
Enhancing computational power:
DALI child agents generation⋆

Stefania Costantini Arianna Tocchio

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost,tocchio }@di.univaq.it

Abstract. In this paper we introduce a novel feature of the DALI language: a
DALI agent is now able to activate child agents and to feed them either with a
goal to be reached or a result to be obtained. Each child agent is independent
and can communicate with its father or with other agents. When the child finally
reaches the given goal, it notifies the father. At any point, the latter may possibly
decide to stop it. Then: (i) each child is aware of the identity of its father; (ii) each
child will notify the father about its achievements; (iii) a child can be stopped by
the father; (iv) the father may set a limited amount of time for children’s activ-
ities completion. We introduce the mechanisms for children generation and the
corresponding operational semantics, and then present an example.

1 Introduction

Intelligent agents by using their potentialities are able at least to some extent to over-
come problems such as limited computational resources, non-deterministic environ-
ment, and insufficient knowledge. When a problem is not naturally multi-agent based,
a sole agent is capable of solving it by taking enough computational resources and in-
formation about its environment.

In a lot of problem domains however, the context naturally requires several agents
to take a role in problem-solving or, more generally, requires the adoption of a multi-
agent strategy. A multi-agent system is composed of multiple interacting agents which
are typically capable of cooperating to solve problems thatare beyond the capabilities
of any individual agent. Building a cooperation strategy isnot easy: an agent, contrary
to an object, can renounce to cooperate or, as emphasized in [5], can reveal itself an
unreliable collaborator.

So, when an agent accepts the aid of another one, it implicitly assumes a certain
risk degree on its future activity. Can an agent minimize this risk? In some cases the
response to this query is ’yes’. Some kind of problems requiring a certain degree of
computational power that a single agent cannot provide can be faced not by invoking
the collaboration of external agents, but by generating child agents.

⋆ We acknowledge support by theInformation Society Technologies programme of the European
Commission, Future and Emerging Technologiesunder the IST-2001-37004 WASP project.

The difference is relevant: a child agent is reliable and cannot refuse to give as-
sistance. In fact, the basic premise of coordination is thatif an agent cannot solve an
assigned problem using local resources/expertise, it willdecompose the problem into
sub-problems and try to find other willing agents with the necessary resources/expertise
to solve these sub-problems. By using child agents, the sub-problems assignment is
solved by a simple message exchange between father and children without adopting
a contracting mechanism. Moreover, the possibility to assign complex tasks to one or
more child agents allows the father to keep its energies for more strategic activities. In
particular a father agent, by delegating a time-expensive jobs to a child, can maintain a
high reactivity degree and respond timely to the changes in the environment. This is a
not negligible detail. A limit of this approach is that a child agent cannot resolve tasks
that require a knowledge degree that the father agent does not posses, unless the child
acquires knowledge autonomously from other external sources.

According to the above considerations, we have introduced in the DALI frame-
work the ability to generate children. An important motivation for this improvement
has been the need for our agents to face not-trivial planningproblems by means of the
invocation of a performant planner, such as for instance an Answer Set solver [7]. The
idea of Answer Set Programming [20] is to represent a given computational problem
by means of a logic program whose answer sets correspond to solutions and then use
an answer set solver, e.g., SMODELS or DLV, to find an answer set for this program.
Answer Set Programming has proved to be a strong formalism for planning [12], and
thus appears suitable for an integration with DALI. As a planning process can require a
significant amount of time to find a solution, the possibilityfor an agent to assign this
time-expensive activity to its children can constitute a real advantage.

Another motivation for generating children is, more generally, that of splitting an
agent goal into subgoals to be delegated to children. This possibly with the aim of ob-
taining different results by means of different strategies, and then comparing the various
alternatives and choosing the best ones. The father provides the child with all the infor-
mation useful to find the solution and, optionally, with an amount of time within which
to resolve the assigned problem.

In this paper, we present the details on the child generationcapability of DALI
agents while the current work to integrate DALI and Answer Set Programming will be
presented in forthcoming papers. This paper is organized asfollows: in Section 2 we
introduce the main functionalities of the DALI language; inSection 3 we explain briefly
the DALI communication architecture; in Section 4 we present the Operational Seman-
tics of our language; Section 5 is reserved to outline the child generation mechanism
of DALI agents, Section 6 presents the related operational semantics laws, Section 7
shows an example of application. Finally, we conclude this paper with some remarks
and discussion of related work.

2 The DALI language

DALI [3] is an Active Logic Programming language designed inthe line of [10] for
executable specification of logical agents. The reactive and proactive behavior of the

2

DALI agent is triggered by several kinds of events: externalevents, internal, present
and past events. All the events and actions are timestamped,so as to record when they
occurred.

An external event is a particular stimulus perceived by the agent from the environ-
ment. In fact, if we defineS = {s1 : t0, ..., sn : tk} as the set of external stimuli
sk that the agent received from the world during the interval(t0, tk), where the set of
“external events”E is a subset ofS. In particular, we can define the set of external
events as follows:

Definition 1 (Set of External Events).We define the set of external events perceived
by the agent from timet1 to timetn as a setE = {e1 : t1, ..., en : tn} whereE ⊆ S.

A single external eventei is an atom indicated with a particular postfix in order to
be distinguished from other DALI language events. More precisely:

Definition 2 (External Event). An external event is syntactically indicated by postfix
E and it is defined as:
ExtEvent ::=<< AtomE >> |seq << AtomE >> where anAtom is a predicate
symbol applied to a sequence oftermsand aterm is either a constant or a variable or
a function symbol applied in turn to a sequence of terms.

External events allow an agent to react through a particularkind of rules, reactive rules,
aimed at interacting with the external environment. When an event comes into the agent
from its “external world”, the agent can perceive it and decide to react. The reaction is
defined by a reactive rule which has in its head that external event. The special token
:>, used instead of: −, indicates that reactive rules performs forward reasoning.

Definition 3 (Reactive rule).A reactive rule has the form:ExtEventE :> Body or
ExtEvent1E , ..., ExtEventnE :> Body
whereBody ::= seq << Obj >> and
Obj ::=<< ActionA >> | << GoalsG >> | << Atom >> |...

The agent remembers to have reacted by converting the external event into apast event
(time-stamped). Operationally, if an incoming external event is recognized, i.e., corre-
sponds to the head of a reactive rule, it is added into a list called EV and consumed
according to the arrival order, unless priorities are specified.

The internal events define a kind of “individuality” of a DALIagent, making it
proactive independently of the environment, of the user andof the other agents, and
allowing it to manipulate and revise its knowledge. More precisely:

Definition 4 (Internal Event). An internal event is syntactically indicated by postfix
I: InternalEvent ::=<< AtomI >>
The structure of an internal event is composed by two rules. The first one contains
the conditions (knowledge, past events, procedures, etc.)that must be true so that the
reaction (in the second rule) may happen:
IntEvent : −Conditions
IntEventI :> Body

3

whereConditions ::= seq << Obj cond >> and
Obj cond ::=<< PastEventP >> | << Atom >> | << Belief >> |...
Moreover,
Body ::= seq << Obj body >> and
Obj body ::=<< ActionA >> | << GoalsG >> | << Atom >> |...

Internal events are automatically attempted with a defaultfrequency customizable by
means of directives in the initialization file. The user’s directives can tune several para-
meters: at which frequency the agent must attempt the internal events; how many times
an agent must react to the internal event (forever, once, twice,. . .) and when (forever,
when triggering conditions occur, . . .); how long the event must be attempted (until
some time, until some terminating conditions, forever).

When an agent perceives an event from the “external world”, itdoes not necessarily
react to it immediately: it has the possibility of reasoningabout the event, before (or
instead of) triggering a reaction. Reasoning also allows a proactive behavior. In this
situation, the event is called present event and is formalized as follows:

Definition 5 (Present Event).A present event is syntactically indicated by postfixN :
PresentEvent ::=<< AtomN >> |seq << AtomN >>
The syntax of a present event usage is:
InternalEvent : −PresentEventN
InternalEventI :> Body
whereBody ::= seq << Object >> and
Object ::=<< ActionA >> | << GoalsG >> | << Atom >> |...

Actions are the agent’s way of affecting the environment, possibly in reaction to
either an external or internal event. An action in DALI can bealso a message sent by an
agent to another one.

Definition 6 (Action). An action is syntactically indicated by postfixA:
Action ::=<< AtomA >> |messageA << Atom,Atom >>
Actions take place in the body of rules:
Head : −Body
whereBody ::= seq << Object >> and
Object ::=<< ActionA >> | << GoalsG >> | << Atom >> |...

In DALI, actions may have or not preconditions: in the formercase, the actions are
defined by actions rules, in the latter case they are just action atoms. An action rule
is just a plain rule, but in order to emphasize that it is related to an action, we have
introduced the new token:<, thus adopting the following syntax:

Definition 7 (Action rule). An action rule has the form:
Action :< Preconditions
wherePreconditions ::= seq << Object >> and
Object ::=<< PastEventP >> | << Atom >> | << Belief >> |...

Similarly to external and internal events, actions are recorded as past actions.

4

A DALI agent is able to build a plan in order to reach an objective, by using internal
events of a particular kind, calledplanning goals. A goal has postfixG, and like an
internal event is defined by two rules. The first one is attempted when the goal is invoked
and activates its subgoals, if any. The second one contains areaction related to the
reached subgoal. The relevant difference between an internal event and a planning goal
is that while the former starts being attempted when the agent is born, the latter is
attempted when invoked by a rule. A DALI agent is also able to verify if a goal was
reached by using a special kind of atom with a postfixT . When the interpreter meets
the constructgoalT , it checks if a past eventgoalP or a fact corresponding to this
predicate exists.

Past events represent the agent’s “memory”, that makes it capable to perform future
activities while having experience of previous events, andof its own previous conclu-
sions. Past events are kept for a certain default amount of time, that can be modified by
the user through a suitable directive in the initializationfile. A past event is formalized
as follows:

Definition 8 (Past Event).A past event is syntactically indicated by the postfixP :
PastEvent ::=<< AtomP >>

3 DALI Communication Architecture

The DALI communication architecture consists of four levels. The first and last levels
implement the DALI/FIPA communication protocol and a filteron communication, i.e.
a set of rules that decide whether or not receive (told check level) or send a message
(tell check level). The DALI communication filter is specified by means of meta-level
rules defining the distinguished predicatestell and told. Whenever a message is re-
ceived, with content partprimitive(Content,Sender)the DALI interpreter automatically
looks for a correspondingtold rule. If such a rule is found, the interpreter attempts to
provetold(Sender, primitive(Content)). If this goal succeeds, then the message is
accepted, andprimitive(Content)) is added to the set of the external events incoming
into the receiver agent. Otherwise, the message is discarded. Symmetrically, the mes-
sages that an agent sends are subjected to a check viatell rules. The second level in-
cludes a meta-reasoning layer, that tries to understand message contents, possibly based
on ontologies and/or on forms of commonsense reasoning. Thethird level consists of
the DALI interpreter.

4 Operational Semantics

The operational semantics of DALI system [4] is defined by adopting an approach
which is a novelty in the agent world. The novelty in particular is that we use a formal
dialogue game in order to define thefull operational semantics of the DALI interpreter.

5

Fig. 1.DALI communication architecture

Recently, formal dialogue games, which have been studied inphilosophy since the time
of Aristotle, have found application as the basis for interaction protocols between au-
tonomous agents [13] [14]. Dialogue games are formal interactions between two or
more participants, in which participants “move“ by uttering statements according to
pre-defined rules.

Dialogue game protocols have been proposed for agent team formation, persuasion,
negotiation over scarce resources, consumer purchase interactions and joint delibera-
tion over a course of action is some situation ([11],[17],[18],[19]) but, to the best of our
knowledge, they have not been used up to now to give a formal description of an agent
language. In our formalization we assume that the DALI interpreter plays a game and
thus makes “moves” not only towards other agents, but also towards itself. By adopt-
ing this approach we explain the behavior of each layer of thearchitecture and their
interactions. We define a formal dialogue game framework that focuses on the rules of
dialogue, regardless the meaning the agent may place on the locutions uttered. Dialogue
games has been applied successfully in negotiation contexts because in these cases is
possible to individuate easily players and moves.

The first question that we faced in order to formalize the operational semantics of
DALI architecture has been in fact: which are the players andwhich moves can they
make? We considered that the DALI architecture is composed by layers and each layer
adopts a specific behavior. A layer can be viewed as adark boxwhose behavior is
determined only by moves of other correlated layers and by its policy. By adopting this
view point, our players are the layers and moves are defined through laws and transitions
rules.

A strategy for a player is a set of rules that describe exactlyhow that player should
choose, depending on how the other player has chosen at earlier moves. The rules of the
operational semantic show how the states of an agent change according to the applica-

6

tion of the transition rules. We define a rule as a combinationof states and laws. Each
law links the rule to the interpreter behavior and is based onthe DALI architecture. Our
work demonstrates how solutions from game theory together with computing theories
can be used to publicly specify rules and prove desirable properties for agent systems.
In order to make it clear what we intend for state, law and transition rule, we adopt the
following definitions.

Definition 9 (State of a DALI agent). Let Agx be the name of a DALI agent. We
define the internal stateISAgx

of a DALI agent as the tuple< E,N, I,A,G, T, P >
composed by its sets of events, actions and goals.

Definition 10 (Law). We define a lawLx as a framework composed by the following
elements:

– name: the name of law;
– locution: the arguments that the law takes;
– preconditions: the preconditions to apply the law;
– meaning: the meaning of the law;
– response: the effects of the applied law;

Definition 11 (Transition rule). A transition rule is described by two pairs and some
laws. If the transition is internal to the same agent, a transition rule corresponds to :

< Agx, < P, IS,Mode >>
Li,...,Lj

−→ < Agx, < NewP,NewIS,NewMode >>
Starting from the first pair and by applying the current laws,we obtain the second
pair where some parameters have changed. Each pair is definedas < Agx, SAgx

>,
whereAgx is the name of the agent and the operational stateSAgx

is the triple <
PAgx

, ISAgx
,ModeAgx

>. The first argument is the logic program (written in DALI)
of the agent, the second one is the internal state, the third one is a particular attribute
describing what the interpreter is doing.NewP , NewIS and NewMode indicate,
respectively,P , IS andMode updated after applyingLi, ..., Lj laws .

A transition rule can also describe how an agent can influencean other one. In this
case, we will have:

< Agx, < PAgx
, ISAgx

,ModeAgx
>>

Li,...,Lj

−→ < Agy, < PAgy
, ISAgy

,ModeAgy
>>

wherex 6= y

The operational semantics viewed with the eyes of game theory transforms TOLD
filter into TOLD player, META level into META player, and so onuntil TELL filter that
becomes TELL player. Also the DALI internal interpreter becomes a player that plays
with the other structural player and with itself. What will weexpect from these players?
Their behavior is surely cooperative because only if all levels work together, a DALI
agent will satisfy the user expectations. The players are not malicious because our game
is innocent and does not involve any competition strategy. So, we expect each player
to follow deterministically the laws and rules and producesa set of moves admissible.
These moves will influence the other players and will determine the global game.

When does a player win? The game that an agent plays with itselfand with the
other agents is innocent, so we do not intend define rigorously the concept of winner.

7

Our winner is the player which play with success a specific game. More precisely, we
intend, after defining the general operational semantics, to prove some relevant proper-
ties of DALI language. For us, each property that must be demonstrated is a particular
game that a player must face through defined the laws and rules. A player wins if plays
successfully a game/property proposed. Next sections willdescribe the ability of DALI
agents to generate children.

5 Child generation capability

A DALI agent is able to activate child agents and to feed them either with a goal to be
reached or a result to be obtained. Each child agent is independent and can communicate
with its father or with other agents. When the child finally reaches the given goal, it
notifies the father. At any point, the latter may possibly decide to stop it. This will
mostly happen either after obtaining results, or when the time amount that the father
means to allocate to the child’s task has expired. Then: (i) each child is aware of the
identity of its father; (ii) each child will notify the father about its achievements; (iii) a
child can be stopped by the father; (iv) the father may set a limited amount of time for
children’s activities completion.

Apart from that, a child agent is a DALI one, equipped with itsown knowledge
base, directives and communication filter, and can in turn create children. This feature
is relevant for DALI multi-agent system scalability. From acognitive point of view, it
allows the father for instance to: compute and then compare various alternative plans
(or intentions in the BDI view); perform hypothetical reasoning; create its own local
social setting in the form of a society of agents, each one with its role and commitment.
The resulting architecture, useful to DALI agents to generate children, is divisible in
three modules, each of which offers specific functionalities. The first module allows a
father agent to create children, the second one establishesa connection between father
and child, the third one determines the child life time.

5.1 Create children

This first module allows each DALI agent to activate, througha specific action, one
or more children. The new generated agent can include, according to the fatherly will,
either the knowledge base of the father or a different knowledge base KB specified at the
generation moment. If the child incorporates the father logic program and knowledge,
the action able to create it will be:

– createA(Num Children), whereNum Children specifies how many agents the
father intends to generate.

The KB specification implies that the child agent will have the knowledge and logic
program contained in the specified file:

– createA(NumFigli,KB), whereNum Children has the same meaning speci-
fied above and KB specifies the file name containing the knowledge base.

8

For instance, an agentparty who plays the role of a party organizer, can generate
the following children:

createA(1, c : /kb/cake.txt, ontology 1).
createA(1, c : /kb/fizz.txt, ontology 2).

Children will be named by defaultparty child1 and party child2 (child1 and
child2 for the father). The filescake.txt andfizz.txt contain all the activation data
(including knowledge bases and, optionally, ontologies) for the two agents.

After this generation process, a child agent will have all potentialities to be able
itself to generate further children. In other words, each child agent can become a father
one. A particular mechanism avoids child agents to be given the same name. The last
step of this module is to check if the activation succeeds: tothis aim, the father agent
sends a specific message to each child.

DALI child DALI child DALI child

KB KB KB

1 2 n

1 2 n

DALI agent father

Fig. 2.DALI agent and children

5.2 Connect module

This module provides two functionalities: the first one establishes the connection be-
tween father and child agents; the second one allows the father to assign a sub-
goal to its child that, when it reaches its task, advises the father on its success.
As soon as the child agent becomes active, it receives by the father the message:
born(Father name). Its child keeps in its memory the father name and sends to it
the message:hello dad(Child name) Starting from the moment in which this hap-
pens, two agents can communicate between them. When the father reaches the internal
conclusion that it is necessary to assign a goal to a child, itsends one of the following
messages:

9

– solve goal(Goal, Ev, T ime): the child has a time limit to resolve its task. TheEv
parameter is necessary because the father must trigger specific reactive rules (in the
child program) to activate the resolution process;

– solve goal(Goal, Ev): the child agent does not have a fixed amount of time to
return the solution to the father;

The child, as soon as its goal is reached, tells the father through aconfirmmessage.

5.3 Lifetime module

This third module kills the child agent when its allocated time has expired. DALI child
agents have a specific internal event that checks from time totime if the current agent
elapsed time has exceeded the value specified at the generation act. In this case, not
only the agent is killed but also its data are erased.

6 Operational semantics of children generation

In this Section we show the operational semantics rules thatcope with children genera-
tion. In particular, the laws are L19-L24 in the context of the 119 overall transition rules
[21].

– L19: initialize child(.) law:
Locution: initialize child(Logic program/KB,Ontology)
Preconditions: The agent reaches the conclusion (by an internal event) thatit
needs a child.
Meaning: This law allows an agent to generate a child agent. If either
Logic program or Ontology are empty, the generated child will inherit the
parameters of the father, else it takes the specified value.
Response: The agent has a child agent.

– L20: Theactive child law:
Locution: active child
Preconditions: The child agent has been initialized.
Meaning: This law activates a child agent. After the activation, the child agent
enters the “wait” mode and is ready to receive communicationacts from the father.
Father and child can communicate by using the usual DALI primitives.
Response: The child agent is active.

– L21: Theexpired time child law:
Locution: expired time child
Preconditions: The time assigned from the father to child is expired.
Meaning: This law checks the time assigned to the child agent.
Response: The father informs the child that the time is finished and asksfor the
results.

10

– L22: Theobtain result law:
Locution: obtain result
Preconditions: The time assigned to the child has expired.
Meaning: The child agent has reached the requested result and it sendsit to the
father.
Response: The father obtains the result.

– L23: Thenot obtain result law:
Locution: not obtain result
Preconditions: The time assigned to child has expired.
Meaning: The child agent has not achieved the requested result.
Response: The father does not obtain the result.

– L24: Thekill child law:
Locution: kill child
Preconditions: The child agent terminates its job.
Meaning: The father resets the internal state of the agent and removesit from the
environment.
Response: The child is dead.

7 An example: organizing a party

In this section we show an example in which an agent, having had a promotion, or-
ganizes a party in order to offer a cake and a fizz bottle to its friends. To this aim,
it identifies two subgoals: to prepare the cake and to buy the bottle. Then, it creates
two children in order to assign them the two tasks. We supposethat the internal event
triggering the party organization isorganize party:

organize party : −promotionP .
organize partyI :>

child name(F1, 1),
child name(F2, 2),
messageA(F1, confirm(

solve goal(cake ready, cake), user)),
messageA(F2, confirm(

solve goal(fizz ready, fizz, 120000), user)).

where thechild name/2 predicate is useful to obtain the child agents names. Via the
messagessolve goal, the children receive the goals assignment. When the father agent
receives the communications from the children that their tasks have been accomplished,
it starts the party.

start party : −cake readyP , fizz readyP .
start partyI :> write(′The party is starting...′), invite everyoneA.

After the generation, the child agents tell the user about their birth by printing:

11

Hello World..... My name is partychild1
My father is party

while the fatherparty, verified the success of the generation process, writes:

My son is partychild1
My son is partychild2

Once started, children will react to an event of the formsolve goal(G) coming from
their father. In this case, for instance, the father will be able to ask children to prepare a
cake and drinks respectively, by means of the messages:

messageA(child1, confirm(solve goal(cake ready)).
messageA(child1, confirm(solve goal(buy drinks)).

The father will be notified by the children when the goal will have been reached, and
made aware of results. Notice that the second child has a timelimit to give a solution.
Below we show the logic programs of two children.

The agentparty child1 The knowledge base of this agent consists in thecake.txtfile
and contains the following rules:

cakeE :> preparing cakeG.
preparing cake : −haveF lourP .
preparing cakeI :> cake readyA.

The agent triggers the goalpreparing cakeG while theconnect modulestarts to
verify if the assigned time is expired. In order to reach its goal, the agent is in need of
flour. If the agent receives the flour, it prepares the cake andinforms its father:

make(cakeready)
sendmessageto(party child1,sendmessage(cake,partychild1))
sendmessageto(party child1,agree(cakeready,partychild1))
sendmessageto(party child1,
inform(agree(cakeready),values(yes),party child1))
Reached Goal: cakeready
sendmessageto(party,confirm(cakeready,partychild1)).

The agentparty child2 This agent has the following logic program:

fizzE :> buy fizzG.
buy fizz : −haveMoneyP .
buy fizzI :> fizz readyA.

In order to reach its goal, this child must have sufficient money. In this case, it buys
the bottle and advices its father. The last exchanged messages are:

Reached Goal: fizzready
sendmessageto(party,confirm(fizzready,partychild2))

12

The party is starting After receiving the messages indicating that the subgoals have
been reached, the father agent starts the party:

The party is starting...
make(inviteeveryone)

8 Conclusions and Related Work

We conclude this discussion with some considerations on DALI agents generation ca-
pabilities. The father agent is not required to know the contents of children KB except
concerning external events that trigger children activities. Each child is under every re-
spect a DALI agent that can interact with the other entities in the environment and can
increase its knowledge independently of the father. The latter can only kill the child
when it is no more useful.

While the children work, the father can continue its activitywithout losing contact
with the environment. The father can also assign to childrenintermediate sub-goals and
reorganize the obtained results. Each child can create its own children, thus increasing
the computational power of the system. Finally, the time limit allows a system to spare
computational resources. The child generation capabilitythat we have presented is the
starting point to improve DALI agents computational power:in the future we will make
it possible for the father agent to specialize its children by making them import specific
library modules. Also, this mechanism can be a useful features in the context of more
general coordination frameworks and strategies.

In fact, the DALI communication architecture together withthe children genera-
tion mechanism constitute a basic support for cooperation that DALI provides. The
communication architecture neatly separates an agent’s core behavior from the agent’s
behavior related to communication. The same DALI agent program equipped with a
different communication architecture actually results ina different agent, as its rela-
tionship with its environment is different, and affects itsinternal state in a different way.
Sub-agents can be employed so as to perform in a distributed fashion different specific
tasks. These features combined together allow significant forms of social knowledge to
be represented and reasoned about, and to evolve in time based on the agent’s beliefs,
experience, and interactions with other agents [4].

Many current multi-agent teamwork coordination strategies are based on theoretical
frameworks such as [2], [8], [9], and typically involve the recognition of agent mental
states, possibly by relying on the BDI (“Belief, Desire, Intentions”) model [1]: and
agent’sbeliefscorrespond to information the agent has about the world, which may be
incomplete and incorrect; an agent’sdesiresintuitively correspond to its objectives, or
to the tasks allocated to it; as an agent will not, in general,be able to achieve all its
desires, the desires upon which the agent commits areintentionsthat the agent will try
to achieve. These coordination approaches, and also those mainly based on communi-
cation, are limited whenever communication is unreliable,or information on the source
incomplete.

Mediated interaction and environment-based coordinationfocus on cognitive and
social theories and explicitly take into account the role ofthe environment in coordi-

13

nation, such as [2], [8], [15]. In [16], it is emphasized thatany real conceptual and
engineering framework for this approach should: (i) do not rely on simple reactivity
only; (ii) not restrict to solution tailored to specific coordination problems; (iii) provide
methodologies and infrastructures to make the framework effective.

The support for coordination provided by the DALI language,simple as it is on the
one hand addresses some the problems that arise in BDI-basedand communication-
based approach, due to its powerful communication filter. Onthe other hand, DALI
addresses issues (i)-(iii) above as it is a general-purposelanguage with powerful proac-
tive features, has a precise declarative and operational semantics, and is fully imple-
mented. A future aim of this research is to further extend andrefine DALI support to
coordination, and to put it at work in complex application domain such as for instance
peer-to-peer negotiation.

References

1. M. E. Bratman, D. J. Israel and M. E. Pollack. Plans and Resource-bounded Practical Rea-
soning,Computational Intelligence, vol. 4, 1988, 349–355.

2. P. Cohen and H. Levesque. Teamwork, Nous, Special Issue on Cognitive Science and AI,
vol. 25, no. 4, 1991, 487–512.

3. S. Costantini and A. Tocchio. A Logic Programming Language for Multi-agent Systems, In
S. Flesca, S. Greco, N. Leone, G. Ianni (eds.), Logics in Artificial Intelligence, Proc. of the
8th Europ. Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002.

4. S. Costantini, A. Tocchio and A. Verticchio. A Game-Theoretic Operational Semantics for
the DALI Communication Architecture, Proc. of WOA04, 2004.

5. S. Costantini, A. Tocchio and A. Verticchio. Communication and Trust inthe DALI Logic
Programming Agent-Oriented Language, In: M. Cadoli, M. Milano and A.Omicini (eds.),
Italian Conference on Intelligent Systems AI*IA’04, 2004.

6. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A Formal Computational Model,
Journal of Logic and Computation 8(3), 1998, 233–260.

7. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming, In
Proceedings of the Fifth Joint International Conference and Symposium. The MIT Press,
1988, 1070–1080.

8. B.J. Grosz and S. Kraus. Collaborative Plans for Complex Group Action, Artificial Intelli-
gence, 86(2), 1996, 269–357.

9. D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar and E. Werner. Planned Team Ac-
tivity, In: Artificial Social Systems, 4th Europ. Worksh. on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW’92), Selected Papers, S.Martino al Cimino, Italy, 1994,
227–256.

10. R. A. Kowalski. How to be Artificially Intelligent - the Logical Way, Draft,revised February
2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

11. K. Larson and T. Sandholm. An alternating offers bargaining model for computationally
limited agents, In: First International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), 135–142.

12. V. Lifschitz. Answer Set Programming and Plan Generation Artif. Intelligence 138 (1–2),
Elsevier Science Publishers, 2002, 39–54.

13. P. McBurney and S. Parsons. Dialogue Games Protocols for Agent Purchase Negotiations,
In: M.-P. Huget (ed.), Communication in Multi-Agent Systems: Agent Communication Lan-
guages and Conversation Policies, LNAI 2650, Springer-Verlag, 2001.

14

14. P. McBurney, R. M. Van Eijk, S. Parsons and L. Amgoud, A Dialogue Game Protocol for
Agent Purchase Negotiations, Autonomous Agents and Multi-Agent Systems 7(3), Kluwer
Academic Publishers, 2003, 235–273.

15. B.A. Nardi. Context and Consciousness: Activity Theory and Human-Computer Interaction,
MIT Press, 1996.

16. A. Omicini, A. Ricci, M. Viroli,C. Castelfranchi,L. Tummolini. Coordination Artifacts:
Environment-based Coordination for Intelligent Agents, In:Proc. of the Third Int. Joint
Conf. on Autonomous Agents and Multiagent Systems(AAMAS’04), ACM Press, 2004.

17. David C. Parkes. Optimal Auction Design for Agents with hard ValuationProblems In:
Agent-Mediated Electronic Commerce Workshop at the International Joint Conference on
Artificial Intelligence, Stockholm, 1999.

18. T. Sandholm. Unenforced e-commerce Transactions, IEEE Internet Computing 1(6)
(November-December 1997), 47-54.

19. T. Sandholm, S. Suri, A. Gilpin and D. Levine. CABOB: A Fast OptimalAlgorithm for
Combinatorial Auctions, In: Proc. IJCAI-0l, Seattle, WA, 2001, 1102–1108.

20. Web location of the most known ASP solvers.
Cmodels:http://www.cs.utexas.edu/users/yuliya/
Aspps:http://www.cs.uky.edu/ai/aspps/
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe:http://www.cs.uni-potsdam.de/˜ linke/nomore/
Smodels:http://www.tcs.hut.fi/Software/smodels/

21. A. Tocchio. Multi-Agent sistems in computational logic. Ph.D. Thesis (draft).

15

