
Modeling preferences on resource consumption
and production in ASP

Stefania Costantini? and Andrea Formisano??

Abstract. Recently we have proposed RASP, an extension of Answer
Set Programming that permits declarative specification and reasoning on
consumption and production of resources. In this paper, we extend this
framework to allow the declarative specification of preferences among al-
ternative use of different resources. We provide syntax and semantics for
the resulting formalism, where preferences expressed on resource usage
induce a preference order on answer sets.

Key words: Answer set programming, quantitative reasoning, prefer-
ences, non-monotonic logic programming, language extensions.

Introduction

As it is well-known, Answer Set Programming (ASP) is a form of logic program-
ming based on the answer set semantics [13], where solutions to a given problem
are represented in terms of selected models (answer sets) of the corresponding
logic program [19]. ASP is nowadays applied in many areas, including problem
solving, configuration, information integration, security analysis, agent systems,
semantic web, and planning (see, among others, [5, 26, 2]).

However, the possibility was lacking of performing some kind of quantitative
reasoning which is instead possible in non-classical logics such as, for instance,
Linear Logics [15] and Description Logics [3]. In recent work [9], an extension
of ASP, called RASP (standing for Resourced ASP), has been proposed so to
support declarative reasoning on consumption and production of resources.

In this paper, we go further in this extension, by adding declarative prefer-
ences to the specification of production/consumption processes. In particular, in
realizing the same process (modeled through the firing of rules), one may prefer
to produce and/or consume certain resources rather than another ones. This
extension can be particularly useful in configuration applications where one can,
for instance, prefer to save money while spending more time or vice versa or
may prefer to employ a certain amount of cheap components rather than a little
amount of expensive parts.

Let us briefly recall syntax and intended semantics of RASP programs
through a simple example. We will then modify such example to informally in-
troduce preferences. A RASP program is composed of r-facts and r-rules, where
numbers associated with the heads of r-facts and rules indicate which amount
? Università di L’Aquila. Email: stefcost@di.univaq.it

?? Università di Perugia. Email: formis@dipmat.unipg.it

of a certain resource is respectively: available, in case of r-facts; produced, in
case of r-rules, where production can take place if the body holds (this implies
that required resources are either available or produced). Available or produced
resources can in turn be consumed: Quantities are associated to atoms occurring
in the bodies of r-rules as well. The example concerns the preparation of desserts:

cake:1← egg :3, flour :4, sugar :3. flour :8. egg :3.
ice cream:1← egg :2, sugar :2, milk :2. sugar :6. milk :3.

Atoms of the form q:a are called amount-atoms, where the amount-symbol a de-
notes the quantity of that resource which is either produced (if the amount-atom
is in the head of a rule), or consumed (if it is in the body), or available (if it is
a fact), respectively. We may notice that different solutions stem, in this case,
from the fact that, with the available ingredients, one may prepare either a cake
or an ice-cream, but not both.

In general, usual ASP literals (possibly involving negation-as-failure) may
occur in rules. Semantics of a RASP program is determined by interpreting usual
literals as in ASP (i.e., by exploiting stable model semantics) and amount-atoms
in an auxiliary algebraic structure (that supports operations and comparisons).
For instance, we could modify the above rule by requiring that ice-cream can be
made only if there is a fridge and there is someone who is a good cook:

ice cream:1← egg :2, sugar :2, milk :2, fridge, a cook is here.
a cook is here ← is here(remy), is here(linguini).
is here(remy). is here(linguini).

Intuitively, the first rule of this program is applicable only in correspondence of
models that satisfy the literals fridge and a cook is here.

RASP already offers some constructs to express limited forms of preferences
on resource consumption/production. For instance, a number of budget policies
are exploitable to control rule firings and, consequently, to influence what re-
sources to produce and in which quantity, and whether the firing of r-rules is
optional or mandatory. The various policies can be combined in a mixed strat-
egy by choosing one of them for each single rule of the program. These features,
among others, are fully dealt with in [9]. In what follows we develop a general
and more expressive form of preference on resource usage.

Recall the initial example and suppose you might prepare a cake either with
corn flour or with potato flour. The following rules express the two possibilities,
but do not say which one you would prefer, assuming both of them to be feasible:

cake:1← egg :3,flour :4, sugar :3.
cake:1← egg :3, potato flour :3, sugar :3.

We propose in this paper P-RASP (RASP with preferences), to allow one to
explicitly state which resource (s)he would prefer to use, e.g., the formulation

cake:1← potato flour :3>flour :4, egg :3, sugar :3.

indicates that consuming potato flour is preferred onto consuming corn flour. Or
also, if the recipe includes milk, one might prefer to use skim milk if available:

cake:1← potato flour :3>flour :4, skim milk :2>whole milk :2, egg :3, sugar :3.

2

In this reformulation, we have two preference lists (or for short p-lists). Actually,
p-lists may involve any number of amount-atoms. The intuitive reading is that
leftmost elements of a p-list have higher priority. P-lists may occur in the head
of r-rules, as shown in the example below, where one prefers to employ available
ingredients to make an ice-cream instead of two cups of zabaglione:

ice cream:1>zabaglione:2← skim milk :2>whole milk :2, egg :2, sugar :3.

The introduction of p-lists requires a concept of preferred answer set. In
case several p-lists occur either in one rule or in different r-rules, it is necessary
to establish which answer set better satisfies the preferences. Intuitively, if we
choose to consider as “better” the answer sets which satisfy the higher number
of leftmost elements, in the last example we would have: Producing an ice-cream
with skim milk is the best solution. Producing: (a) an ice-cream with whole milk
or (b) two zabagliones with skim milk would be equally good (but worse than
the previous solution) as each of them employs the leftmost element of one p-list.
Producing two zabagliones with whole milk is the less preferred solution. Clearly,
one has to choose the best possible solution, given the available resources. One
might choose other strategies, e.g. one might give higher priorities to p-lists in
rule heads, where consequently solution (a) above would become better than
(b). One may also imagine to introduce a choice among different strategies to
be employed in different contexts. Finally, preferences may be conditional. One
may for instance prefer skim milk when on a diet, i.e. the last rule may become:

ice cream:1>zabaglione:2← (skim milk :2>whole milk :2 IF diet),
egg :2, sugar :3.

If diet does not hold, then the preference list reduces to a disjunction, i.e. either
skim milk or whole milk can be indistinctly used. This generalizes to several
p-lists, like in the example below:

(ice cream:1>zabaglione:2 IF summer) ←
(skim milk :2>whole milk :2 IF diet), egg :2, sugar :3.

In this paper, we propose a definition of P-RASP and its semantics, we briefly
addresses the complexity and the implementation issues, and outline a compari-
son with related work. We notice that P-RASP has been fully implemented but
for the sake of space, a description of the implementation is out of the scope of
this paper. The interested reader can refer to [9, 10].

1 From RASP to P-RASP: Syntax

In order to formally introduce syntax and semantics of P-RASP, we need to
briefly summarize the basic notions about RASP syntax as presented in [9].

To accommodate the new language expressions that involve resources and
their quantities, the underlying language of RASP is partitioned into P rogram
symbols and Resource symbols. Precisely, let 〈Π, C,V〉 be an alphabet where
Π = ΠP ∪ΠR is a set of predicate symbols such that ΠP ∩ΠR = ∅, C = CP ∪CR

3

is a set of symbols of constant such that CP ∩ CR = ∅, and V is a set of variable
symbols. The elements of CR are said amount-symbols, while the elements of ΠR

are said resource-predicates. A program-term is either a variable or a constant
symbol. An amount-term is either a variable or an amount-symbol.

Amount-atoms are introduced in addition to plain ASP atoms, here called
program atoms. Let A(X,Y) denote the collection of all expressions of the form
p(t1, . . . , tn), with p ∈ X and {t1, . . . , tn} ⊆ Y . Then, a program atom is an
element of A(ΠP , C∪V). An amount-atom is an expression of the form q:a where
q ∈ ΠR ∪A(ΠR, C ∪ V) and a is an amount-term. Let τR = ΠR ∪A(ΠR, C). We
call elements of τR resource-symbols. E.g., in the two expressions p:3 and q(2):b, p
and q(2) are resource-symbols (with p, q ∈ ΠR and 2 ∈ C) aimed at defining two
resources which are available in quantity 3 and b, resp., (with 3, b ∈ CR amount-
symbols). Expressions such as p(X):V where V,X are variable symbols are also
allowed, as resources can be either directly specified as constants or derived.
Notice that the set of variables is not partitioned, as the same variable may occur
both as a program term and as an amount-term. Ground amount- or program-
atoms contain no variables. As usual, a program-literal L is a program-atom A
or the negation not A of a program-atom (intended as negation-as-failure).1 If
L = A (resp., L = not A) then L denotes not A (resp., A).

Definition 1. A resource-literal (r-literal) is either a program-literal or an
amount-atom.

Therefore, we do not allow negation of amount-atoms. (See [9] for a discussion
about this point.) Finally, we distinguish between plain rules and rules that
involve amount-atoms. In particular, a program-rule is defined as a regular ASP
rule, including the case of ASP constraints, i.e., rules with empty head. Beside
program-rules we introduce resource-rules which differ from program rules in
that they may contain amount-atoms.2

Definition 2. A resource-proper-rule has the form

H ← B1, . . . , Bk (1)

where B1, . . . , Bk, k > 0 are r-literals and H is either a program-atom or a
(non-empty) list of amount-atoms.

Resource-facts are intended to model the fixed amount of resources that are
available “from the beginning”. They are defined as follows:

Definition 3. A resource-fact (r-fact, for short) has the form H ← . , where
H is an amount-atom q:a and a is an amount-symbol.
1 We will only deal with negation-as-failure. Though, classical negation of program

literals could be used in (P-)RASP programs and treated as usually done in ASP.
2 A more general definition of r-rule is given in [9] that offers the possibility of express-

ing bounds on the (finite) number of times each r-rule is fired. Here, for simplicity,
we restrict ourselves to the simpler case in which each r-rule may be fired at most
once. The treatment of the general case does not offer significant differences.

4

According to the definition, the amount of an initially available resource has to
be explicitly stated. Thus, in an r-fact the amount-term a cannot be a variable.

Definition 4. A resource-rule (r-rule, for short) can be either a resource-
proper-rule or a resource-fact. A RASP-rule (rule, for short) γ is either a
program-rule or a resource-rule. An r-program is a finite set of RASP-rules.

Remark 1. Notice that we admit several amount-atoms in the head of a resource-
proper-rule, while the case in which a rule γ has an empty head is admitted only
if γ is a program-rule (i.e., γ is an ASP constraint).

The list of amount-atoms composing the head of an r-rule has to be intended
conjunctively, i.e., as a collection of those resources that are all contemporane-
ously produced by firing the rule.

P-RASP programs are obtained from RASP programs by introducing alter-
natives in using resources expressed by preference lists:

Definition 5. A preference-list of amount-atoms (p-list, for short) is a writing
of the form q1:a1> · · ·>qh:ah, where h > 2 and q1, . . . , qh are pairwise distinct
resource-symbols. We say that the amount-atom qi:ai has grade of preference i
in the p-list.

We have now to extend the definition of an r-rule accordingly. This is done by
including p-lists in r-literals:

Definition 6. A P-RASP resource-literal (r-literal) is either a program-literal
or an amount-atom or a p-list.

In practice, P-RASP rules differ from RASP rules in that p-lists are admitted
in place of amount-atoms. More precisely, the syntax of an r-rule in P-RASP is
defined as in Def. 2 where in (1) some of the B1, . . . , Bk, H may be p-lists.

Intuitively speaking, a p-list plays a role similar to an exclusive disjunction of
amount-atoms. If a p-list occurs in the body (resp. head) of a rule, it encodes the
requirement that one (and only one) resource among q1, . . . , qh has to be con-
sumed (resp. produced), in the indicated amount, if the rule is fired. Moreover,
qi is preferred to qj , for i < j.

Remark 2. The kind of preference among alternative uses of resources expressed
by p-lists have a local scope: each p-list is seen in the context of a particular rule
(which models a specific process in manipulating some amounts of resources).
Clearly, such a local aspect is strictly correlated with the constraints on global re-
source balance and resource availability. Consequently, preferences locally stated
for different rules might/should be expected to interact “over distance” with
those expressed in other rules. Nevertheless, different preference orders on the
same amount-atoms can be expressed in different p-lists.

Example 1. Assembling different PCs requires different sets of components
(motherboard, processor(s), ram modules, etc.) and preference might be im-
posed depending on the kind of PC. For instance, in case of servers one might

5

prefer SCSI disks rather than EIDE disks and vice versa for normal PCs:
cpu:5. scsihd :5. eidehd :9. motherboard :7. ram module:20.
pc(server):1← cpu:2, (scsihd :2>eidehd :2), motherboard :1, ram module:4.
pc(desk):1← cpu:1, (eidehd :2>scsihd :2), motherboard :1, ram module:2.

Notice that completely antithetic orders are expressed in the two r-rules.

2 Semantics of P-RASP

In this section we first define the semantics of ground P-RASP programs. The
general case is then easily dealt with by considering the grounding of a program
P to be the set of all ground instances of rules of P that are obtainable through
ground substitutions using constants occurring in P .

Semantics of a (ground) P-RASP program is determined by interpreting
program-literals as in ASP and amount-atoms in an auxiliary algebraic structure
that supports operations and comparisons. The rationale behind the proposed
semantic definition is the following. On the one hand, we translate each r-rule
into a fragment of a plain ASP program, so that we do not have to modify the
definition of stability which remains the same: this is of some importance in
order to make the several theoretical and practical advances in ASP still avail-
able for RASP and P-RASP. However, an answer set of a P-RASP program will
support the firing of an r-rule only if: the rule is satisfied (in the usual way) as
concerns its program-literals; and the requested amounts are allocated for all the
resource-atoms. Hence, an interpretation (and consequently an answer set) for
an r-program has two components: a set of program atoms and an allocation of
actual quantities to amount-atoms.

In describing the semantics of an r-program P we will proceed as follows. First
we fix an algebraic structure to represent quantities and supports operations on
them. Then, we develop a representation for collections of amounts with positive
balance. Each of these collections will be a potential allocation of quantities to all
the amount-atoms relative to a single resource symbol in P . Then, we introduce
the notion of r-interpretation of P by selecting an allocation of amounts for each
resource symbol in P .

Modeling Amounts. Amounts are modeled by choosing a collection Q of
quantities, the operations to combine and compare quantities, and a mapping
κ : CR → Q that associates quantities to amount-symbols. A natural choice is
Q = Z. In this case, positive (resp. negative) integers model produced (resp. con-
sumed) amounts of resources. Alternative options for Q are obviously viable. (For
instance, one could choose Q to be the set of rational numbers.) For the sake
of simplicity, in the rest of the presentation, we will adopt a simplification by
identifying CR with Z (and κ being the identity). This will not cause loss in the
generality of the treatment.

Notation. Before going on, we introduce some useful notation. Given two sets
X,Y , let FM(X) denote the collection of all finite multisets of elements of X,
and let Y X denote the collection of all (total) functions having X and Y as

6

domain and codomain, respectively. For any (multi)set Z of integers,
∑

(Z)
denotes their sum (e.g.,

∑
({[2, 5, 3, 3, 5]}) = 18).

Given a collection S of (non-empty) sets, a choice function c(·) for S is a
function having S as domain and such that for each s in S, c(s) is an element
of s. In other words, c(·) chooses exactly one element from each set in S.

In order to deal with the preference order syntactically expressed by a p-list,
we consider each amount-atom in a p-list as marked with an integer index. Such
indexes are intended to represent the grade of preference of the amount-atoms
(cf., Def. 5). Operationally, for each p-list, its composing amount-atoms will be
associated, from left to right, with successive indexes starting from 1; for simple
amount-atoms, the index will always be 0.

As mentioned, the elements of Q = Z provide the interpretations for amount
symbols. To deal with the preference orders expressed by p-lists, we need a
structure slightly richer that Q. In fact, to take into account of the prefer-
ence grades, we will interpret amount-atoms in N × Q. We call amount cou-
ples the elements of N × Q. For instance: an interpretation for a p-list such as
skim milk :2>whole milk :2, occurring in the head of an r-rule, will involve one
of the couples 〈1, 2〉 and 〈2, 2〉, where the first components of the couples reflect
the grades of preference and the second elements are the quantities.3 For single
amount-atoms (in a head of an r-rule), such as egg :2, no preference is involved
and a potential interpretation is the amount couple 〈0, 2〉.

Given an amount couple r = 〈n, x〉, let grade(r) = n and amount(r) = x.
We extend such a notation to sets and multisets, as one expects: namely, if X
is a multiset then grade(X) is defined as the multiset {[n | 〈n, x〉 is in X]}, and
similarly for amount(X). E.g., if X = {[〈1, 2〉, 〈2, 4〉, 〈3, 1〉, 〈1, 2〉]} then grade(X)
is {[1, 2, 3, 1]} and amount(X) is {[2, 4, 1, 2]}.

Interpretation of P-RASP Programs. An interpretation for P must deter-
mine an allocation of amounts for all occurrences of such amount symbols in P .
We represent produced quantities (corresponding to amount-atoms in heads) by
positive values, while negative values model consumed amounts (corresponding
to amount-atoms in bodies). Since amounts and resource-symbols are used to
model production and consumption of “real world” objects, we must take into
account the obvious constraint that we cannot consume more than what is pro-
duced. In other words, for each resource symbol q, the overall sum of quantities
allocated to amount-atoms of the form q:a must not be negative. The collection
SP of all potential allocations (i.e., those having a non-negative global balance)—
for any single resource-symbol occurring in P (considered as a set of rules)—is
the following collection of mappings:

SP =
{
F ∈ (FM(N×Q))P | 0 6

∑(⋃
γ∈P

amount
(
F (γ)

))}
(2)

3 Recall that we are identifying the set of amount-symbols CR with the domain of
quantities Q = Z. Consequently, the symbol 2 in the amount couple 〈1, 2〉 is an
element of Q, whereas the symbol 2 in skim milk :2 is an element of CR.

7

The rationale behind the definition of SP is as follows: Let q be a fixed resource-
symbol. Each element F ∈ SP is a function that associates to every rule γ ∈ P a
(possibly empty) multiset F (γ) of amount couples, assigning certain quantities
to each occurrence of amount-atoms of the form q:a in γ. All such F s satisfy, by
definition of SP , the requirement that, considering the entire P , the global sum
of all the quantities F assigns must be non-negative. As we will see later, only
some of these allocations will actually be acceptable as a basis for a model.

An r-interpretation of the amount symbols in a ground r-program P is defined
by providing a mapping µ : τR → SP . Such a function determines, for each
resource-symbol q ∈ τR, a mapping µ(q) ∈ SP . In turn, this mapping µ(q) assigns
to each rule γ ∈ P a multiset µ(q)(γ) of quantities, as explained above. The use
of multisets allows us to handle multiple copies of the same amount-atom. Each
of them corresponds to a different amount of resource to be taken into account.

Let B(X,Y) denote the collection of all ground atoms built up from predicate
symbols in X and terms in Y . We have the following

Definition 7. An r-interpretation for a (ground) r-program P is a pair I =
〈I, µ〉, with I ⊆ B(ΠP , C) and µ : τR → SP .

Intuitively: I plays the role of a usual answer set assigning truth values to
program-literals; µ describes an allocation of resources.

Example 2. Let ΠP = {have black powder , have gun powder} and ΠR =
{saltpeter , charcoal , sulfur}, and consider the following program P1:

(γ1) have black powder ← saltpeter :15, charcoal :3, sulfur :2.
(γ2) have gun powder ← saltpeter :7, charcoal :3.
(γ3) sulfur :4. (γ4) saltpeter :18. (γ5) charcoal :5.

An r-interpretation for P1 is 〈I, µ〉 with I = {have gun powder} and µ
such that µ(saltpeter)(γ2) = {[〈0,−7〉]}, µ(saltpeter)(γ4) = {[〈0, 18〉]},
µ(charcoal)(γ2) = {[〈0,−3〉]}, µ(charcoal)(γ5) = {[〈0, 5〉]}, µ(sulfur)(γ3) =
{[〈0, 4〉]}, and µ(q)(γi) = {[]} otherwise.

The firing of an r-rule (which involves consumption/production of resources)
can happen only if the truth values of the program-literals satisfy the rule. We
reflect the fact that the satisfaction of an r-rule γ depends on the truth of its
program-literals by introducing a suitable fragment of ASP program γ̂. Let the
r-rule γ have L1, . . . , Lk as program-literals and R1, . . . , Rh as amount-atoms (or
p-lists). The ASP-program γ̂ is so defined:

γ̂ =

{← L1, . . . ,← Lk } if the head of γ consists of amount-atoms or p-lists

{← L1, . . . ,← Lk, if γ has the program-atom H as head
H ← L1, . . . , Lk } and h > 0

{ γ } otherwise (e.g., γ is a program-rule).

Def. 8, to be seen, states that in order to be a model, an r-interpretation I
that allocates non-void amounts to some amount-atoms of γ (i.e., γ is fired), has
to model the ASP-rules in γ̂. (Notice that if γ is a program rule then γ̂ = {γ}.)

8

So far we have developed a semantic structure in which r-rules are inter-
pretable by singling-out suitable collections of amount couples.

Different ways of allocating amount of resources to an r-program are possible.
In order to be acceptable, an allocation has to reflect, for each p-list r in P , one
of the admissible choices that r implicitly represents. In order to extract from P
the information about such admissible choices we need some further notation.

Let ` be either an amount-atom or a p-list in a resource-rule γ. Let

setify(`) =
{

{〈0, q, a〉} if ` is q:a
{〈1, q1, a1〉, . . . , 〈h, qh, ah〉} if ` is q1:a1> · · ·>qh:ah

We will use setify to represent the amount-atoms of rules as triples denoting:
the position in each preference list where they occur; the resource-symbol they
contain; the amount that is required for this resource-symbol in that preference
list. We generalize the notion to any multiset X of amount-atoms and p-lists:
setify(X) = {[setify(`) | ` in X]}.

Let r-head(γ) and r-body(γ) denote the multiset of amount-atoms or p-lists
occurring in the head and in the body of γ, respectively. In order to distinguish,
in the representation, between amount-atoms occurring in heads and in bodies,
we define setifyb(γ) and setifyh(γ) as the multisets {[setify(x) | x ∈ r-body(γ)]}
and {[setify(x) | x ∈ r-head(γ)]}, respectively.

At this point we can associate to each r-rule γ, a set R(γ) of multisets,
intended to represent the collection of admissible choices we mentioned above:
R(γ) =

{
{[〈i, q, a〉 | 〈i, q, a〉 = c1(S1) and S1 in setifyh(γ)]}
∪ {[〈i, q,−a〉 | 〈i, q, a〉 = c2(S2) and S2 in setifyb(γ)]}
| for c1 and c2 choice functions for setifyh(γ) and setifyb(γ), resp.

}
where c1 (resp. c2) ranges on all possible choice functions for setifyh(γ) (resp.
for setifyb(γ)). Each element of R(γ) represents a possible admissible selection
of one amount-atom from each of the p-lists in γ and an actual allocation of an
amount to it. Negative quantities are associated to amount-atoms of the body
of γ, as these resources are consumed.4 Vice versa, the quantities associated to
amount-atoms occurring in the head are positive, as these resources are produced.

Definition 8. Let I = 〈I, µ〉 be an r-interpretation for a (ground) r-program
P . I is an answer set for P if the following conditions hold:
• for all rules γ ∈ P(
∀ q ∈ τR

(
µ(q)(γ) = ∅

))
∨
(⋃
q∈τR

{
{[〈i, q, v〉 | 〈i, v〉 is in µ(q)(γ)]}

}
∈ R(γ)

)
• I is a stable model for the ASP-program P̂ , so defined

P̂ =
⋃{

γ̂

∣∣∣∣γ is a program-rule in P, or
γ is a resource-rule in P and ∃ q ∈ τR

(
µ(q)(γ) 6= ∅

) }
4 To be precise, the admissible quantity corresponds to the negation of the amount

occurring in an amount-atom of the body. One may also specify negative byproducts
directly in the body, as in the amount-atom q:-2, for instance. In this case, amounts
of q are produced and not consumed (cf., [9]).

9

The two disjuncts in the formula in Def. 8 correspond to the two cases: a) the
rule γ is not fired, so null amounts are allocated to all its amount-atoms; b) the
rule γ is actually fired and all needed amounts are allocated (by definition this
happens if and only if ∃ q ∈ τR

(
µ(q)(γ) 6= ∅

)
holds). (Again, notice that case b)

imposes that the amount couples assigned by µ to a resource q in a rule γ reflect
one of the possible choices in R(γ).)

We now formally introduce the notion resource balance:

Definition 9. Let I = 〈I, µ〉 be an answer set for a (ground) r-program P . The
resource balance for P , w.r.t. 〈I, µ〉, is the mapping ϕ : τR → Q defined as:

ϕ(q) =
∑({[∑(

amount
(
µ(q)(γ)

))
| γ ∈ P

]})
which summarizes consumptions and productions of all resources.

Finally, we say that an r-interpretation I is an answer set of an r-program P
if it is an answer set for the grounding of P .

Note that the above definition however does not in general fulfill the pref-
erences expressed through p-lists. In order to impose a preference order on the
answer sets of an r-program, we need to provide a preference criterion PC to
compare answer sets. Such a criterion should impose an order on the collection of
answer sets by reflecting the (preference grades in the) p-lists. Any criterion has
to take into account that each rule determines a (partial) preference ordering on
answer sets. In a sense, PC should aggregate/combine all “local” partial order
to obtain a global one.

Fundamental techniques for combining preferences (seen as generic binary
relations) can be found for instance in [1]. Regarding combination of preferences
in Logic Programming, criteria are also given, for instance, in [4, 7, 6, 24].

Here we will just consider for P-RASP two of the simpler criteria among the
variety of alternative possible choices. As a first example, we directly exploit the
ordering of amount-atoms in the p-lists (i.e., their relative position). For any
multiset m in FM(N × Q) and i ∈ N, let be βi(m) = |{[〈i, v〉 | 〈i, v〉 is in m]}|.
A partial order on answer sets can be defined as follows. Given two answer sets
I1 = 〈I1, µ1〉 and I2 = 〈I2, µ2〉 for an r-program P , with µ1 6= µ2, let mi be the
multiset

mi =
⋃

γ∈P, q∈τR

µi(q)(γ),

for i ∈ {1, 2}, and let j be the minimum natural number such that βj(m1) 6=
βj(m2). We put I1 ≺1 I2 if and only if βj(m1) > βj(m2).

Our first preference criterion PC1 states that I1 is preferred to I2 if it holds
that I1 ≺1 I2. The preferred answer sets with respect to PC1 are those answer
sets that are ≺1-minimal. In a sense, the criterion PC1 has a “positional flavor”:
the answer sets that selects the highest possible number of leftmost elements (in
the p-lists) are preferred.

Our second criterion brings into play the magnitude of the preference grades.
This can be done by considering the grades as weights and by optimizing with
respect to the global weight expressed by the entire answer set. (Clearly, more
complex assignments of weights are viable.) For any answer set I = 〈I, µ〉 let

10

ω(I) =
∑

γ∈P, q∈τR

grade
(
µi(q)(γ)

)
.

Given I1 and I2 as before, we put I1 ≺2 I2 if and only if ωj(m1) < ωj(m2).
Consequently, our second preference criterion PC2 states that I1 is preferred to
I2 if it holds that I1 ≺2 I2. As before, the preferred answer sets, with respect
to PC2, are those that are ≺2-minimal.

3 Conditional preferences on resources.

Let us extend the syntax of r-rules by admitting p-lists (or amount-atoms) whose
activation is subject to the truth of a conjunctive condition. A conditional p-list
(cp-list, for short) is a writing of the form

(r if L1, . . . , Lm)

where r is a p-list q1:a1> · · ·>qh:ah (or simply an amount-atom), and L1, . . . , Lm
are program-literals. The intended meaning of a cp-list occurring in the body
of a r-rule γ (the case of the head is analogous) is that whenever γ is fired the
rule has to consume one of the resources occurring in r. If the firing occurs in
correspondence of an answer set that satisfies the literals L1, . . . , Lm, then the
choice of which resource to consume is determined by the preference expressed
by the p-list. Otherwise, if any of the Li is not satisfied, a non-deterministic
choice is performed. (Hence the conjunction L1, . . . , Lm need not to be satisfied
in order to fire γ.) More precisely, the r-rule containing the cp-list becomes, if
L1, . . . , Lm does not hold, equivalent to h r-rules, each containing exactly one of
the amount-atoms qj :aj , in place of the cp-list.

Such an extension of P-RASP can be treated by translating the rules involv-
ing cp-lists into regular r-rules. For instance, the rule

H ← B1, . . . , Bk, (r if L1, . . . , Lm)
is translated into this fragment of r-program:

p← not np. np← not p.
← np, L1, . . . , Lm. ← p, Li. for i ∈ {1, . . . ,m}
H ← B1, . . . , Bk, r, p.
H ← B1, . . . , Bk, qj :aj , pqj , np. for j ∈ {1, . . . , h}
npqi ← pqj . pqj ← not npqj . for i, j ∈ {1, . . . , h}, i 6= j

where p, np, npqj and pqj (for each j ∈ {1, . . . , h}) are fresh program atoms.
Consequently, the semantics of cp-lists is given in terms of that of p-lists.

Similarly, one can introduce cp-lists with different semantics. For example,
one might imagine a cp-list that, differently from the previous case, when some
Li does not hold the firing does not require any consumption of resources in r.

4 On Complexity and Implementation of P-RASP

We limit ourselves to shortly address the main aspects of complexity and imple-
mentation, a detailed presentation goes beyond the scope of this paper.

11

As regards the implementation, a solver for (P-)RASP built on top of an
existing ASP-solver is described in [9, 10]. Basically, a preliminary translation
converts an r-program in ASP, by rendering the semantics presented in Section 2.
This ASP program is then joined to an ASP specification of an inference engine
which performs the real reasoning on resources allocation and that remains in-
dependent from the particular r-program at hand. Preference criteria (as well as
some cost-based features and budget policies) are encoded in the inference en-
gine by exploiting optimization statement commonly supported by ASP-solvers
such as smodels or clasp.

The analysis of the complexity of PRASP can be made by establishing a
relationship with LPOD [7]. In this approach, one can define rules of the form:

A1X A2 . . . An ← Body

meaning that one or more of the Ai’s can be derived provided that Body holds,
where A1 is the best preferred option, A2 the second best, and so on. These
preferences can be expressed only in the head of rules and have a global flavor,
i.e., their scope is the entire program. Apart form the notation, there is a clear
similarity with PRASP p-lists when occurring in the head of r-rules. Then, by
considering resource atoms as plain atoms and adapting the syntax, a PRASP
r-rule with a p-list in the head and no p-lists in the body can be considered to
be an LPOD rule.

As concerns an r-rule, say γi, with p-lists in the body, i.e., of the form:

H ← . . . , B1>Bk ldots

we can rephrase it in LPOD terms as the set of rules (where qi is a fresh symbol)

H ← . . . , qi ldots
qi ← B1

. . . qi ← Bk
B1X . . . X Bk

We may notice that the k atoms in the p-list have been replaced by the single
atom qi, but then appear in the LPOD fact. Then, we have added k rules with
two atoms each: therefore, we have substituted k atoms with k + 2k + 1 atoms,
which ensures that the program resulting from this transformation is just linearly
larger than the original one. For the transformed program, as discussed in [7],
credulous reasoning is either Σ2

P complete or stays in ∆2
P according to the chosen

preference criterium for selecting preferred answer sets (all this considering that
credulous reasoning for plain RASP it has been proved in [9] to be NP-complete).

The approach of [21] has the same complexity, which means that each formal-
ism can be translated into each other. However, as concerns the programming
style in the mentioned approaches preferences are global, i.e., imposed all over the
program, while in our case preferences are local to rules (i.e., the same amount-
atoms might be ordered differently in different p-lists, cf., Example 1). Reflecting
such a “locality” character by means of global preferences would originate as seen

12

above an unnatural representation, also making it harder to design an efficient
implementation and to prove its correctness. To ease these difficulties, we have
provided an “autonomous” semantics which better reflects, in our opinion, the
intuitive meaning that a programmer assigns to resources and quantities.

5 Related Work

The seminal work in linear logic [15] introduced the possibility of reading “A
implies B” as “if you give me an A, I will give you a B” or, more precisely,
“give me as many As as I might need and I will give you one B”. RASP takes
a very similar position, assuming “give me as many As as I might need and
I will give you a certain number of Bs”. Logic programming languages based
on fragments of linear logic are fairly general, as they allow the programmer to
exercise a significant degree of control over the pattern of use of certain program
clauses (or resources) during proof search. In addition, linear logic has been
used for giving to the notion of computation an overall logical setting, also for
concurrent prolog systems.

In RASP, we go back to the original intuition of linear logic though in the
context of the ASP semantics, where different rules which “compete” for acquir-
ing resources give rise to different answer sets, reflecting the different allocations.
Despite of the limitations (e.g., finite domain) we stay within a decidable setting.

Concerning preferences, we are not aware of approaches to preferences in
linear logic. In order to understand whether P-RASP might be rephrased as a
fragment of linear logic, a direct comparison would be needed, that can be a
subject of future work.

Among the various approaches proposed to equip LP with some notion of re-
source, [20] exploits (a variant of) linear logic to define a resource programming
language (RPL). An operational semantics of RPL is given in terms of deduction
rules: Storage operators and resource transformation rules model availability and
transformation of resources, respectively. The deduction proceeds by applying
these rules in a Prolog-like goal-directed fashion. A notion of step-by-step evo-
lution of the state of the world is implicit in the rule application mechanism.

To deal with resources, [18] proposes a concurrent Prolog inference engine
for clauses enriched with pre/post-conditions on resource availability. Resources
are represented by multisets of atoms and terms (non-unit amounts of a resource
are rendered through multiple copies of the same atom/term).

Both in [18] and [20] the operational semantics of the proposed frameworks
can be given in terms of (refinements of) the SLD-procedure and (default) nega-
tion is not handled. Moreover, both the programming languages of [20] and [18]
offer little separation between the resource/amounts representation symbols and
program symbols: resources and amounts are represented by program terms. The
distinction is left to programmer’s discipline.

A form of resource treatment is described in [23, 22] to model product config-
uration problems. The proposed framework is based on stable model semantics
and encompasses default negation and disjunctive choices.

13

Recently, [8] proposed the action description language CARD where resources
are rendered through multi-valued fluents and the use of resources is implicitly
modeled by the changes in fluents’ values caused by actions. The approach em-
phasizes the use of resources in planning problems and the semantics is given in
terms of transition systems (in the spirit of [14]). CARD also supports some form
of preferences on actions. With respect to CARD, in RASP there is a neater dis-
tinction between what is a resource and what is not. Moreover, the arithmetic of
amounts (as well as the constraints on balances) is implicitly handled by RASP’s
inference engine. It seems that in CARD these aspects have to be encoded in
the problem specification. On the other hand, since CARD is tailored to model
action theories, time and state evolution are easily dealt with.

Preferences enable natural forms of commonsense reasoning. Here we briefly
mention some of the proposed approaches. (See [12] for a comprehensive treat-
ment of preferences in non-monotonic reasoning.) As regards Prolog-based frame-
works, we mention [17, 16, 11] as interesting attempts to introduce preferences
in (constraint) logic programming. Various forms of preferences have also been
introduced in ASP (see [12]). Most of the proposed approaches on preference
reasoning in ASP are based on establishing priorities/preferences among rules.
In [4], A-Prolog is enriched with ordered disjunction and preferences among rules
are handled by means of a rule-naming mechanism. In the case of ordered logic
programs [25], preferences are expressed through a partial order imposed on the
set of rules. The order is used to implement defeating of less-preferred rules.

Other approaches express priorities among answer sets. Intuitively, this is
done by declaring those atoms whose truth is “preferred” (typically, in these
cases some forms of disjunction in the heads of rules is introduced). In prioritized
logic programs [21], a set of priorities determines preferences on literals: From
priorities, a preference relation on answer sets is drawn.

In [7] preferences on atoms are modeled by ordered disjunction in the head
of rules. Considering a given answer set of a program, for each rule a degree
of satisfaction is determined depending on which atom of the head is satisfied.
Satisfaction degrees of all rules are then combined, according to some criterion,
to rank the answer sets. Through similar ideas, a Preference Description Lan-
guage is defined in [6] to formalize penalty-based preference handling in ASO.
A comparison of these approaches can be found in [25].

Notice that in almost all the above mentioned cases, preferences are expressed
globally, e.g., by providing an order relation that applies on all the rules (or
atoms) of the program. In P-RASP, as shown, preferences are imposed, by using
p-lists, on some of the atoms of a rule. In this sense preference in P-RASP has
a local character, cf., Remark 2 and Example 1.

Conclusions

In this paper, we have presented a refinement of the RASP approach (that
allows for production/consumption of resources in ASP) to include preferences
on which resources to exploit/produce. Preferences are expressed by means of

14

p-lists of amount-atoms, where leftmost ones are assumed to have higher priority
in consumption/production. P-lists, that can be conditional, can in fact occur
both in the body and in the head of r-rules. We have extended both syntax and
semantics of RASP to account for this kind of preferences and we have introduced
a concept of preferred answer set as a partial ordering among possible solution
according to a certain strategy.

In future work, we intend to further generalize P-RASP by introducing pref-
erences among sets of amount-atoms (i.e., one might e.g. prefer to use resources
a and b instead of resources x, y and z), as well as (explicit) preferences on rules.
We intend to apply P-RASP to practical problems, e.g., of configuration, so as to
have the ground for defining and experimenting different strategies for choosing
preferred answer sets.

References

[1] H. Andréka, M. Ryan, and P.-Y. Schobbens. Operators and laws for combining
preference relations. J. Log. Comput., 12(1):13–53, 2002.

[2] C. Anger, T. Schaub, and M. Truszczyński. ASPARAGUS – the Dagstuhl Initia-
tive. ALP Newsletter, 17(3), 2004. See http://asparagus.cs.uni-potsdam.de.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2003.

[4] M. Balduccini and V. S. Mellarkod. CR-Prolog2 with ordered disjunction. In
Proc. of ASP’03, 2003.

[5] C. Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

[6] G. Brewka. Complex preferences for answer set optimization. In Proc. of KR’04,
2004.

[7] G. Brewka, I. Niemelä, and T. Syrjänen. Logic programs with ordered disjunction.
Comput. Intell., 20(2):335–357, 2004.

[8] S. Chintabathina, M. Gelfond, and R. Watson. Defeasible laws, parallel actions,
and reasoning about resources. In Proc. of CommonSense’07, 2007.

[9] S. Costantini and A. Formisano. Modeling resource production and consumption
in answer set programming. In Proc. of ASP07, 2007. Extended version in www.

dipmat.unipg.it/~formis/papers/report2008_04.ps.gz.
[10] S. Costantini and A. Formisano. Modeling preferences on resource consumption

and production in ASP. Rep. 9/08, Dip. di Matematica e Informatica, Univ. di
Perugia, 2008. In www.dipmat.unipg.it/~formis/papers/report2008_09.ps.gz.

[11] B. Cui and T. Swift. Preference logic grammars: Fixed point semantics and ap-
plication to data standardization. Artif. Intell., 138(1-2):117–147, 2002.

[12] J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and survey
of preference handling approaches in nonmonotonic reasoning. Comput. Intell.,
20(12):308–334, 2004.

[13] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of ICLP’88, pp. 1070–1080. The MIT Press, 1988.

[14] M. Gelfond and V. Lifschitz. Action languages. ETAI, 2:193–210, 1998.
[15] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[16] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference queries in deductive

databases. New Generation Comput., 19(1):57–86, 2000.

15

[17] H.-F. Guo and B. Jayaraman. Mode-directed preferences for logic programs. In
Proc. of ACM-SAC’05, pp. 1414–1418, 2005.

[18] J.-M. Jacquet and L. Monteiro. Towards resource handling in logic programming:
The PPL framework and its semantics. Comput. Lang., 22(2/3):51–77, 1996.

[19] V. W. Marek and M. Truszczyński. Stable logic programming - an alternative logic
programming paradigm, pp. 375–398. Springer, 1999.

[20] Y. U. Ryu. A logic-based modeling of resource consumption and production.
Decision Support Systems, 22(3):243–257, 1998.

[21] C. Sakama and K. Inoue. Prioritized logic programming and its application to
commonsense reasoning. Artif. Intell., 123(1-2):185–222, 2000.

[22] T. Soininen and I. Niemelä. Developing a declarative rule language for applications
in product configuration. In Proc. of PADL’99, 1999.

[23] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Representing configuration
knowledge with weight constraint rules. In Proc. of ASP’01, 2001.

[24] T. C. Son and E. Pontelli. Planning with preferences using logic programming.
TPLP, 6(5):559–607, 2006.

[25] D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for ordered logic
programs. TPLP, 6(1-2):107–167, 2006.

[26] WASP–WP5 Report: Model applications and proofs-of-concept, 2005. Working
Group on ASP: See http://www.kr.tuwien.ac.at/projects/WASP/report.html.

16

