given atom A occurring in an r-program P , the problem of de-
ciding whether there exists an answer set of P containing A is NP-complete.

6 Extending the basic framework

6.1 Multiple firing of resource-rules.

Let us consider an r-rule that produces a resource (in a certain amount). If
a sufficient quantity of the resources required by that r-rule are available, the
resulting amount of resource can be in principle produced several times. We
introduce the possibility of declaratively specifying whether an r-rule can (or
must) be “fired” more than once, and how many times.

To this aim, let us enrich the RASP language.

Definition 6.1 Multiply-fireable r-rules γ are of the form

Idx : H ← B1, . . . , Bk. (14)

where H and the Bi are as before (cf., Definition 2.1), and Idx is of the form
[N1,1-N1,2, . . . , Nh,1-Nh,2], with h > 1, and each Nj,` is either a variable or a
positive integer number.

Intuitively, in any ground instance of (14) when all the Nj,` s are integers, Idx
denotes the union of h (possibly void) intervals in N+ = N \ {0}. It is intended
to restrain the (finite) number of times the r-rule can be used: such a number
must be in Idx or the r-rule cannot be used at all. Definition 6.1 admits that
each Nj,` is a variable for non-ground r-rules. Then, after grounding, each
Nj,` has to be instantiated to a positive integer. Notice that, if in an instance
of (14) Idx becomes instantiated to [1-1], we obtain an r-rule as introduced in
Section 2. (As usual, a pair Nj,1-Nj,2 denotes a void interval whenever, possibly
after instantiation, either Nj,1 or Nj,2 is not a positive integer, or it holds that
Nj,2 < Nj,1.)
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Example 6.1 The following r-rule γ′′1 specifies that we can produce a number
n of cakes such that either 2 6 n 6 4 or 7 6 n 6 7 (or no cakes, if the r-rule is
not fired at all):

γ′′1 : [2-4, 7-7]: cake:1 ← egg :3,flour :3, sugar :3.

The rule γ′′1 is an “iterable” version of rule γ′1 of Example 3.5. Each firing
of a rule may consume/produce resources in the indicated amounts. Clearly,
repeated firings can occur provided enough resources are available to sustain
all firings. In the example we can produce more cakes, but only if sufficient
quantities of the ingredients are available (for instance, two firings produce two
cakes and consume 6 eggs, etc.).

A piece of notation: we will not write the list Idx when all Nj,` s are intended
to be the constant 1 (meaning that at most one use of the rule is admitted).
Without loss of generality, for simplicity, in what follows we always assume
h = 1 in rules of the form (14). The treatment of the general case is essentially
the same.

How many firings will be actually performed? We will introduce in Section 7
a manner of controlling the number of firings by imposing preferences/policies
in resource consumption. As regards the previous example, we might wish to
produce as many cakes as possible. Or else, we might prefer to produce only
the minimum number of cakes that we are actually forced to prepare because
they are explicitly required (for instance, by r-rules in other parts of the pro-
gram). In absence of a specific policy, a RASP-solver will propose all admissible
possibilities as alternative answer sets of the r-program (i.e., corresponding to
different resource allocations).

Remark 6.1 Notice that, similarly to what was done in Example 6.1 for γ′1, it
is possible to introduce an “iterable” version of the rule γ1, as follows:

γ′′′1 : [1-3]: have cake ← egg :3,flour :3, sugar :3.

In this case, since the head of the rule does not contain amount-atoms, multiple
firings will result in making true the program atom have cake —just as a single
firing would do— and in repeatedly consuming more resources than needed.

To deal with multiple fireable rules in the semantics, it suffices to modify
the definition of r-interpretation as follows (cf., Definition 3.1 and 3.2): an r-
interpretation for a program P is a triple

I = 〈I, µ, ξ〉

where I and µ are as before, while ξ is a mapping ξ : P → N that assigns
to each (fired) rule the number of its firings. By little abuse of notation, we
consider ξ to be defined also for program-rules and r-facts. For these kinds of
r-rules we assume the interval [N1-N2] = [1-1] as implicitly specified in the rule
definition, as constraint on the number of firings.
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Clearly, a necessary condition for an r-interpretation to be an answer set, is
that for each fired rule γ ∈ P we have N1,1 6 ξ(γ) 6 N1,2.

In view of this notion of r-interpretation, the definition of answer set is
obtained from Definition 3.2 by replacing condition (3) with the following one:10

(
∀ q ∈ τR

(
µ(q)(γ) = ∅)

)
∨

(
∀ q ∈ τR

(
µ(q)(γ) = ξ(γ)·Alloc(q, γ)

) ∧
(
N1,1 6 ξ(γ) 6 N1,2

))
.

where, as for (3) in Definition 3.2, the two disjunct correspond to the cases: a) γ
is not fired; and b) γ is fired ξ(γ) times. In the latter case, for each resource
symbol q, each firing uses the amounts specified by Alloc(q, γ).

Let us consider a sligthly modified version of the r-program Pab of Exam-
ple 3.4.

Example 6.2 Let P ′ab be constituted of these r-rules:

γ′a : Idxa : q:2 ← q:1.
γ′b : Idx b : q:1 ← q:2.

where Idxa and Idx b denote sets of integers as explained earlier. I.e., the r-
rule γ′a can be repeatedly fired any (finite) number na of times, provided na ∈
Idxa∪{0} (and similarly for γ′b, provided some further amount of the resource q
is available, cf., Example 3.4). Hence, the answer sets of P ′ab are of the form I =
〈I, µ, ξ〉 with I = ∅, µ(q)(γa) = ξ(γ′a)·{[ 2,−1 ]}, µ(q)(γb) = ξ(γ′b)·{[ 1,−2 ]},
ξ(γ′a) ∈ Idxa ∪ {0}, ξ(γ′b) ∈ Idx b ∪ {0}, and such that ξ(γ′a)− ξ(γ′b) > 0. The
overall balance for the resource q is ϕ(q) = (2− 1)ξ(γ′a) + (1− 2)ξ(γ′b).

6.2 Negative amount-atoms.

A negative amount-atom is of the form - q:a, where q:a is an amount-atom.
Negative amount-atoms can occur both in the head and in the body of an r-
rule. When such a rule is fired, a negative amount-atom occurring in the body
implies the consumption of −κ(a) units of resource q. In general, as regards the
global resource balance, a negative amount-atom - q:a of the body (resp., head)
can be interpreted as a (positive) amount-atom q:a occurring in the head (resp.,
body). This actually means that an amount κ(a) of resource q is produced
instead of consumed. From the conceptual point of view, negative amount-
atoms could help in emphasizing/expressing that some resources that are not
intended to be the main product of a production process, but are seen as a
secondary (possibly undesirable) effect of it. Hence, an intuitive reading can be
that the amount κ(a) of resource q is a byproduct of the application of the rule.
A dual argument applies to negative amount-atoms in head of r-rules.

The easiest manner of interpreting negative amount-atoms is through the
inverse function on Z. Formally, it suffices to modify the definition of Alloc(q, γ)

10Given a multiset S and n ∈ N, we are denoting by n·S the multiset {[ n·s | s ∈ S ]}.
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(cf., (2) in Definition 3.2) as follows:

Alloc(q, γ) = {[ v ∈ Z | v = −κ(a) for q:a in the body of γ
or v = κ(a) for q:a in the head of γ
or v = −κ(a) for - q:a in the head of γ
or v = κ(a) for - q:a in the body of γ ]}

This use of the inverse function imposes a duality between consumption and
production of resources.

Another use of negative amount-atoms explicitly relies on the dual roles
played by consumed and produced amounts. There might be situations in which
an amount of resource may be either produced or consumed, depending on some
condition to be evaluated, as the following simple toy-example shows.

Example 6.3 Immagine a (very simplified) situation in which a trader believes
that a stock’s price will increase. Hence (s)he decides to buy the right to purchase
the stock rather than simply buying the stock now. In other words, (s)he buys a
stock option instead of real shares. In this way, (s)he has no obligation to buy
the stock, but only the right to do so (until the expiration date of the option).
In particular, if the stock’s price at expiration date is above the exercise price
by more than the premium paid (the price of the operation), then (s)he will
profit. Otherwise, if the stock’s price at expiration is lower than the exercise
price, (s)he will let the call-contract expire worthless, and only lose the amount
of the premium. The following r-rule encodes a situation in which 100 shares
are involved (we omit the definition of the predicates stock price, exercise price,
and premium, and assume all prices being expressed as integer numbers):

dollar :D ← stock price(S), exercise price(E), premium(R),
share:100, D = 100 ∗max (0, E − S)−R.

Note that the number of dollars the trader obtains might be negative, representing
a loss instead of a real profit.

6.3 Constraints on global resource balances.

In the framework introduced so far, one can easily express constraints on the
consumption/production of amounts of resources. For instance, assume that
an amount-atom q:X (with X ∈ V) occurs in an r-rule γ and that the firing
of γ should be avoided for particular amounts of q. This can be ensured by
using program-literals in the body of γ that inhibit the firing of γ whenever X
assumes such values (as a consequence of grounding). Constraints of this kind
are, in a sense, local to the specific rule being considered.

It is easy to extend the basic framework to allow the assertion of constraints
on the global resource balance. We describe now two simple forms of such
global constraints. The (qualified) fact leaveAtLeast :q:a where q:a is a ground
amount-atom, can be used to weed out all models in which an amount of q
smaller than κ(a) is left unused. (Notice that, for a given resource-symbol q, it
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makes little sense to impose more than one constraint of this kind. It suffices,
in fact, to consider the most restrictive one.) A similar constraint is imposed
through the fact leaveAtMost : q:a. In this case, in each answer set no more
than κ(a) units of q can be left unused.

For a resource q, in order to fulfill the constraints leaveAtLeast :q:aq and
leaveAtMost : q:bq, we filter the potential r-interpretations for an r-program P
by refining the definition of the mapping µ (cf., (1), page 10). In particular, we
restrain its codomain SP as follows:

µ : τR →
{

F ∈ (FM(Z)
)P | κ(aq) 6

∑ ( ⋃

γ∈P

F (γ)
)

6 κ(bq)
}

Similarly, other constraint imposing different requirements on the global re-
source balance can be dealt with.

6.4 Costs for rule firings.

In modeling processes that consume/produce resources, it is sometimes useful
to associate costs to rule firings. In RASP this can be easily done by introducing
specific resource-symbols in the r-rules. Nevertheless, we propose here a simple
extension of the language that avoids the use of such an ‘ad hoc’ approach. If
γ is an r-rule and C is an amount-symbol, then a writing of the form:

C : γ

states that C represents the cost of each firing of the rule γ. If C is a variable,
then it has to occur in a program atom of the body of γ and after grounding it
has to be instantiated to an amount-symbol.

Example 6.4 The “cost” can be understood in different ways. In the follow-
ing fragment of r-program each firing of the first rule has a cost consisting
in the amount of time that we spend in the preparation of one cake. Such
a cost is determined by some other rules. In this case, the atoms of the form
needed time(Num, T ) determine the time needed to make a cake when Num per-
sons help the cook. The second rule gives the number of helpers in the kitchen,
by using an aggregate literal.

Provided enough resources are available, the firing of the first rule can be
iterated from one to three times. Consequently, we have to spend some time
(how much depending on the number of helpers) for each cake we make.
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Time:[1-3]: cake:1 ← egg :3,flour :3, sugar :3,
needed time(Helpers,Time),
helpers(Helpers).

helpers(N) ← N = count{Person : at home(Person)},
number(N).

needed time(0, 45). % no one helps, I cook by myself !
needed time(N,Time) ← N > 0, N < 3,

Time = 45− (N ∗ 10).
needed time(N, 25) ← N > 2. % too many cooks do not help!
number(0). . . . number(5).
at home(X) ← . . .

The following variant of the first rule illustrates how to enable/disable the
firing of a rule, depending on the cost of its (single) firing.

Time:[1-3]: cake:1 ← egg :3,flour :3, sugar :3,
have free time(Time),
needed time(Helpers,Time),
helpers(Helpers).

In this case the truth of a fact of the form have free time(·) (to be defined in
other parts of the program) establishes whether the cost can be paid or not.

Depending on which rules are fired, we can associate costs to answer sets.
Hence, it is possible to design specific cost-based criteria to impose preferences
among answer sets. Selection of preferred solutions could, for instance, be imple-
mented by exploiting optimization features such as those offered, for example,
by smodels [55].

There is a relationship with the approach of [53] where, in the presence
of explicit negation, there may be conflicting rules, and different answer sets
correspond to one rule defeating the other one or vice versa. Defeating a rule
may have a cost, and “preferred” answer sets are those which are minimal
w.r.t. the sum of all costs paid. The sense is that defeating more “critical” rules
has a higher cost. Then, while in our approach one pays a cost for firing a rule,
in [53] one pays a cost for firing a rule while defeating, i.e. not firing, another
one. Therefore, the two approaches are, in a sense, complementary: for each
answer set, one might consider the couple of both cost evaluations and choose
preferred ones according to some criterion, possibly tailored to the application
at hand.

7 Budget Policies

As we have seen, an answer set for an r-program is constituted of a set of (true)
program-atoms I and a mapping µ establishing the amounts for each consump-
tion/production of resources. There might be the case that different answer
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sets agree on I but involve different mappings. This is, fixed set I, more than
one mapping might satisfy the conditions expressed in Definition 3.2. In such a
situation, it could be valuable to apply some criteria to filter the collection of all
possible answer sets. In particular, different policies could be adopted in select-
ing a specific strategy in firing the r-rules (i.e., for the consumption/production
of resources). We identify three basic possibilities, among many (for the sake of
simplicity, let us focus on ground programs):

Thrifty. An r-rule γ is fired only if this is forced. (For instance, because the
truth of a program-atom occurring as head of γ is required by effect of
other parts of the program.)

Prodigal. Whenever an r-rule γ can be fired, it must be fired.

Optional. This is the most general policy and it admits all the solutions ob-
tained by the previous policies. Different resource allocations can enable
the firing of different rules, possibly in antithetic manners. Moreover,
enabled rules might be not necessarily fired.

Example 7.1 Recall the program P2 of Example 3.5, and substitute the r-fact
γ3 with the r-fact egg :7. Four potential solutions are: make none, one, or both
desserts. The Thrifty policy selects the answer set in which no dessert is made,
since no firing of rules is forced. The Prodigal policy selects the answer set in
which both desserts are made (this is possible because enough ingredients are
available for both recipes). Using the Optional policy all of the four possibilities
are admissible.

The three policies can be combined by choosing one of them for each single
rule of the program. We explicitly introduce now this mixed strategy. Since it
encompasses all the other ones, it will be used to provide a model-based semantic
characterization of all policies.

Mixed. Partition the program P in three mutually disjoint (possibly empty)
sets of rules: P = Pp∪Pt∪Po. Then, apply the policies Prodigal, Thrifty,
and Optional, to the rules in Pp, Pt, and Po, respectively.

To characterize the Mixed policy (which has the others as particular cases),
consider a partial order on the collection of mappings µ. Such an order can be
directly induced by a partial order v on FM(Q) simply defined as:

∀m,m1 ∈ FM(Q)
(
m v m1 ↔ (m = ∅ ∨m1 6= ∅)).

Consequently, a partial order v′ on SP can be so defined:

∀F1, F2 ∈ SP

(
F1 v′ F2 ↔

((∀ γ ∈ Pp (F1(γ) v F2(γ))
) ∧

(∀ γ ∈ Pt (F2(γ) v F1(γ))
)))

.
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Intuitively, by this definition, given two allocations F1, F2 of amounts to the
rules in P , F1 v′ F2 holds if it is not the case that F2 allocates some amount
to a rule γ ∈ Pp while F1 does not (and vice versa for rules in Pt).
Finally, a partial order v′′ on the collection of mappings is definable as follows:

∀µ1, µ2 ∈ (SP )τR
(
µ1 v′′ µ2 ↔ ∀ q ∈ τR (µ1(q) v′ µ2(q))

)
.

Given an r-program P , consider the collection of those answer sets 〈I, µ〉 of
P which agree on I. The adoption of the policies corresponds to focusing on
those answer sets that are maximal w.r.t. the order v′′.

Notice that, for a given (ground) r-program, by Definition 3.2, fixing v as
above implies that the order v′′ does not distinguish among answer sets that
fire the same set of rules a different number of times (i.e., v′′ only takes into
account whether a rule is fired or not, regardless of the number of the firings).
A different choice for the order v, viable for instance in presence of multiple
firings, could be: ∀m1,m2 ∈ FM(Q) (m1 v m2 ↔

∑
(m1) 6

∑
(m2)).

Example 7.2 Consider a scenario11 in which we have to produce an amount
of electric power by means of different power stations. We can use a solar
photovoltaic power plant capable of generating up to 10MW, depending on the
percentage of solar irradiation that hits the solar cells. Alternatively, we can
burn oil or coal in two thermoelectric power plants. One of them produces 5MW
from 1 ton of oil; the other produces 3MW from 1 ton of coal. By structural
limits of the plants, we cannot burn more than 9 tons of oil (resp., 7 tons of
coal). Unfortunately, both fossil fueled power plants produce CO2, which has to
be limited as much as possible. Moreover, part of the coal (at most 15 tons) can
be stored instead of burned. The situation can be represented by this program:

megaWatt :E ← sunnyDay , solar irradiation(P ),
E = (10 ∗ P )/100.

[1-9]: megaWatt :5, co2 :1 ← oil :1.
[1-7]: megaWatt :3, co2 :2 ← coal :1.

leaveAtMost :coal :15.

We want to apply the Prodigal policy for the first rule, because producing energy
from sun irradiation does not produce CO2, and the Thrifty policy for the other
rules. Here is a possible instance of the problem to be solved, corresponding to
a sunny day with the 80% of solar radiation reaching the solar plant. We also
assume the availability of 40 tons of oil and 20 tons of coal. We have to produce
between 40 and 50MW of power.

oil :40. coal :20.
sunnyDay . solar irradiation(80).
leaveAtLeast :megaWatt :40. leaveAtMost :megaWatt :50.

11Very simplified and with little intent of representing a realistic situation.
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8 Implementing ground RASP

In this section, we refine the ASP encoding of ground r-programs described in
Section 4 by taking into account all extensions of the RASP framework described
in Section 6. We continue focusing on the ground case only. This constitute a
first step towards the realization of a concrete implementation of RASP.

8.1 Multiple firings

In order to deal with multiply fireable r-rules (cf., Section 6.1), we have to
slightly modify the encoding of r-rules described in Section 4.2.

In particular, given an r-rule γ of the form (14):

Idx : H ← B1, . . . , Bk.

the following fragment of ASP code “declares” a counter used to denote the
number of firings of γ. Clearly, its value is restrained considering the admitted
values as specified by the collection of intervals Idx .

firings(nγ , i). for each integer i in Idx
notcounter(nγ , C) ← counter(nγ , D), C 6= D.
counter(nγ , C) ← firings(nγ , C), fired(nγ), not notcounter(nγ , C).
← not fired(nγ), counter(nγ , C).

Notice that counter encodes the mapping ξ introduced as part of the r-
interpretation (cf., Definition 3.1).

To take into account of repeated firings of r-rules in evaluating resource
balances, the core inference engine has to be slightly modified as follows:

fired(Rule) ← not notfired(Rule), r rule(Rule).
notfired(Rule) ← not fired(Rule), r rule(Rule).
use(Rule, I,Res,Count ∗Amount) ← fired(Rule),

a atom(Rule, I,Res,Amount),
counter(Rule,Count).

fired(Rule) ← use(Rule, I,Res,CA).
notfired(Rule) ← not use(Rule, I,Res,CA).

res symb(Res) ← a atom(Rule, I,Res,Amount).
balance(Q,N) ← N = sum{A : use(Rule, I,Q, A)}, res symb(Q).
← balance(Q,N), N < 0, res symb(Q).

where the last three rules impose the constraint (13) on the global balance of
resources. Note that the predicate balance encodes the component ϕ of the
answer set of r-programs (see page 12).

8.2 Rendering of budget policies.

The translation described so far implements the Optional policy. For the Prodi-
gal policy we add constraints that weed out the answer sets in which an r-rule

35



could be fired but it is not. To this aim, these rules are added to the inference
engine:

extra need(Rule,Res,Need) ← r rule(Rule), res symb(Res),
Need = sum{A : a atom(Rule, I,Res, A)}.

enbld(Rule,Res) ← balance(Res,Available),
extra need(Rule,Res,Need),
Available + Need > 0.

where an atom enbld(Rule,Res) encodes the fact that the amount of the resource
Res needed to fire the r-rule Rule is available in the answer set at hand.

To determine if a specific r-rule γ is fireable once more, we have to verify the
truth of tha atom enbld(nγ ,Res) for each of the resources involved in γ. This
condition is encoded through the atom enabled(Rule), defined as follows:

enabled(nγ) ← not fired(nγ), L1, . . . , Ln,
enbld(nγ , q1), . . . , enbld(nγ , qk).

enabled(nγ) ← counter(nγ , C), firings(nγ ,More), More > C,
L1, . . . , Ln, enbld(nγ , q1), . . . , enbld(nγ , qk).

where L1, . . . , Ln are the program literals in the body of γ and q1:a1, . . . , qk:ak

are all the amount-atoms in γ. Instances of these rules have to be added to
the translation of each r-rule. In particular, the first rule handles the situation
of a fireable r-rule that has not been fired at all. The second rule determines
whether an r-rule, already fired C times, could have been fired once more.

The following rule (actually, an ASP constraint added to the inference en-
gine) imposes that it is not the case that a fireable r-rule has not been fired.
This enforces the Prodigal policy.

← enabled(Rule).

An analogous treatment can be designed for other policies, such as the
Thrifty policy, and hence for the Mixed one (to this aim it suffices to parti-
tion the r-rules of the program).

It is also easy to single-out an answer set corresponding to maximal numbers
of firings by using the maximize statement commonly offered by ASP-solvers
(such as, with sligthly different syntax, smodels and clasp). For example, in a
syntax akin to the one accepted by the grounder gringo [25] (and by using val
as auxiliary domain predicate), the following statement maximizes the sum of
the values C occurring in atoms counter(G, C), where G is any r-rule name:

maximize[counter(G,C) : r rule(G) : val(C) = C]

A solution of this kind also applies in dealing with costs of r-rules: in the above
fragment of code each firing has unit cost. For a more general approach it
suffices to multiply the number of firings of each r-rule by its cost.
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8.3 A concrete implementation

In implementing RASP one has to render the underlying group (e.g., Z, Q,. . . ,
see Remark 3.1), in particular, all needed operations and functions (namely,
sum, inversion, comparison, etc.), as well as the mapping κ. All these ingredients
could be realized in at least two ways (not necessarily antithetic). On the one
hand, since, as mentioned, a finite portion of Q enters into play in a ground
program, we can encode it and the corresponding restrictions of all the needed
operations as fragments of ASP code (e.g., by explicit tabulation). Alternatively,
one could profit from some form of built-in or external source of computation.
Examples of features supporting external evaluation in ASP-solvers are the user-
defined functions and the API of lparse [52], external evaluation in dlv [22, 10],
or even the integration with other programming paradigms and tools [13].

Once the underlying group has been instrumented, negative amount-atoms
- q:a can be treated by exploiting the inverse function of the group (in conjunc-
tion with the rendering of κ, cf., Section 6.2).

The above-outlined translation from ground RASP programs into ASP has
been implemented in a stand alone tool, named raspberry. Raspberry takes as
input a file containing a ground RASP program S and the product T (S) of the
translation can be processed by an ASP-solver. The answer sets found by the
ASP solver encode the solutions of the RASP problem in the way explained in
Section 4.2.

At the time of writing a first prototypical release of raspberry has
been implemented and is available in http://www.dipmat.unipg.it/~formis/
raspberry. Such a prototype is still under development, but covers many of
the features described in this paper. Nevertheless, some of them, such as the
handling of costs of r-rule firing and the management of constraint on global
balance, are still to be implemented. Moreover, in this first release of raspberry,
we fix the group Q to be the set Z of integer numbers. This is because com-
monly available ASP solvers offer operations on integers as built-in features.
Refinements of the tool able to deal with other groups are a theme for future
work.

Being raspberry in a preliminary and experimental stage of development,
besides the translation described in this paper we implemented a few slightly
different translations (in particular, the one described in [14], which differs in
several points from the one treated in this paper), to provide output suitable to
be processed by front-ends such as lparse and gringo (in turn, their output can
be processed by smodels or clasp [5]). The translations mainly differ in the use
of aggregate function and/or weight literals to implement some portions of the
ASP encoding. Moreover, since some of the existing ASP solver do not treat
negative integer values, raspberry provides a slightly more complex translation
in which both consumed and produced amounts are represented by positive
integers.

We conclude this section by reporting on the output produced by smodels
for a short example.
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Example 8.1 Assembling different PCs requires different sets of components
(motherboard, processor(s), ram modules, fan(s), hard disk(s), raid controller,
etc.). In particular, the two r-rules below indicate the different requirements for
a PC to be used as a server or as a simple desktop, resp. Moreover, they impose
some bounds on the number of PCs that are assembled.

cpu:15.
hd :25.
fan:13.
raid :4.
motherboard :7.
ram module:20.

[1-3] : pc(server):1 ← cpu:2, hd :6, fan:3, raid :1,
motherboard :1, ram module:4.

[2-6] : pc(desk):1 ← cpu:1, hd :2, fan:1,
motherboard :1, ram module:2.

By translation into ASP, under the Prodigal policy, we obtain an ASP program
having the following answer sets (the two r-rules are named g1 and g2, respec-
tively):

S1 = {balance(pc(server), 1), balance(pc(desk), 6), balance(cpu, 7),
balance(hd , 7), balance(fan, 4), balance(raid , 3),
balance(motherboard , 0), balance(ram module, 4),
counter(g1, 1), counter(g2, 6),fired(g2),fired(g1), . . .}

S2 = {balance(pc(server), 3), balance(pc(desk), 3), balance(cpu, 6),
balance(hd , 1), balance(fan, 1), balance(raid , 1),
balance(motherboard , 1), balance(ram module, 2),
counter(g1, 3), counter(g2, 3),fired(g2),fired(g1), . . .}

S3 = {balance(pc(server), 2), balance(pc(desk), 5), balance(cpu, 6),
balance(hd , 3), balance(fan, 2), balance(raid , 2),
balance(motherboard , 0), balance(ram module, 2),
counter(g1, 2), counter(g2, 5),fired(g2),fired(g1), . . .}

In the second solution, for instance, three desktops and three servers are pro-
duced. Even if we are not run out of any component, the remaining ones are
not enough to compose another PC.

9 Related Work

A number of Prolog-like logic programming languages based on linear logic [48]
have been proposed, such as, for instance, LO [2], LinLog [1], Lolli [32, 33],
ACL [37, 38], Lygon [30, 31], Forum [34, 49], and Linear LF [11]. Most early
works on linear logic programming had been based on Horn clauses and SLD-
resolution (Prolog’s execution model, [43]). However, extending this traditional
procedural semantics to new logic programming languages based on richer logics
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rather than on Horn clauses has revealed to be a hard task: in fact, alternative
proof-theoretical approaches have often been adopted. A widely-used design
principle, called uniform proofs has been proposed by Miller et al. [50]. This
design principle has required correspondent extensions to the standard Prolog
abstract machine [59, 8, 7].

The programming style which is proper of these languages allows one to
define and possibly generate a fact/rule as a resource that can be used only
once. E.g., for finding a path in a graph the resources that need to be generated
and then consumed are the vertices and edges of the graph. The reasoning is of
the kind: “Assuming I have the following vertices and edges, look for a path”.

The difference from RASP lies on the one hand on the underlying compu-
tational model: possible different uses of a resource and non-determinism in
general are represented in RASP by different answer sets, rather than explored
via backtracking. On the other hand, a resource in RASP is not a logical state-
ment, but rather an atom which is defined via a logical statement. Thus, the
program for finding a path in a graph in RASP would be written exactly like
in standard ASP, unless one would like to find multiple paths: in this case, a
fact like edge(x, y):3 might state e.g., that the edge from x to y is allowed to
occur in at most three paths, or more generally is allowed to be exploited by
at most three procedures. A peculiar feature of RASP, which is not given a
particular emphasis in linear logic programming languages, is that the quantity
of a resource that is left unused by a certain process can be then exploited by
some other process.

Another approach which exploits (a variant of) linear logic in order to equip
logic programming with some notion of resources and reason about them is [54]
which is meant to be a resource programming language (RPL). An operational
semantics of RPL is given in terms of deduction rules: storage operators and re-
source transformation rules model availability and transformation of resources,
respectively. The deduction proceeds by applying these rules in a Prolog-like
goal-directed fashion. A notion of step-by-step evolution of the state of the
world is implicit in the rule application mechanism and RPL is shown expres-
sive enough to model Petri nets.

To deal with resources, [35] proposes a concurrent Prolog inference engine
for clauses enriched with pre/post-conditions on resource availability. Resources
are represented by multisets of atoms and terms (non-unit amounts of a resource
are rendered through multiple copies of the same atom/term).

Both in [35] and [54] the operational semantics of the proposed frameworks
can be given in terms of (refinements of) the SLD-procedure and (default) nega-
tion is not handled. Moreover, both programming languages of [54] and [35] offer
little separation between the resource/amounts representation symbols and pro-
gram symbols: resources and amounts are represented by program terms. The
distinction is left to programmer’s discipline.

A valuable feature of RPL is the presence of a temporal dimension (which
is implicit in the succession of rule applications). This makes RPL closer to
planners than RASP. The introduction of time in RASP, would, in principle,
move the system towards the action description languages. This could represent
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an interesting topic for future work and comparison.
A form of resource treatment is described in [57, 56] to model product config-

uration problems. This framework is based on Weight Constraint Rules, which
is a well-known construct encompassing default negation and disjunctive choices
introduced in Answer Set Programming in [51]. Weight Constraint Rules have
a wide applicability in many applications and are able to express costs and
limits on costs, where however they do not express directly resource consump-
tion/production.

Recently, [12] proposed the action description language CARD. Resources
are rendered through multi-valued fluents and the use of resources is implicitly
modeled by the changes in fluents’ values caused by actions’ executions. The ap-
proach emphasizes the use of resources in planning problems and the semantics
is given in terms of transition systems (in the spirit of [28]).

With respect to CARD, in RASP there is a neater distinction between what
is a resource and what is not. Moreover, the arithmetic of amounts is implicitly
handled by RASP’s inference engine. It seems that in CARD these aspects have
to be encoded in the problem specification. However, since CARD is tailored
to model action theories, time and state evolution are easily dealt with.

The approach of [44] is in the context of Horn Logic Programming. It as-
sumes that a derivation may have a cost, and that in a chain of derivations the
respective costs are accumulated. Thus, the approach is suitable for modeling
production and use of items, where however it is assumed that each item can
be produced/used as many times as needed and there is no concept of quantity.
Then, the approach to costs of derivations is quite general and in principle might
profitably be integrated with RASP.

The approach of [53] enhances ASP with explicit negation as it allows rules to
be defeated by competing rules, where defeating a rule has a cost. Then, on the
one hand answer sets exist even when contradictions are present by defeating
one of the contradictory rules, on the other hand each of these answer sets
corresponds to a global cost corresponding to the rules that have been defeated.
The “preferred” answer sets are those that are minimal w.r.t. the cost that they
pay. Also this approach is not in competition w.r.t. RASP, but rather can be
seen as complementary.

Concluding remarks

In this work we have proposed RASP, an extension of ASP that offers the possi-
bility of defining and reasoning about resources with their amounts. Resources
can be produced and consumed by rules’ firings, that can also be multiple,
taking into account various kinds of global constraints on resource consump-
tion/production, costs of rules, as well as policies to customize and filter resource
allocation.

The semantics of resource-amounts relies upon an auxiliary algebraic struc-
ture which models quantities, operations, and relations among them. Plainly,
the most natural choice for such a structure is Z, but the framework easily
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generalizes to Q or to more general groups (cf., Remark 3.1).
The extension RASP can be useful to model easily and directly several kinds

of production processes and planning problems, including configuration prob-
lems. Different allocations of resources correspond to different answer sets. We
have outlined a compilation process that translates RASP specifications into
plain ASP fragments of code. The resulting encoding is completed with a gen-
eral inference engine, to obtain an ASP program that behaves according to
RASP semantics. A prototypical translator from ground RASP into ASP has
been designed. Such a tool implements the (core of the) translation described
in this paper and can be used to produce ASP encodings to be processed by
commonly available grounders, such as lparse and gringo.

An envisaged extension of the framework consists in allowing amounts in
amount-atoms to be described explicitly as intervals or sets of values. Similarly,
explicit expressions or compound resource-terms could be considered. First
steps in this direction are reported in [24].

Interesting lines of research regard the extension of the RASP framework so
to admit, within the r-rules, the specification of preferences on resource usage.
Results in this stream of research can be found in [15, 16, 17].

We intend to investigate about possible reasonable semantics to for the nega-
tion for amount-atoms. Actually, some forms of “negation” can be expressed by
means of the constraints on global resource balance described in Section 6: in
fact, one can express for instance what should not be left. However, more work
is needed in order to understand the possible uses of negation in this framework.

The extension of the ASP framework we described is, to the best of our
knowledge, an original proposal. A practical comparison (on suitable case-
studies) with other frameworks suited for modeling production processes, re-
source management, and quantitative reasoning represents an interesting sub-
ject for future investigations.
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