
Planning Experiments
in the DALI Logic Programming Language?

Stefania Costantini Arianna Tocchio

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost, tocchio }@di.univaq.it

Abstract. We discuss some features of the new logic programming language
DALI for agents and multi-agent systems, also in connection to the issues raised
in [12]. We focus in particular on the treatment of proactivity, which is based on
the novel mechanism of theinternal eventsandgoals. As a case-study, we dis-
cuss the design and implementation of an agent capable to perform simple forms
of planning. We demonstrate how it is possible in DALI to perform STRIPS-like
planning without implementing a meta-interpreter. In fact a DALI agent, which is
capable of complex proactive behavior, can build step-by-step her plan by proac-
tively checking for goals and possible actions.

1 Introduction

The new logic programming language DALI [2], [4], [3] has been designed for mod-
eling Agents and Multi-Agent systems in computational logic. Syntactically, DALI is
close to the Horn clause language and to Prolog. In fact, DALI can be seen as a “Prolog
for agents” in the sense that it is a general-purpose language, without prior commitment
to a specific agent architecture. Rather, DALI provides a number of mechanisms that
enhance the basic Horn-clause language to support the “agent-oriented” paradigm.

The definition of DALI has been meant to be a contribution to the understanding
of what the agent-oriented paradigm may mean in computational logic. In fact, in the
context of a purely logic semantics and of a resolution-based interpreter, some new
features have been introduced: namely, events can be considered under different per-
spectives, and there is a careful treatment of proactivity and memory. In his new book
[12], R. A. Kowalski discusses at length, based on significant examples, the principles
and techniques an intelligent logical agent should be based upon. In this paper we will
argue that DALI, although developed independently, is able to cope with many of the
issues raised in [12].

DALI programs may contain a special kind of rules, reactive rules, aimed at in-
teracting with an external environment. The environment is perceived in the form of

? We acknowledge the support by MIUR 40% projectAggregate- and number-reasoning for
computing: from decision algorithms to constraint programming with multisets, sets, and maps
and by theInformation Society Technologies programme of the European Commission, Future
and Emerging Technologiesunder the IST-2001-37004 WASP project.



external events, that can be exogenous events, observations, or messages from other
agents. In response, a DALI agent can either perform actions or send messages. This
is pretty usual in agent formalisms aimed at modeling reactive agents (see among the
main approaches [10], [6], [7] [21], [20], [24]).

There are however in DALI some aspects that can hardly be found in the above-
mentioned approaches. First, the same external event can be considered under different
points of view: the event is first perceived, and the agent may reason about this per-
ception; then a reaction can take place; finally, the event and the (possible) actions that
have been performed are recorded as past events and past actions. The language has
advanced proactive features, on which we particularly focus in this paper.

The new approach proposed by DALI is compared to other existing logic pro-
gramming languages and agent architectures such as ConGolog, 3APL, IMPACT,
METATEM, AgentSpeak in [4]. It is useful to remark that DALI is meant to be a
general-purpose language, and thus does not commit to any specific agent architecture.
Differently from other significant approaches, e.g., DESIRE [9], DALI agents do not
have pre-defined submodules. Thus, different possible functionalities (problem-solving,
cooperation, negotiation, etc.) and their interactions must be implemented specifically
for the particular application. DALI is not directly related to the BDI approach, although
its proactive mechanisms allow BDI agents to be implemented.

The declarative semantics of DALI, briefly summarized in Section 4, is anevolu-
tionary semantics,where the meaning of a given DALI programP is defined in terms
of a modified programPs, where reactive and proactive rules are reinterpreted in terms
of standard Horn Clauses. The agent receiving an event/making an action is formalized
as a program transformation step. The evolutionary semantics consists of a sequence
of logic programs, resulting from these subsequent transformations, together with the
sequence of the models of these programs. Therefore, this makes it possible to rea-
son about the “state ”of an agent, without introducing explicitly such a notion, and to
reason about the conclusions reached and the actions performed at a certain stage. Pro-
cedurally, the interpreter simulates the program transformation steps, and applies an
extended resolution which is correct with respect to the model of the program at each
stage.

The proactive capabilities of DALI agents, on which we concentrate in this paper,
are based on considering (some distinguished) internal conclusions as events, called “in-
ternal events”: this means, a DALI agent can “think” about some topic, the conclusions
she takes can determine a behavior, and, finally, she is able to remember the conclusion,
and what she did in reaction. Whatever the agent remembers is kept or “forgotten” ac-
cording to suitable conditions (that can be set by directives). Then, a DALI agent is not
a purely reactive agent based on condition-action rules: rather, it is a reactive, proactive
and rational agent that performs inference within an evolving context.

An agent must be able to act in a goal-oriented way, to solve simple planning prob-
lems (regardless to optimality) and to perform tasks. To this aim, we have introduced
a subclass of internal events, namely the class of “goals”, that once invoked are at-
tempted until they succeed, and then expire. For complex planning tasks however, from
DALI rules it is possible to invoke an Answer Set Solver [23]. In fact, Answer Set Pro-
gramming [17] [16] (based on the Answer Set Semantics of [13] [14]) is a new logic

2



programming paradigm particularly well-suited for planning. In particular, given (in a
file) a knowledge base describing actions, constraints and the goal to be reached, the
solver returns possible plans in the form ofAnswer Sets, each of them containing the
composing steps of a single plan. The DALI agent can then choose among the Answer
Sets according to her criteria.

To demonstrate the usefulness of the “internal event” and “goal” mechanisms, we
consider as a case-study the implementation of STRIPS-like planning. We will show
that it is possible to design and implement this kind of planning without defining a
meta-interpreter like is done in [18] (Ch. 8, section on Planning as Resolution). Rather,
each feasible action is managed by the agent’s proactive behavior: the agent checks
whether there is a goal requiring that action, sets up the possible subgoals, waits for the
preconditions to be verified, performs the actions (or records the actions to be done if
the plan is to be executed later), and finally arranges the postconditions.

The paper is organized as follows. In Section 2 we summarize how we have un-
derstood the discussion in [12]; in Section 3 the language syntax, main constructs and
their use are illustrated; in Section 4 the evolutionary semantics is briefly recalled; in
Section 5 we present the case-study, and finally in Section 6 we conclude.

2 How to be Artificially Intelligent, the Logical Way

This is the topic treated at length by R. A. Kowalski in his new book [12], which is
aimed at understanding which principles an intelligent logical agent should be based
upon. According to our understanding of the interesting and deep discussion reported
there, there are some important features and functionalities that any approach to agents
in computational logic should include, mainly the following:

– Being able of forward reasoning, for interacting with the external world: on the one
hand, for going from perceptions to goals; on the other hand, for going from goals
or candidate actions to actions.

– Making a distinction between high-levelmaintenance goalsandachievement goals
Maintenance goals constitute the “consciousness ” of what the agent has to fulfill in
order to stay alive, keep herself in an acceptable state, be able to perform her main
tasks. Achievement goals are needed in order to reach maintenance goals, and can
in turn leave to low-level subgoals. The step between a maintenance goal and the
achievement goals that are needed in order to make it done is in principle a step
of forward reasoning. Instead, achievement goals can be coped with by means of
backward reasoning, unless they are low-level, and thus require a forward reasoning
step for making actions that affect the world.

– Combining differentlevels of consciousness. An agent is computationally con-
scious when she is aware of what she is doing and why she is doing it, which means
that her behaviour is described by means of an high-level program, which manip-
ulates symbols that have meaningful interpretations in the environment. Equiva-
lently, an agent is logically conscious when her behaviour is generated by reasoning
with goals and beliefs. Consciousness must be suitably combined with lower-level
input-output associations or condition-action rules, which can also be represented

3



as goals in logical form. Wishfully, it should be possible to compile and de-compile
between high-level and low-level representations.

– Keeping track of time, both to timestamp externally observed events and to compare
the current time with the deadlines of any internally derived future actions.

– Keeping memory of past observations, so as to be able to generate hypothetical
beliefs, to explain the past and predict the future.

– Coping with a changing world, possibly by an approach focused on the occurrence
of events and on the effect of events on local states of affairs, such as the Event
Calculus [11].

In the rest of this paper we will argue that DALI, although developed independently,
is able to cope with many of the issues raised in [12].

3 DALI

DALI is a logic programming agent-oriented language, aimed at a declarative specifi-
cation of agents and multi-agent systems. While describing the main features of DALI,
we will try to focus where these features find a convergence with the points raised in
[12] that we have reported above.

A DALI program is syntactically very close to a traditional Horn-clause program. In
fact, a Horn-clause program is a special case of a DALI program. Specific syntactic fea-
tures have been introduced to deal with the agent-oriented capabilities of the language,
and in particular to deal with events, actions and goals.

Having been designed for defining agents and multi-agent systems, DALI has been
equipped with a communication architecture [5]. For the sake of interoperability, the
DALI communication protocol is FIPA compliant, where FIPA (Foundation for Intel-
ligent Physical Agents) is the most widely acknowledged standard for Agent Com-
munication Languages. We have implemented the relevant FIPA primitives, plus others
which we believe to be suitable in a logic setting. We have designed a meta-level where:
on the one hand the user can specify, via two distinguished primitives tell/told, con-
straints on communication and/or a communication protocol; on the other hand, meta-
rules can be defined for filtering and/or understanding messages via applying ontologies
and forms of commonsense and case-based reasoning. These forms of meta-reasoning
are automatically applied when needed by form ofreflection[1].

3.1 Events

Let us consider an event arriving to the agent from its “external world”, like for in-
stancebell ringsE (postfixE standing for “external”). From the agent’s perspective,
this event can be seen in different ways.

Initially, the agent has perceived the event, but she still has not reacted to it. The
event is now seen as a present eventbell ringsN (postfixN standing for “now”). She
can at this point reason about the event: for instance, she concludes that a visitor has
arrived, and from this she realizes to be happy.

4



visitor arrived :- bell ringsN.

happy :- visitor arrived.

Then, the reaction to the external eventbell ringsE consists in going to open the
door. This is specified by the followingreactive rule. The new token :> used instead
of :- emphasizes that this rule performs forward reasoning, and is activated by the
occurrence of the event which is in the head.

bell ringsE :> go to open.

About opening the door, there are two possibilities: one is that the agent is dressed
already, and thus can perform the action directly (openthe doorA, postfixA standing
for “action”). The other one is that the agent isnot dressed, and thus she has to get
dressed before going. The actionget dressedAhas a defining rule. This is just a plain
horn rule, but in order to emphasize that it has the role of specifying the preconditions
of an action, the new token :< is used instead of :- .

go to open :- dressed, openthe doorA.

go to open :- not dressed,

get dressedA, openthe doorA.

get dressed:< grab clothes.

DALI makes a distinction between low levelreaction to the external events, and
high-levelthinkingabout these events. Since thinking and reacting are in principle dif-
ferent activities, we have introduced the two differentpoints of viewof the same event:
as an external event to be reacted to, and as a present event to be conscious of. Then,
when coping with external events DALI is able to combine, as advocated in [12], dif-
ferent “levels of consciousness”: high-level reasoning performed on present events, that
may lead the agent to revise or augment her beliefs; low-level forward reasoning for
reaction.

DALI keeps track of time, since all events are timestamped. As we will see later,
DALI also keeps track of events and actions that occurred in the past. The timestamp
can be explicitly indicated when needed, and omitted when not needed. I.e., for any
timestamped expressionExpr, one can either write simplyExpr, or Expr : T . Exter-
nal events and actions are used also for sending and receiving messages [5].

3.2 Proactivity in DALI

The basic mechanism for providing proactivity in DALI is that of theinternal events.
Namely, the mechanism is the following: an atomA is indicated to the interpreter as

5



an internal event by means of a suitable directive. IfA succeeds, it is interpreted as
an event, thus determining the corresponding reaction. By means of another directive,
it is possible to tell the interpreter thatA should be attempted from time to time: the
directive also specifies the frequency for attemptingA, and the terminating condition
(when this condition becomes true,A will be not attempted any more).

Thus, internal events are events that do not come from the environment. Rather,
they are predicates defined in the program, that allow the agent to introspect about the
state of her own knowledge, and to undertake a behavior in consequence. This mech-
anism has many uses, and also provides a mean for gracefully integrating object-level
and meta-level reasoning. It is also possible to define priorities among different internal
events, and/or constraints stating for instance that a certain internal event is incompati-
ble with another one. Internal events start to be attempted when the agent is activated,
or upon a certain condition, and keep being attempted (at the specified frequency) until
the terminating condition occurs. The syntax of a directive concerning an internal event
p is the following:

try p [sinceSCond] [frequencyf ] [until TCond].

It states that:p should be attempted at a frequencyf ; the attempts should start whenever
the initiating conditionSCondbecomes true; the attempts should stop as soon as the
terminating conditionTCondbecomes true. All fields are optional. If all of them are
omitted, thenp is attempted at a default frequency, as long as the agent stays alive.

Wheneverp succeeds, it is interpreted as an event to which the agent may react, by
means of areactive rule:

pI :> R1, . . . , Rn.

The postfixI added top in the head of the reactive rule stands for “internal”, and
the new connective :> stands fordetermines. The rule reads: “if the internal eventpI
has happened,pI will determine a reaction that will consist in attemptingR1, . . . , Rn”.
The reaction may involve making actions, or simply reasoning on the event.

Internal events are the DALI way of implementingmaintenance goals. The relevant
aspects of the agent’s state are continuously kept under control. In fact, repeatedly at-
tempting an internal eventA means checking whether a condition that must be taken
care of has become true. Success ofA triggers a reaction: by means of a step of forward
reasoning, the DALI agent goes from the internal event to whatever needs to be done in
order to cope with it.

Frequency and priorities are related to the fact that there are conditions that are more
critical then others, and or that evolve differently with time.

The reasons whyA may fail in the first place and succeed later may be several. As
a possible reason, the agent’s internal state may change with time:

time to go home :- time(T), T >= 17:00pm.

time to go homeI :> stopwork, go to busstopA, takebusA.

6



Or, the agent’s internal state may change with time, given her internal rules of func-
tioning (below, she gets hungry after some time from last meal), which may imply
setting achievement goals (get food) and making actions (eat food):

hungry :- time(T), time last meal(T1), finishedenergy(T,T1).

hungryI :> get food, eat foodA.

Notice that the reaction to an internal event corresponding to a maintenance goal
resembles what in the BDI approach is called an “intention” , i.e., the act of taking
measures in order to reach a desirable state.

Another reason why an internal event may initially fail and then succeed is that the
state of the external world changes with time. In the example below, a meal is ready as
soon as the cooking time has elapsed. The definition uses timestamps: the agent knows
when the soup was previously (postfixP ) put on fire from the enclosed timestamp, and
can thus estimate whether the cooking time has elapsed:

soupready :- soupon fireP:T,

cookingtime(soup,K), time elapsed(T,K).

soupreadyI :> takeoff pan from stoveA, turn off the fireA.

Or also, there may be new observations that make the internal event true:

ready(cake) :- in the oven(cake), color(cake,golden), smell(cake,good).

readyI(cake):> take from oven(cake), switchoff the oven, eat(cake).

Or, the reasoning about a present event may lead to a conclusion or to a new belief,
that may trigger further activity. In a previous example, we have the conclusionhappy,
drawn from the present eventbell rings (but in general, this conclusion will be possibly
drawn from several other conditions). It may be reasonable to consider “happiness” as
a relevant aspect of the agent’s state, and thus interpret predicatehappyas an internal
event, that causes a reaction (e.g., a smile) whenever true.

visitor arrived :- bell ringsN.

happy :- visitor arrived.

happyI :> smileA.

This shows that internal events not only can model maintenance goals, but can also
model a kind of “consciusness” or “introspection” of the agent about her private state of
affairs. When internal events are used in this way, the definition of the reaction specifies
a sort of “individuality” of the agent, i.e., a kind of peculiar behaviour not strictly
related to a need.

7



3.3 Past Events

The agent remembers events and actions, thus enriching her reasoning context. An event
(either external or internal) that has happened in the past will be calledpast event,
and writtenbell ringsP , happyP , etc., postfixP standing for “past”. Similarly for
an action that has been performed. It is also possible to indicate to the interpreter plain
conclusions that should be recorded aspast conclusions(which, from a declarative point
of view, are just lemmas). Past events are time-stamped, i.e., they are actually stored in
the form:predP : timestamp.

Then, past events can remind the agent of:

– An external event that has happened; in this case, the time-stamp refers to the mo-
ment in time when the agent has reacted to the event.

– An internal event that has taken place; also in this case, the time-stamp refers to
reaction

– An action that has been performed; the time-stamp refers to when the action has
been done.

– A conclusion that has been reached; the time-stamp records when.

It is important to notice that an agent cannot keep track ofeveryevent and action
for an unlimited period of time, and that, sometimes, subsequent events/actions can
make former ones no more valid. Then, we must equip an agent with the possibility to
remember, but also to forget things.

According to the specific item of knowledge, the agent may want:

– To remember it forever.
– To forget it after a certain time.
– To forget it as as soon as subsequent knowledge makes it no more valid.

Moreover, if the recorded item concerns an event that may happen several time (i.e.,
rain) the agent may want:

– To remember all the occurrences.
– To remember only some of them, according to some conditions (the simplest one

is a time-interval).
– To remember only the last occurrence.

In essence, there is a need to express forms of meta-information about the way in
which the agent manages her knowledge base. Modifying this meta-information makes
the behavior of the agent different. However, these aspects cannot be expressed in the
agent logic program, which is a first-order Horn theory. Nor we want to hardwire them
in the implementation.

Then, we have introduced the possibility of definingdirectives, that are by all means
part of the specification of an agent, but are not part of the logic program. They are an
input to the interpreter, and can be modified without altering (and even without looking
at) the logic program, in order to “tune ” the agent behavior.

8



Then, all the above-mentioned conditions can be specified via directives. Examples
of directives are the following:

keep predP until Time.

wherePredP is removed at the timeTime,

keep predP until Condition.

wherePredP is removed whenCondition becomed true,

keep predP forever.

wherePredP is never removed (think as an example to the birth-date of people, as a
kind of information that never expires).

As a default, just the last occurrence ofPredP is kept, with its time-stamp, thus
overriding previous ones. A directive can however alter this behavior, and the agent can
look for various versions (for the sake of simplicity, we do not detail this point here).
In the agent program, when referring toPredP the agent implicitly refers to the last
version.

If the directives for keeping/removing past events/actions/conclusions are specified
carefully, we can say that the set of the last versions of past events/actions/conclusions
constitutes an implicit representation of theframe axiom. This because this set repre-
sents what has happened/has been concluded, and has not been affected yet by what has
happened later in the agent evolution.

Past events, past conclusions and past actions, which constitute the “memory” of the
agent, are an important part of the (evolving) context of an agent. Memories make the
agent aware of what has happened, and allow her to make predictions about the future.

It is interesting to notice that DALI management of past events allows the program-
mer to easily defineEvent Calculusexpressions. The Event Calculus (EC) has been
proposed by Kowalski and Sergot [11] as a system for reasoning about time and ac-
tions in the framework of Logic Programming. The essential idea is to have terms,
calledfluents,which are names of time-dependent relations. Kowalski and Sergot write
holds(r(x, y), t) which is understood as “fluentr(x, y) is true at time t”.

Take for instance the default inertia law formulated in the event calculus as follows:

holds(f,t)← happens(e),

initiates(e,f),

date(e,ts),

t s < t,

not clipped(ts,f,t)

9



whereclipped(ts, f, t) is true when there is record of an event happening betweents
andt that terminates the validity off . In other words,holds(f, t) is derivable whenever
in the interval between the initiation of the fluent and the time the query is about, no
terminating events has happened.

In DALI, assuming that the program contains suitable assertion forinitiates as
well as the definition ofclipped, this law could be immediately reformulated as fol-
lows. We just reinterpretHappens(e), date(e, ts) as a lookup in the knowledge base
of past events, whereevp finds an eventE with its timestampTs (where, in this case,
Ts initiates fluentf ):

holds(f,T) :- evp(E,Ts),

initiates(E,T),

T s < t,

not Clipped(Ts,f,T)

The representation can be enhanced by definingholds as an internal event. This
means, the interpreter repeatedly attempts to proveholds(f, T ). Upon success, a re-
active rule can state what to do in consequence of this conclusion. Then,holds(f, T )
will be recorded as a past eventholdsP (f, T ), thus creating a temporal database where
holds atoms are kept, and possibly removed according to the associated directives.

3.4 Goals

A special kind of internal event is agoal. Differently from the other internal events,
goals start being attempted either when encountered during the inference process, or
when invoked by an external event. Each goalG will be automatically attempted until it
succeeds, and then expires. Moreover, if multiple definitions ofG are available, they are
(as usual) applied one by one by backtracking, but success of one alternative prevents
any further attempt. attempt. DALI goals are a way of implementing [12]achievement
goals, that must be attempted whenever needed, and possibly decomposed into sub-
goals.

We have implemented goals (postfixG) on top of internal events, by exploiting a
practically useful role of past conclusions: i.e., that of allowing one to eliminate subse-
quent alternatives of a predicate definition upon success of one of them. Assume that
the user has designated predicateq as a conclusion to be recorded (it will be recorded
with syntaxqP ). Then, she can state that only one successful alternative forq must be
considered (if any), by means of the following definition:

q :- not qP, 〈def1〉.
. . .

q :- not qP, 〈defn〉.

10



Coming back to goals, whenevergoalG becomes true, a reaction may be triggered,
by means of an (optional) reactive rule:

goalGI :> R1, . . . , Rk

A slightly different postfix, namelyGI, is used to distinguish the head of the reac-
tive rule, so as to visually remark that this internal event is in particular a goal. After
reaction, the goal is recorded as a past eventgoalP , so as the agent is aware that it
has been achieved. If there is no reactive rule, the past event is recorded as soon as
goalG becomes true. This past event may in turn allow other internal events or goals to
succeed, and so on. Then, a DALI agent is in constant evolution.

Goals can be used in a planning or problem-solving mechanism, for instance by
employing the following schema.

RULE 1: goal prerequisites

goalG :- condition1, . . . , conditionk(1)
subgoalG1, . . . , subgoalGn(2)
subgoalP1, . . . , subgoalPn(3)

RULE 2: goal achievement

goalGI :> actionA1, . . . , actionAm

where:

part (1) of Rule 1 verifies the preconditions of the goal;
part (2) of Rule 1 represents the invocation of the subgoals;
part (3) of Rule 1 verifies that previously invoked subgoals have been achieved (they

have become past conclusions);
Rule 2 (optional) performs the actions which are needed to achieve the present goal,

and to set its postconditions.

The reason whygoalG must be attempted repeatedly by Rule 1 is that, presumably,
in the first place either some of the preconditions will not hold, or some of the subgoals
will not succeed. The reason why part 3 of Rule 1 is needed is that each of the subgoals
has the same structure as the overall goal. I.e., first its prerequisites have to succeed by
Rule 1, and then it is actually achieved by the reaction in Rule 2 (if present), and finally
becomes a past event. Then, by looking for past events part 3 checks that the subgoals
have been properly achieved.

If the given goal is part of a problem-solving activity, or if it is part of a task, then the
reaction may consist in directly making actions. In planning, the reaction may consist in
updating the plan (by adding to it the actions that will have to be performed whenever
the plan will be executed).

11



For convenience, a conjunctiongoalG,goalPthat attempts a goal and waits for it to
be achieved is denoted by the shorthandgoalD, D standing for “done”. Then, the above
rules can be rewritten more shortly as:

RULE 1: goal prerequisites

goalG :- condition1, . . . , conditionk
subgoalD1, . . . , subgoalDn.

RULE 2: goal achievement

goalGI :> actionA1, . . . , actionAm

Also, it is possible to associate a timeout to the goal: by writinggoalD:T we say
that if the goal has not been achieved within the given time periodT , then it fails.

Notice that the mechanism of DALI goals fulfills the structure advocated in [12] for
achievement goals: there is a backward reasoning part in Rule 1, that possibly splits the
goal into subgoals; there is (if needed) a forward reasoning part in Rule 2, for perform-
ing actions.

An easy improvement, demonstrated below, copes with situation where there are
goals, and the agent may want to achieve as many of them as possible, regardless to the
others.

manygoals :- condition1, . . . , conditionk, goalsG.

goalsG :- goalD1:T1 :: . . . :: goalDn:Tn.

On the invocation ofgoalsG, the interpreter invokes all goals in the body of the rule.
The body succeeds if at least one of them succeeds. This mechanism is composable, in
the sense that any of thegoalGi’s can in turn be defined in this way.

Conceptually, there is a declarative rewriting of the above rule, taking profit of the
fact that if there are alternative definitions forgoalG, then the first successful alternative
is taken. One should then specify as many rules as the possible combinations.

The examples that we propose in the ongoing for STRIPS-like planning are aimed
at showing the power, generality and usability of DALI internal events and goals.

3.5 Coordinating Actions based on Context

A DALI agent builds her own context, as suggested in [12], by keeping track of the
events that have happened in the past, and of the actions that she has performed. As
discussed above, whenever an event (either internal or external) is reacted to, when-
ever an action subgoal succeeds (and then the action is performed), and whenever a
distinguished conclusion is reached, this is recorded in the agent knowledge base.

Past events and past conclusions are indicated by the postfixP , and past actions by
the postfixPA. The following rule for instance says that Susan is arriving, since we

12



know her to have left home.

is arriving(susan):- left homeP(susan).

The following example illustrates how to exploit past actions. We consider an agent
who opens and closes a switch upon a condition. For the sake of simplicity we assume
that no exogenous events influence the switch. The action of opening (resp. closing) the
switch can be performed only if the switch is closed (resp. open). The agent knows that
the switch is closed if she remembers to have closed it previously. The agent knows that
the switch is open if she remembers to have opened it. Predicatesopen andclose are
internal events, that periodically check the opening/closing condition, and, whenever
true, perform the action (if feasible). previously.

open :- openingcond.

openI :> openswitchA.

openswitchA :< switchclosed.

switchclosed :- closeswitchPA.

close :- closingcond.

closeI :> closeswitchA.

closeswitchA :< switchopen.

switchopen :- openswitchPA.

In the example, the agent will remember to have opened the switch. However, as
soon as she closes the switch this record becomes no longer valid and should be re-
moved: the agent in this case is interested to remember only the last action of a se-
quence. As soon as theuntil condition is fulfilled, i.e., the corresponding subgoal has
been proved, the past action is removed. Then, the suitable directives for past actions
will be in this case the following:

keep openswitchPA until closeswitchA.

keep closeswitchPA until openswitchA.

The following example illustrates the use of actions with preconditions. The agent
emits an order for a productProd of which she needs a supply. The order can be done
either by phone or by fax, in the latter case if a fax machine is available. We want to
express that the order can be done either by phone or by fax, but not both, and we do
that by exploiting past actions, and say that an action cannot take place if the other one
has already been performed. Here,not is understood as default negation.

needsupplyE(Prod):> emit order(Prod).

13



emit order(Prod) :- phoneorderA(Prod),

not fax orderPA(Prod).

emit order(P) :- fax orderA(Prod),

not phoneorderPA(Prod).

This can be reformulated in a more elaboration-tolerant way by the constraints:
:- fax orderA(Prod), phoneorderPA(Prod)
:- fax orderPA(Prod), phoneorderA(Prod)
thus eliminating negations from the body of the action rules.

4 Semantics

The DALI interpreter can answer user queries like the standard Prolog interpreter, but in
general it manages a disjunction of goals. In fact, from time to time external and internal
event will be added (as new disjuncts) to the current goal. The interpreter extracts the
events from queues where they occur in the order in which they have been generated.

All the features of DALI that we have previously discussed are modeled in a declar-
ative way. For a full definition of the semantics the reader may refer to [4]. We sum-
marize the approach here, in order to make the reader understand how the examples
actually work.

Some language features do not affect at all the logical nature of the language. In
fact, attempting the goal corresponding to an internal event just means trying to prove
something. Also, storing a past event just means storing a lemma.

Reaction and actions are modeled by suitably modifying the program. This means,
inference is performed not in the given program, but in a modified version where lan-
guage features are reformulated in terms of plain Horn clauses.

Reception of an event is modeled as a program transformation step. I.e., each event
that arrives determines a new version of the program to be generated, and then we have
a sequence of programs, starting from the initial one. In this way, we do not introduce
a concept of state which is incompatible with a purely logic programming language.
Rather, we prefer the concept of program (and model) evolution.

More precisely, we define the declarative semantics of a given DALI program
P in terms of the declarative semantics of a modified programPs, obtained from
P by means of syntactic transformations that specify how the different classes of
events/conclusions/actions are coped with. For the declarative semantics ofPs we take
the Well-founded Model, that coincides with the the Least Herbrand Model if there is
no negation in the program (see [19] for a discussion). In the following, for short we
will just say “Model”. It is important to notice thatPs is aimed at modeling the declar-
ative semantics, which is computed by a bottom-up immediate-consequence operator.
The declarative semantics will then correspond to the top-down procedural behavior of
the interpreter.

We assume that events which have happened are recorded as facts. We have to
formalize the fact that a reactive rule is allowed to be applied only if the corresponding

14



event has happened. We reach our aim by adding, for each event atomp(Args)E , the
event atom itself in the body of its own reactive rule. The meaning is that this rule can
be applied by the immediate-consequence operator only ifp(Args)E is available as a
fact. Precisely, we transform each reactive rule for external events:

p(Args)E :> R1, . . . , Rq.

into the standard rule:

p(Args)E :- p(Args)E,R1, . . . , Rq.

In a similar way we specify that the reactive rule corresponding to an internal event
q(Args)I is allowed to be applied only if the subgoalq(Args) has been proved.

Then, we have to declaratively model actions, without or with an action rule. An
action is performed as soon as its preconditions are trueand it is invoked in the body of
a rule, such as:

B :< D1, . . . , Dh, aA1, . . . , aAk. h ≥ 1, k ≥ 1
where theaAi’s are actions and theDj ’s are not actions. Then, for every action atom
aA, with action rule

aA :- C1, . . . , Cs. s ≥ 1
we modify this rule into:

aA :- D1, . . . , Dh, C1, . . . , Cs.
If aA has no defining clause, we instead add clause:

aA :- D1, . . . , Dh.

We repeat this for every rule in whichaA is invoked.

In order to obtain theevolutionarydeclarative semantics ofP , we explicitly as-
sociate toPs the list of the external events that we assume to have arrived up to a
certain point, in the order in which they are supposed to have been received. We let
P0 = 〈Ps, []〉 to indicate that initially no event has happened.

Later on, we havePn = 〈Progn, Event listn〉, whereEvent listn is the list of the
n events that have happened, andProgn is the current program, that has been obtained
from Ps step by step by means of atransition functionΣ. In particular,Σ specifies that,
at the n-th step, the current external eventEn (the first one in the event list) is added to
the program as a fact.En is also added as a present event. Instead, the previous event
En−1 is removed as an external and present event, and is added as a past event.

Formally we have:

Σ(Pn−1, En) = 〈ΣP (Pn−1, En), [En|Event listn−1]〉
where

ΣP (P0, E1) = ΣP (〈Ps, []〉, E1) = Ps ∪ E1 ∪ E1N

ΣP (〈Progn−1, [En−1|T ]〉, En) =
{{Progn−1 ∪ En ∪ EnN ∪ En−1P } \ En−1N} \ En−1

It is possible to extendΣP so as to deal with internal events, add as facts past actions
and conclusions, and remove the past events that have expired.

Definition 1. LetPs be a DALI program, andL = [En, . . . , E1] be a list of events. Let
P0 = 〈Ps, []〉 andPi = Σ(Pi−1, Ei) (we say that eventEi determinesthe transition

15



fromPi−1 to Pi). The listP(Ps, L) = [P0, . . . , Pn] is theprogram evolutionof Ps with
respect toL.

Notice thatPi = 〈Progi, [Ei, . . . , E1]〉, whereProgi is the program as it has been
transformed after the ith application ofΣ.

Definition 2. LetPs be a DALI program,L be a list of events, andPL be theprogram
evolutionof Ps with respect toL. Let Mi be the Model ofProgi. Then, the sequence
M(Ps, L) = [M0, . . . ,Mn] is themodel evolutionof Ps with respect toL, andMi the
instant model at stepi .

The evolutionary semantics of an agent represents the history of the events received
by the agents, and of the effect they have produced on it, without introducing a con-
cept of a “state”. It is easy to see that, given event list[En, . . . , E1], DALI resolution
simulates standard SLD-Resolution onProgn.

Definition 3. LetPs be a DALI program,L be a list of events. Theevolutionary seman-
ticsEPs

of Ps with respect toL is the couple〈P(Ps, L),M(Ps, L)〉.

The behaviour of DALI interpreter has been modeled and checked with respect to
the evoltionary semantics by using the Murφ model checker [8].

5 A sample application: STRIPS-like planning

In this section we show that the DALI language allows one to define an agent that
is able to perform planning (or problem-solving) in a STRIPS-like fashion, without
implementing a metainterpreter.

For the sake of simplicity, the planning capabilities that we consider are really basic,
e.g., we do not consider here the famous STRIPS anomaly, and we do not have any
pretense of optimality.

We consider the sample task of putting on socks and shoes. Of course, the agent
should put her shoes on her socks, and she should put both socks and both shoes on.

We suppose that some other agent sends a message to ask our agent to wear the
shoes. This message is an external event, which is the head of a reactive rule: the
body of the rule specifies the reaction, which in this case consists in invoking the goal
put your shoesG.

goE :> put your shoesG.

This goal will be attempted repeatedly, until it will be achieved.

It is important to recall the mechanism of DALI goals:

– For a goalg to be achieved, first of all the predicategG must become true, by means
of a rulegG :- Conds, whereConds specify preconditions and subgoals.

16



– For a goalg to be achieved, as soon asgG becomes true the (optional) reactive
rule gGI :>PostAndActions is activated, that performs the actions and/or sets
the postconditions related to the goal.

– as soon as a goalgG is achieved (or, in short, we say thatgG succeeds, even though
this involves the above two steps), it is recorded as a past event, in the formgP .

– the conjunctiongG, gP that invokes a goal and waits for it to be achieved is denoted
by gD.

This explains the structure of the rule below:

put your shoesG:- put right shoeD, put left shoeD.

In particular, it is required that the agent puts both the right and left shoe on. This
means,put your shoesGwill become true as soon as both of its subgoals will have been
achieved. In practice, after the invocation of the subgoals, the overall goal is suspended
until the subgoals become past events.

In the meantime, the subgoalsput right shoeGand put left shoeGwill be at-
tempted.

put right shoeG:- haveright shoe, put right sockD.

This rule verifies a precondition, i.e., that of having the shoe to put on. Then it
attempts the subgoalput right sockGand waits for its success, i.e., waits for the subgoal
to become a past event. The rule for the subgoal is:

put right sockG :- haveright sock.

This rule doesnt invoke subgoals, but it just checks the precondition, i.e., to have
the right sock. Upon success, the corresponding reactive rule is triggered:

put right sockGI :> right sockon.

Now we have two possibilities: in a problem-solving activity, we will have the rule:

right sockon :- wear right sockA.

that actually executes the action of wearing the sock.

In a planning activity, we will have instead the rule:

17



right sockon :- updateplan(wearright sock).

that adds to the plan that is being built the step of wearing the sock. In any case, the
goal put right sockGhas been achieved, and will be now recorded as past event, and
thusput right sockDbecomes true. Consequently, alsoput right shoeGbecomes true,
thus triggering the reactive rule:

put right shoeGI :> right shoeon.

After having made (or recorded) the action of wearing the shoe,put right shoeP
will become true, thus obtainingput right shoeD.

Analogously, the agent will eventually record the past eventput left shoeP, thus
obtainingput left shoeD. Since the subgoals of wearing the right and the left shoe are
unrelated, no order is enforced on their execution. Only, the overall goal becomes true
whenever both of them have been achieved.

At this point, the reactive rule related to the overall goal will be activated:

put your shoesGI:> message(tellshoesonA).

which means that the goal has succeeded, and in particular the agent declares to
have the shoes on.

The planning mechanism that we have outlined consists of a descendant process
that invokes the subgoals, and of an ascending process that executes (or records) the
corresponding actions.

This methodology allows an agent to construct plans dynamically. In fact, a change
of the context, i.e., new information received from the outside, can determine success
of subgoals that could not succeed before.

A future direction of this experimental activity is that of writing a meta-planner with
general meta-definitions for root, intermediate and leaf goals. This meta-planner would
accept a list of goals, with the specification of their kind, and for each of them the list
of preconditions, subgoals and actions.

Below we show an example of use of conditional goal rules, where
gG :- Conds, gD1 :: , . . . , , :: gDn

means, as previously discussed, that ifConds are true, then the body of the rule suc-
ceeds provided that at least one of thegDi’s succeeds (though the interpreter invokes
them all, and tries to achieve as many as possible). The point is that the failure of non-
critical partial objectives does not determine the failure of the overall goal. The example
consists in an agent that has to go to the supermarket in order to buy milk and bananas,
and to the hardware shop in order to buy a drill. He tries to go both to the supermarket
and to the hardware shop. However, if one of them is closed he just goes to the other

18



one. In each shop, he tries to buy what he needs, without making a tragedy if something
is missing. There is a failure (and then the agent is disappointed) only if either both
shops are closed, or all items are missing.

buy :- buy allD.

disappointed :- not buy.

buyI :> go homeA.

disappointedI:> somereaction.

buy allG :- buy at supermarketD:: buy at hardwareshopD.

buy at supermarketG:- supermarketopen,

buy bananasD:: buy milkD.

buy at hardwareshopG :- hardwareshopopen,

buy drillG .

6 Conclusions

We have presented how to implement a naive version of STRIPS-like planning in DALI,
mainly by using the mechanism of internal events and goals. However, the ability of
DALI agents to behave in a “sensible” way comes from the fact that DALI agents have
several classes of events, that are coped with and recorded in suitable ways, so as to
form a context in which the agent performs her reasoning. In fact, we have argued
that DALI fulfills many of the points raised in [12] about which features any logical
formalism aimed at defining intelligent agents should possess.

A simple form of knowledge update and “belief revision” is provided by the con-
ditional storing of past events, past conclusions and past actions. They constitute the
“memory” of the agent, and are an important part of her evolving context: memories
make the agent aware of what has happened, and allow her to make predictions about
the future. The ability of specifying how long and under which conditions memories
should be kept allows the agent behavior to be specified in a more sophisticated and
flexible way. For the sake of flexibility and of conceptual clarity, the directives that
cope with the knowledge base of the agent memories are distinct from the agent logic
program. In the future however, more sophisticated belief revision strategies will be
integrated into the formalism.

DALI is fully implemented in Sicstus Prolog [22]. The implementation, together
with a set of examples, is available at the URL http://gentile.dm.univaq.it/dali/dali.htm.

7 Acknowledgments

Many thanks to Stefano Gentile, who joined the DALI project, cooperates to the imple-
mentation of DALI, has designed the language web site, and has supported the authors

19



in many ways. We also gratefully acknowledge Prof. Eugenio Omodeo for useful dis-
cussions and for his support to this research.

References

1. J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzarone, Reflection Principles
in Computational Logic, Journal of Logic and Computation, Vol. 10, N. 6, December
2000, Oxford University Press, UK.

2. S. Costantini, Towards active logic programming, In A. Brogi and P. Hill,
(eds.), Proc. of 2nd International Works. on Component-based Software De-
velopment in Computational Logic (COCL’99), PLI’99, Paris, France, Septem-
ber 1999, http://www.di.unipi.it/ brogi/ ResearchActivity/COCL99/ proceed-
ings/index.html.

3. S. Costantini, S. Gentile and A. Tocchio, DALI home page:
http://gentile.dm.univaq.it/dali/dali.htm.

4. S. Costantini and A. Tocchio, A Logic Programming Language for Multi-agent
Systems, In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.), Logics in Artificial
Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002, Cosenza, Italy, September
2002, LNAI 2424: Springer-Verlag, Berlin, 2002.

5. S. Costantini, A. Tocchio (submitted). Communication in the DALI Agent-
Oriented Logic Programming Language. submitted to ICLP’04, International Con-
ference on Logic Programming.

6. P. Dell’Acqua, F. Sadri, and F. Toni, Communicating agents, In Proc. International
Works. on Multi-Agent Systems in Logic Progr., in conjunction with ICLP’99, Las
Cruces, New Mexico, 1999.

7. M. Fisher, A survey of concurrent METATEM – the language and its applica-
tions, In Proc. of First International Conf. on Temporal Logic (ICTL), LNCS 827,
Springer Verlag, Berlin, 1994.

8. B. Intrigila, I. Melatti, A. Tocchio, Model-checking DALI with Murφ, Tech. Rep.,
Univ. of L’Aquila, 2004.

9. C. M. Jonker, R. A. Lam and J. Treur, A Reusable Multi-Agent Architecture for
Active Intelligent Websites. Journal of Applied Intelligence, vol. 15, 2001, pp. 7-24.

10. R. A. Kowalski and F. Sadri, Towards a unified agent architecture that combines
rationality with reactivity, In Proc. International Works. on Logic in Databases,
LNCS 1154,Springer-Verlag, Berlin, 1996.

11. R. A. Kowalski and M. A. Sergot, A logic-based calculus of events, New Generation
Computing 4, 1986.

12. R. A. Kowalski, How to be Artificially Intelligent - the Logical Way, Draft, revised
February 2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

13. M. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic Programming,In:
R. Kowalski and K. Bowen (eds.), Logic Programming: Proc. of 5th International
Conference and Symposium, The MIT Press, 1988.

14. M. Gelfond and V. Lifschitz, Classical Negation in Logic Programming and Disjunctive
Databases,New Generation Computing 9, 1991: 365–385.

15. How to be Artificially Intelligent the Logical Way,book drafta (revised February 2004),
Available on-line at the URL:
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html

20



16. V. Lifschitz, Answer Set Planning,in: D. De Schreye (ed.) Proc. of the 1999 Inter-
national Conference on Logic Programming (invited talk), The MIT Press, 1999:
23–37.

17. W. Marek and M. Truszczyński, Stable Models and an Alternative Logic Programming
Paradigm, In: The Logic Programming Paradigm: a 25-Year Perspective, Springer-
Verlag, Berlin, 1999: 375–398.

18. D. Poole, A. Mackworth, R. Goebel, Computational Intelligence: ISBN 0-19-
510270-3, Oxford University Press, New York, 1998.

19. H. Przymusinska and T. C. Przymusinski, Semantic Issues in Deductive Databases
and Logic Programs, R.B. Banerji (ed.) Formal Techniques in Artificial Intelligence,
a Sourcebook: Elsevier Sc. Publ. B.V. (North Holland), 1990.

20. A. S. Rao, AgentSpeak(L): BDI Agents speak out in a logical computable language,
In W. Van De Velde and J. W. Perram, editors, Agents Breaking Away: Proc. of
the Seventh European Works. on Modelling Autonomous Agents in a Multi-Agent
World, LNAI: Springer Verlag, Berlin, 1996.

21. A. S. Rao and M. P. Georgeff, Modeling rational agents within a BDI-architecture,
In R. Fikes and E. Sandewall (eds.), Proc. of Knowledge Representation and Rea-
soning (KR&R-91): Morgan Kaufmann Publishers: San Mateo, CA, April 1991.

22. SICStus home page: http://www.sics.se/sicstus/.
23. Web location of the most known ASP solvers:

aspps: http://www.cs.uky.edu/ai/aspps/
CCalc: http://www.cs.utexas.edu/users/tag/cc/
Cmodels: http://www.cs.utexas.edu/users/tag/cmodels.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-potsdam.de/ linke/nomore/
SMODELS: http://www.tcs.hut.fi/Software/smodels/

24. V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, and R. Ross,
Heterogenous Active Agents: The MIT Press, 2000.

21


