Enhancing computational power:
DALI child agents generation*

Stefania Costantini Arianna Tocchio

Universi& degli Studi di LAquila
Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L'Aquila - Italy
{stefcost,tocchio }@di.univag.it

Abstract. In this paper we introduce a novel feature of the DALI language: a
DALI agent is now able to activate child agents and to feed them either with a
goal to be reached or a result to be obtained. Each child agent is irdiagen
and can communicate with its father or with other agents. When the child finally
reaches the given goal, it notifies the father. At any point, the latter mssitgy
decide to stop it. Then: (i) each child is aware of the identity of its father; (@hea
child will notify the father about its achievements; (iii) a child can be stopped b
the father; (iv) the father may set a limited amount of time for childrents/a

ities completion. We introduce the mechanisms for children generation and th
corresponding operational semantics, and then present an example.

1 Introduction

Intelligent agents by using their potentialities are alileeast to some extent to over-
come problems such as limited computational resourcesdat@rministic environ-
ment, and insufficient knowledge. When a problem is not nfiyunaulti-agent based,
a sole agent is capable of solving it by taking enough contiouial resources and in-
formation about its environment.

In a lot of problem domains however, the context naturaltjuiees several agents
to take a role in problem-solving or, more generally, reggiithe adoption of a multi-
agent strategy. A multi-agent system is composed of maeliiteracting agents which
are typically capable of cooperating to solve problems #inatbeyond the capabilities
of any individual agent. Building a cooperation strateggas easy: an agent, contrary
to an object, can renounce to cooperate or, as emphasiz&y icah reveal itself an
unreliable collaborator.

So, when an agent accepts the aid of another one, it imgliagsumes a certain
risk degree on its future activity. Can an agent minimize tigk? In some cases the
response to this query is 'yes’. Some kind of problems réugia certain degree of
computational power that a single agent cannot provide eafaded not by invoking
the collaboration of external agents, but by generatintficgents.

* We acknowledge support by tih&ormation Society Technologies programme of the European
Commission, Future and Emerging Technologieder the IST-2001-37004 WASP project.

The difference is relevant: a child agent is reliable andnocamefuse to give as-
sistance. In fact, the basic premise of coordination is ifh@h agent cannot solve an
assigned problem using local resources/expertise, itdeitlompose the problem into
sub-problems and try to find other willing agents with theassary resources/expertise
to solve these sub-problems. By using child agents, thepsoiblems assignment is
solved by a simple message exchange between father andechildthout adopting
a contracting mechanism. Moreover, the possibility togrssbmplex tasks to one or
more child agents allows the father to keep its energies ferstrategic activities. In
particular a father agent, by delegating a time-expensius jo a child, can maintain a
high reactivity degree and respond timely to the changelsaretivironment. This is a
not negligible detail. A limit of this approach is that a ¢hdgent cannot resolve tasks
that require a knowledge degree that the father agent ddgsosses, unless the child
acquires knowledge autonomously from other external &surc

According to the above considerations, we have introduoetthé DALI frame-
work the ability to generate children. An important motigat for this improvement
has been the need for our agents to face not-trivial planmioglems by means of the
invocation of a performant planner, such as for instance mew&r Set solver [7]. The
idea of Answer Set Programming [20] is to represent a givenmdational problem
by means of a logic program whose answer sets correspondutiioss and then use
an answer set solver, e.g., SMODELS or DLV, to find an answefosehis program.
Answer Set Programming has proved to be a strong formalisml&mning [12], and
thus appears suitable for an integration with DALI. As a plag process can require a
significant amount of time to find a solution, the possibifity an agent to assign this
time-expensive activity to its children can constitute @ edlvantage.

Another motivation for generating children is, more gefigr#hat of splitting an
agent goal into subgoals to be delegated to children. Thisiply with the aim of ob-
taining different results by means of different strategées then comparing the various
alternatives and choosing the best ones. The father potheechild with all the infor-
mation useful to find the solution and, optionally, with ancamt of time within which
to resolve the assigned problem.

In this paper, we present the details on the child generatigrability of DALI
agents while the current work to integrate DALI and Answetr ®gramming will be
presented in forthcoming papers. This paper is organizddllasvs: in Section 2 we
introduce the main functionalities of the DALI languageSection 3 we explain briefly
the DALI communication architecture; in Section 4 we preéska Operational Seman-
tics of our language; Section 5 is reserved to outline thielg@neration mechanism
of DALI agents, Section 6 presents the related operatiog@masitics laws, Section 7
shows an example of application. Finally, we conclude tlaiggr with some remarks
and discussion of related work.

2 The DALI language

DALI [3] is an Active Logic Programming language designedtie line of [10] for
executable specification of logical agents. The reactivk @oactive behavior of the

DALI agent is triggered by several kinds of events: extemants, internal, present
and past events. All the events and actions are timestampexs to record when they
occurred.

An external event is a particular stimulus perceived by tpenafrom the environ-
ment. In fact, if we define5 = {s; : to,...,s, : tx} as the set of external stimuli
sy that the agent received from the world during the intefvgltx), where the set of
“external events"FE is a subset of5. In particular, we can define the set of external
events as follows:

Definition 1 (Set of External Events).We define the set of external events perceived
by the agent from timg to timet¢,, as a setF = {e; : t1,...,e, : t,} WwhereE C S.

A single external event; is an atom indicated with a particular postfix in order to
be distinguished from other DALI language events. More igedyg:

Definition 2 (External Event). An external event is syntactically indicated by postfix
FE and it is defined as:

ExtEvent :=<< Atomp >> |seq << Atompg >> where anAtom is a predicate
symbol applied to a sequencetefmsand atermis either a constant or a variable or
a function symbol applied in turn to a sequence of terms.

External events allow an agent to react through a partidirtal of rules, reactive rules,
aimed at interacting with the external environment. Whernvamecomes into the agent
from its “external world”, the agent can perceive it and dedio react. The reaction is
defined by a reactive rule which has in its head that exteneite The special token
:>, used instead af—, indicates that reactive rules performs forward reasaning

Definition 3 (Reactive rule).A reactive rule has the formfoxt Eventg :> Body or
ExtEventig, ..., Ext Event, g :> Body

whereBody ::= seq << Obj >> and

Obj :=<< Actiong >> | << Goalsg >> | << Atom >> |...

The agent remembers to have reacted by converting the ek&arent into gast event
(time-stamped). Operationally, if an incoming externams recognized, i.e., corre-
sponds to the head of a reactive rule, it is added into a ligd&V and consumed
according to the arrival order, unless priorities are djesti

The internal events define a kind of “individuality” of a DAlagent, making it
proactive independently of the environment, of the user @ithe other agents, and
allowing it to manipulate and revise its knowledge. Moregisely:

Definition 4 (Internal Event). An internal event is syntactically indicated by postfix
I: Internal Event ::=<< Atomj >>

The structure of an internal event is composed by two rulés. first one contains
the conditions (knowledge, past events, procedures, tet nust be true so that the
reaction (in the second rule) may happen:

IntEvent : —Conditions

IntEvent; :> Body

whereConditions ::= seq << Obj_cond >> and

Obj_cond ::=<< PastEventp >> | << Atom >> | << Belief >> |...
Moreover,

Body ::= seq << Obj_body >> and

Obj _body ::=<< Actiona >> | << Goalsg >> | << Atom >> |...

Internal events are automatically attempted with a defsetjuency customizable by
means of directives in the initialization file. The user'sedtives can tune several para-
meters: at which frequency the agent must attempt the altexents; how many times
an agent must react to the internal event (forever, oncegtwi.) and when (forever,
when triggering conditions occur, ...); how long the eventstrbe attempted (until
some time, until some terminating conditions, forever).

When an agent perceives an event from the “external worldipets not necessarily
react to it immediately: it has the possibility of reasonatgput the event, before (or
instead of) triggering a reaction. Reasoning also allowsaagiive behavior. In this
situation, the event is called present event and is formdlas follows:

Definition 5 (Present Event).A present event is syntactically indicated by posifix
PresentBvent :=<< Atomy >> |seq << Atompy >>

The syntax of a present event usage is:

Internal Event : — PresentFEvent

Internal Eventy :> Body

whereBody ::= seq << Object >> and

Object ::=<< Actiong >> | << Goalsg >> | << Atom >> |...

Actions are the agent’'s way of affecting the environmengsialy in reaction to
either an external or internal event. An action in DALI carals®d a message sent by an
agent to another one.

Definition 6 (Action). An action is syntactically indicated by postfix
Action :=<< Atoma >> |messages << Atom, Atom >>
Actions take place in the body of rules:

Head : —Body

whereBody ::= seq << Object >> and

Object :=<< Actiong >> | << Goalsg >> | << Atom >> |...

In DALLI, actions may have or not preconditions: in the fornoasse, the actions are
defined by actions rules, in the latter case they are jusbraetioms. An action rule
is just a plain rule, but in order to emphasize that it is edato an action, we have
introduced the new tokerc, thus adopting the following syntax:

Definition 7 (Action rule). An action rule has the form:

Action :< Preconditions

wherePreconditions ::= seq << Object >> and

Object ::=<< PastEventp >> | << Atom >> | << Belief >> |...

Similarly to external and internal events, actions are méed as past actions.

A DALI agent is able to build a plan in order to reach an objextby using internal
events of a particular kind, callgglanning goals A goal has postfixG, and like an
internal event is defined by two rules. The first one is attehpthen the goal is invoked
and activates its subgoals, if any. The second one contaieadiion related to the
reached subgoal. The relevant difference between an @itevent and a planning goal
is that while the former starts being attempted when the taigeborn, the latter is
attempted when invoked by a rule. A DALI agent is also ableddfy if a goal was
reached by using a special kind of atom with a postfiXx\hen the interpreter meets
the construclyoalr, it checks if a past evenjoalp or a fact corresponding to this
predicate exists.

Past events represent the agent’s “memory”, that makepatitato perform future
activities while having experience of previous events, ahis own previous conclu-
sions. Past events are kept for a certain default amounnef that can be modified by
the user through a suitable directive in the initializatiie. A past event is formalized
as follows:

Definition 8 (Past Event).A past event is syntactically indicated by the pogtfix
PastEvent ::=<< Atomp >>

3 DALI Communication Architecture

The DALI communication architecture consists of four levélhe first and last levels
implement the DALI/FIPA communication protocol and a fileer communication, i.e.

a set of rules that decide whether or not receteéd(check level) or send a message
(tell check level). The DALI communication filter is specified byane of meta-level
rules defining the distinguished predicate#f andtold. Whenever a message is re-
ceived, with content pagrimitive(Content,Sendethie DALI interpreter automatically
looks for a correspondintpld rule. If such a rule is found, the interpreter attempts to
provetold(Sender, primitive(Content)). If this goal succeeds, then the message is
accepted, angrimitive(Content)) is added to the set of the external events incoming
into the receiver agent. Otherwise, the message is dista8jenmetrically, the mes-
sages that an agent sends are subjected to a chetdllviales. The second level in-
cludes a meta-reasoning layer, that tries to understansagesontents, possibly based
on ontologies and/or on forms of commonsense reasoningthiittelevel consists of
the DALI interpreter.

4 Operational Semantics

The operational semantics of DALI system [4] is defined bymithy an approach
which is a novelty in the agent world. The novelty in partaouk that we use a formal
dialogue game in order to define thel operational semantics of the DALI interpreter.

Incoming message

DALI INTERNAL
INTERPRETER

Y
TELL CHECK ’
11

Qutcoming message

Fig. 1. DALI communication architecture

Recently, formal dialogue games, which have been studiptilosophy since the time
of Aristotle, have found application as the basis for intéica protocols between au-
tonomous agents [13] [14]. Dialogue games are formal intemas between two or
more participants, in which participants “move* by utteristatements according to
pre-defined rules.

Dialogue game protocols have been proposed for agent teamation, persuasion,
negotiation over scarce resources, consumer purchasadtites and joint delibera-
tion over a course of action is some situation ([11],[1@][[L9]) but, to the best of our
knowledge, they have not been used up to now to give a fornsakrigtion of an agent
language. In our formalization we assume that the DALI jmteter plays a game and
thus makes “moves” not only towards other agents, but alsards itself. By adopt-
ing this approach we explain the behavior of each layer ofatfehitecture and their
interactions. We define a formal dialogue game frameworkfti@ises on the rules of
dialogue, regardless the meaning the agent may place oodingdns uttered. Dialogue
games has been applied successfully in negotiation centedause in these cases is
possible to individuate easily players and moves.

The first question that we faced in order to formalize the afi@nal semantics of
DALI architecture has been in fact: which are the playersahith moves can they
make? We considered that the DALI architecture is compogéddyers and each layer
adopts a specific behavior. A layer can be viewed amk boxwhose behavior is
determined only by moves of other correlated layers anddyydticy. By adopting this
view point, our players are the layers and moves are defimedgh laws and transitions
rules.

A strategy for a player is a set of rules that describe exddly that player should
choose, depending on how the other player has chosen @&readves. The rules of the
operational semantic show how the states of an agent changeding to the applica-

tion of the transition rules. We define a rule as a combinatiostates and laws. Each
law links the rule to the interpreter behavior and is basetherbALI architecture. Our

work demonstrates how solutions from game theory togetlitbra@mputing theories

can be used to publicly specify rules and prove desirablpasties for agent systems.
In order to make it clear what we intend for state, law andsiteon rule, we adopt the

following definitions.

Definition 9 (State of a DALI agent). Let Ag, be the name of a DALI agent. We
define the internal statéS 4, of a DALI agent as the tuple: £, N,I,A,G,T,P >
composed by its sets of events, actions and goals.

Definition 10 (Law). We define a law., as a framework composed by the following
elements:

— name: the name of law;

— locution: the arguments that the law takes;

— preconditions: the preconditions to apply the law;
— meaning: the meaning of the law;

— response: the effects of the applied law;

Definition 11 (Transition rule). A transition rule is described by two pairs and some

laws. If the transition is internal to the same agent, a tiitina rule corresponds to :

< Ag,,< P,IS, Mode >>"" < Ag,. < NewP, NewlS, NewMode >>

Starting from the first pair and by applying the current lawmg obtain the second
pair where some parameters have changed. Each pair is defised Ag,, S44, >,
where Ag, is the name of the agent and the operational stéitg, is the triple <
Pag, . I1Sa4,, Modeag, >. The first argument is the logic program (written in DALI)
of the agent, the second one is the internal state, the thiedie a particular attribute
describing what the interpreter is doingiew P, NewlS and NewM ode indicate,
respectivelyP, IS and M ode updated after applyind.;, ..., L; laws .

A transition rule can also describe how an agent can influentether one. In this
case, we will have:

Li,...,L;
< Agra < PAQ.p?‘[SAQm’MOdeAQm >> —]< Agyv < PAQ?/’ISAQW MOdeAga/ >>
wherex # y

The operational semantics viewed with the eyes of game yheamsforms TOLD
filter into TOLD player, META level into META player, and so amtil TELL filter that
becomes TELL player. Also the DALI internal interpreter bewes a player that plays
with the other structural player and with itself. What will wepect from these players?
Their behavior is surely cooperative because only if alelework together, a DALI
agent will satisfy the user expectations. The players arenaticious because our game
is innocent and does not involve any competition strategy.w& expect each player
to follow deterministically the laws and rules and produaeset of moves admissible.
These moves will influence the other players and will deteethe global game.

When does a player win? The game that an agent plays with @selfwith the
other agents is innocent, so we do not intend define rigoydhsl concept of winner.

Our winner is the player which play with success a specificegdviore precisely, we
intend, after defining the general operational semantigstdve some relevant proper-
ties of DALI language. For us, each property that must be cestnated is a particular
game that a player must face through defined the laws and Allgdayer wins if plays
successfully a game/property proposed. Next sectiongledtribe the ability of DALI
agents to generate children.

5 Child generation capability

A DALI agent is able to activate child agents and to feed thagheewith a goal to be
reached or aresult to be obtained. Each child agent is imdkgpe and can communicate
with its father or with other agents. When the child finallyaees the given goal, it
notifies the father. At any point, the latter may possiblyidedo stop it. This will
mostly happen either after obtaining results, or when time tamount that the father
means to allocate to the child’s task has expired. Then:a@hehild is aware of the
identity of its father; (ii) each child will notify the fathebout its achievements; (iii) a
child can be stopped by the father; (iv) the father may sehadid amount of time for
children’s activities completion.

Apart from that, a child agent is a DALI one, equipped withatsn knowledge
base, directives and communication filter, and can in tusater children. This feature
is relevant for DALI multi-agent system scalability. Froncagnitive point of view, it
allows the father for instance to: compute and then compariews alternative plans
(or intentions in the BDI view); perform hypothetical reagay; create its own local
social setting in the form of a society of agents, each onle igtrole and commitment.
The resulting architecture, useful to DALI agents to geteechildren, is divisible in
three modules, each of which offers specific functionalitiehe first module allows a
father agent to create children, the second one establisbasnection between father
and child, the third one determines the child life time.

5.1 Create children

This first module allows each DALI agent to activate, throwghpecific action, one
or more children. The new generated agent can include, diocpto the fatherly will,
either the knowledge base of the father or a different kndgdebase KB specified at the
generation moment. If the child incorporates the fatheiclpgogram and knowledge,
the action able to create it will be:

— create o (Num_Children), whereNum_Children specifies how many agents the
father intends to generate.

The KB specification implies that the child agent will have #tmowledge and logic
program contained in the specified file:

— creates(NumFigli, K B), where Num_Children has the same meaning speci-
fied above and KB specifies the file name containing the knayeldxse.

For instance, an ageptirty who plays the role of a party organizer, can generate
the following children:

createa (1, c: /kb/cake.txt, ontology-1).
creates(1,c: /kb/ fizz.txt, ontology-2).

Children will be named by defaulparty_childl and party_child2 (childl and
child2 for the father). The filegake.tzt and fizz.txt contain all the activation data
(including knowledge bases and, optionally, ontologies}lie two agents.

After this generation process, a child agent will have alieptialities to be able
itself to generate further children. In other words, eadlddment can become a father
one. A particular mechanism avoids child agents to be gikersame name. The last
step of this module is to check if the activation succeedshi®aim, the father agent
sends a specific message to each child.

DALI agent father

N

DALI childq DALI child » DALI child

KBq KB, KBn

Fig. 2. DALI agent and children

5.2 Connect module

This module provides two functionalities: the first one bkthes the connection be-
tween father and child agents; the second one allows therfdath assign a sub-
goal to its child that, when it reaches its task, advises #thef on its success.
As soon as the child agent becomes active, it receives byaiterf the message:
born(Father_name). Its child keeps in its memory the father name and sends to it
the messagéeiello_dad(Child-name) Starting from the moment in which this hap-
pens, two agents can communicate between them. When the fetiobes the internal
conclusion that it is necessary to assign a goal to a chitgbritls one of the following
messages:

— solve_goal(Goal, Ev, Time): the child has a time limit to resolve its task. The
parameter is necessary because the father must triggéficpeactive rules (in the
child program) to activate the resolution process;

— solve_goal(Goal, Ev): the child agent does not have a fixed amount of time to
return the solution to the father;

The child, as soon as its goal is reached, tells the fatheutfir aconfirmmessage.

5.3 Lifetime module

This third module kills the child agent when its allocateddihas expired. DALI child
agents have a specific internal event that checks from tinientif the current agent
elapsed time has exceeded the value specified at the geneaati In this case, not
only the agent is killed but also its data are erased.

6 Operational semantics of children generation

In this Section we show the operational semantics rulescthiz with children genera-
tion. In particular, the laws are L19-L24 in the context af &9 overall transition rules
[21].

— L19: initialize _child(.) law:
Locution: initialize_child(Logic_program/K B, Ontology)
Preconditions: The agent reaches the conclusion (by an internal event)itthat
needs a child.
Meaning: This law allows an agent to generate a child agent. If either
Logic_program or Ontology are empty, the generated child will fithéhe
parameters of the father, else it takes the specified value.
Response: The agent has a child agent.

— L20: Theactive_child law:
Locution: active_child
Preconditions: The child agent has been initialized.
Meaning: This law activates a child agent. After the activation, tidlccagent
enters the “wait” mode and is ready to receive communicatis from the father.
Father and child can communicate by using the usual DALI pikies.
Response: The child agent is active.

— L21: Theexpired_time_child law:
Locution: expired_time_child
Preconditions: The time assigned from the father to child is expired.
Meaning: This law checks the time assigned to the child agent.
Response: The father informs the child that the time is finished and dskghe
results.

10

— L22: Theobtain_result law:
Locution: obtain_result
Preconditions. The time assigned to the child has expired.
Meaning: The child agent has reached the requested result and it geiodhe
father.
Response: The father obtains the result.

— L23: Thenot_obtain_result law:
Locution: not_obtain_result
Preconditions: The time assigned to child has expired.
Meaning: The child agent has not achieved the requested result.
Response: The father does not obtain the result.

— L24: Thekill _child law:
Locution: kill_child
Preconditions: The child agent terminates its job.
Meaning: The father resets the internal state of the agent and renitoivem the
environment.
Response: The child is dead.

7 An example: organizing a party

In this section we show an example in which an agent, havimjehpromotion, or-
ganizes a party in order to offer a cake and a fizz bottle toriemds. To this aim,
it identifies two subgoals: to prepare the cake and to buy dtdeb Then, it creates
two children in order to assign them the two tasks. We supfitatethe internal event
triggering the party organization is'ganize_party:

organize_party : —promotionp.
organize_partyy 1>
child_name(F1,1),
child name(F2,2),
messagea(F1, confirm(
solve_goal(cake_ready, cake), user)),
messagea(F2, confirm(
solve_goal(fizz_ready, fizz,120000), user)).

where thechild_name/2 predicate is useful to obtain the child agents names. Via the
messagesolve_goal, the children receive the goals assignment. When the fagjesita
receives the communications from the children that thekgdave been accomplished,

it starts the party.

start_party : —cake_readyp, fizz_readyp.
start_partyy :> write("The party is starting...”), invite_everyone .

After the generation, the child agents tell the user abait tiirth by printing:

11

Hello World..... My name is partghildl
My father is party

while the fatheiparty, verified the success of the generation process, writes:

My son is partychildl
My son is partychild2

Once started, children will react to an event of the fomiwe_goal(G) coming from
their father. In this case, for instance, the father will bledao ask children to prepare a
cake and drinks respectively, by means of the messages:

message a(childl, con firm(solve_goal(cake_ready)).
message 4 (childl, con firm(solve_goal (buy_drinks)).

The father will be notified by the children when the goal wiive been reached, and
made aware of results. Notice that the second child has alitiniteto give a solution.
Below we show the logic programs of two children.

The agentparty_childl The knowledge base of this agent consists indhilee.txtfile
and contains the following rules:

cakep > preparing_cakeg.
preparing_cake : —haveFlourp.
preparing_cakey :> cake_ready .

The agent triggers the goateparing_cakes while the connect modulstarts to
verify if the assigned time is expired. In order to reach iglgthe agent is in need of
flour. If the agent receives the flour, it prepares the cakerdodns its father:

make(cakeaeady)
sendmessagédo(party.child1l,sendmessage(cake,parshildl))
sendmessageo(party.child1l,agree(cakeeady,partychildl))
sendmessagdo(party.childl,
inform(agree(cakaeady)yalues(yes),party_child1))

Reached Goal: cakesady
sendmessagégo(party,confirm(cakeeady,partychildl)).

The agentparty_child2 This agent has the following logic program:

fizzg > buy_fizzg.
buy_fizz : —haveMoneyp.
buy-fizzr :> fizz_readya.

In order to reach its goal, this child must have sufficient eyomn this case, it buys
the bottle and advices its father. The last exchanged messag:

Reached Goal: fizready
sendmessagégo(party,confirm(fizzeady,partychild2))

12

The party is starting After receiving the messages indicating that the subgaale h
been reached, the father agent starts the party:

The party is starting...
make(inviteeveryone)

8 Conclusions and Related Work

We conclude this discussion with some considerations onlI2gents generation ca-
pabilities. The father agent is not required to know the eot# of children KB except
concerning external events that trigger children actsitEach child is under every re-
spect a DALI agent that can interact with the other entitiethe environment and can
increase its knowledge independently of the father. Therlaan only kill the child
when it is no more useful.

While the children work, the father can continue its activityhout losing contact
with the environment. The father can also assign to childrarmediate sub-goals and
reorganize the obtained results. Each child can createvitschildren, thus increasing
the computational power of the system. Finally, the timatlaiows a system to spare
computational resources. The child generation capalbiiay we have presented is the
starting point to improve DALI agents computational poweithe future we will make
it possible for the father agent to specialize its childrgmrtaking them import specific
library modules. Also, this mechanism can be a useful featur the context of more
general coordination frameworks and strategies.

In fact, the DALI communication architecture together witie children genera-
tion mechanism constitute a basic support for cooperatiab DALI provides. The
communication architecture neatly separates an agemntshahavior from the agent's
behavior related to communication. The same DALI agent paiogequipped with a
different communication architecture actually resultsidifferent agent, as its rela-
tionship with its environment is different, and affectsiitiernal state in a different way.
Sub-agents can be employed so as to perform in a distribagdiioh different specific
tasks. These features combined together allow significaints of social knowledge to
be represented and reasoned about, and to evolve in timd badhe agent’s beliefs,
experience, and interactions with other agents [4].

Many current multi-agent teamwork coordination strategies based on theoretical
frameworks such as [2], [8], [9], and typically involve thecognition of agent mental
states, possibly by relying on the BDI (“Belief, Desire,dntions”) model [1]: and
agent'sbeliefscorrespond to information the agent has about the worldchvhiay be
incomplete and incorrect; an agendissiresintuitively correspond to its objectives, or
to the tasks allocated to it; as an agent will not, in gendralable to achieve all its
desires, the desires upon which the agent commitgggationsthat the agent will try
to achieve. These coordination approaches, and also thaiséyrbased on communi-
cation, are limited whenever communication is unreliabténformation on the source
incomplete.

Mediated interaction and environment-based coordingtiens on cognitive and
social theories and explicitly take into account the roléha&f environment in coordi-

13

nation, such as [2], [8], [15]. In [16], it is emphasized tlaay real conceptual and
engineering framework for this approach should: (i) do rady on simple reactivity

only; (ii) not restrict to solution tailored to specific calimation problems; (iii) provide

methodologies and infrastructures to make the framewdecgie.

The support for coordination provided by the DALI languagjejple as it is on the
one hand addresses some the problems that arise in BDI-aasedommunication-
based approach, due to its powerful communication filter.tii@nother hand, DALI
addresses issues (i)-(iii) above as it is a general-purposgiage with powerful proac-
tive features, has a precise declarative and operationsrstécs, and is fully imple-
mented. A future aim of this research is to further extend rafide DALI support to
coordination, and to put it at work in complex applicatiom@on such as for instance
peer-to-peer negotiation.

References

1. M. E. Bratman, D. J. Israel and M. E. Pollack. Plans and Resdaouaded Practical Rea-
soning,Computational Intelligencgevol. 4, 1988, 349—355.

2. P. Cohen and H. Levesque. Teamwork, Nous, Special Issu®gnittve Science and Al,
vol. 25, no. 4, 1991, 487-512.

3. S. Costantini and A. Tocchio. A Logic Programming Language foltiMigent Systems, In
S. Flesca, S. Greco, N. Leone, G. lanni (eds.), Logics in Atrtificitgdlligence, Proc. of the
8th Europ. Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002

4. S. Costantini, A. Tocchio and A. Verticchio. A Game-Theoretic Opeamati®emantics for
the DALI Communication Architecture, Proc. of WOAO04, 2004.

5. S. Costantini, A. Tocchio and A. Verticchio. Communication and TrusthénDALI Logic
Programming Agent-Oriented Language, In: M. Cadoli, M. Milano an®#icini (eds.),
Italian Conference on Intelligent Systems Al*IA04, 2004.

6. M. d’'Inverno and M. Luck. Engineering AgentSpeak(L): A Fotl@amputational Model,
Journal of Logic and Computation 8(3), 1998, 233—-260.

7. M. Gelfond and V. Lifschitz. The Stable Model Semantics for LogicgPamming, In
Proceedings of the Fifth Joint International Conference and Symmposithe MIT Press,
1988, 1070-1080.

8. B.J. Grosz and S. Kraus. Collaborative Plans for Complex Gratjpiy Artificial Intelli-
gence, 86(2), 1996, 269-357.

9. D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar and EtWgr. Planned Team Ac-
tivity, In: Artificial Social Systems, 4th Europ. Worksh. on Modelling Antamous Agents
in a Multi-Agent World (MAAMAW'92), Selected Papers, S.Martino al Cirajritaly, 1994,
227-256.

10. R. A. Kowalski. How to be Artificially Intelligent - the Logical Way, Drafgvised February
2004, Available on line, URL
http://www-Ip.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

11. K. Larson and T. Sandholm. An alternating offers bargaining infmlecomputationally
limited agents, In: First International Conference on Autonomous fsgand Multiagent
Systems (AAMAS’'02), 135-142.

12. V. Lifschitz. Answer Set Programming and Plan Generation Arttelligence 138 (1-2),
Elsevier Science Publishers, 2002, 39-54.

13. P. McBurney and S. Parsons. Dialogue Games Protocols fort Rgeohase Negotiations,
In: M.-P. Huget (ed.), Communication in Multi-Agent Systems: Ageatrhunication Lan-
guages and Conversation Policies, LNAI 2650, Springer-Verlagl.200

14

14.

15.

16.

17.

18.

19.

20.

21.

P. McBurney, R. M. Van Eijk, S. Parsons and L. Amgoud, A Dia@ame Protocol for
Agent Purchase Negotiations, Autonomous Agents and Multi-Agent Bgsi€3), Kluwer
Academic Publishers, 2003, 235-273.

B.A. Nardi. Context and Consciousness: Activity Theory and afts@omputer Interaction,
MIT Press, 1996.

A. Omicini, A. Ricci, M. Viroli,C. Castelfranchi,L. Tummolini. Coorditian Artifacts:
Environment-based Coordination for Intelligent Agents, noc. of the Third Int. Joint
Conf. on Autonomous Agents and Multiagent Systems(AAMARAAM Press, 2004.
David C. Parkes. Optimal Auction Design for Agents with hard ValuaBlosblems In:
Agent-Mediated Electronic Commerce Workshop at the Internationat Gminference on
Artificial Intelligence, Stockholm, 1999.

T. Sandholm. Unenforced e-commerce Transactions, |EEEn&iteComputing 1(6)
(November-December 1997), 47-54.

T. Sandholm, S. Suri, A. Gilpin and D. Levine. CABOB: A Fast OptirAlgorithm for
Combinatorial Auctions, In: Proc. IJCAI-O0l, Seattle, WA, 2001, 110298.

Web location of the most known ASP solvers.
Cmodelshttp://www.cs.utexas.edu/users/yuliya/
Aspps:http://www.cs.uky.edu/ai/aspps/

DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe:http://www.cs.uni-potsdam.cddinke/nomore/
Smodelshttp://www.tcs.hut.fi/Software/smodels/

A. Tocchio. Multi-Agent sistems in computational logic. Ph.D. Thediaff).

15

