On the Equivalence and Range of Applicability of Graph-based

Representations of Logic Programs

Stefania Costantini® * Ottavio D’Antona® and Alessandro Provetti®

2Dip. di Informatica, Universita degli Studi di L’Aquila

Via Vetoio Loc. Coppito, I’Aquila, I-67100 Ttaly
stefcost@Qunivagq.it
http://costantini.dm.univaq.it/

PDip. di Scienze dell’Informazione, Universita degli Studi di Milano

Via Comelico 39/41 Milan, 1-20135 Italy
dantona@dsi.unimsi.it
http:/ /www.dsi.unimi.it/dantona/

°Dip. di Fisica, Universita degli Studi di Messina

Salita Sperone 31 Messina, 1-98166 Italy
ale@unime.it
http: //www.unime.it/

Keywords. Logic Programming, Answer Set Programming, Graph Algorithms.

Logic programs under Answer Sets semantics can be studied, and actual computation can be carried out, by
means of representing them by directed graphs. Several reductions of logic programs to directed graphs are now
available. We compare our proposed representation, called Extended Dependency Graph, to the Block Graph
representation recently defined by Linke [14]. On the relevant fragment of Well-founded irreducible programs,
extended dependency and block graph turns out to be isomorphic. So, we argue that graph representation of
general logic programs should be abandoned in favor of graph representation of well-founded irreducible programs,
which are more concise, more uniform in structure while being equally as expressive.

1. Introduction

Answer Set Programming is a branch of Logic
Programming based on the Stable Models and
Answer Sets declarative semantics defined by Gel-
fond and Lifschitz [10, 11]. Essentially, the stable
models semantics relates the negation-as failure
operator not to the notion of consistent assump-
tion in Reiter’s default logic The Answer Sets se-
mantics is an extension to the stable models se-
mantics for programs that contain two kinds of
negation: we will talk indifferently of answer sets
or stable models, since this is not going to make
a difference in the context of this letter.

*This work was partially supported by MIUR COFIN
project Aggregate- and number-reasoning for computing:
from decision algorithms to constraint programming with
multisets, sets, and maps.

In standard logic programming program state-
ments designate properties of a first-class object
which is to be computed. Instead, Answer Sets
Programming (ASP) is based on the understand-
ing of program statements as constraints on a set
of atoms that encode a solution to the problem at
hand. Equivalently, autoepistemic logic supports
the view of answer sets as coherent sets of be-
liefs that can be derived from themselves, in the
sense that all conclusions in an answer set must
be supported by other facts, that are seen as hy-
potheses, and that no true fact can be supported
by the negation of another true fact (including,
of course, itself).

For instance, consider a logic program composed
of the following two rules:

p < not q
q < notp

Conclusion p can be supported by hypothesis
not q or, symmetrically, ¢ can be supported by
not p. In fact, this program has answer sets {p}
and {q}. If we read «— as implication, and con-
sider the two rules as a first-order theory, we have
that the answer sets, in this case, coincide with
the minimal models of this theory.

The one-rule program r « not r however, is
contradictory, i.e. it has no answer set. In partic-
ular, the minimal model {r} of the corresponding
first-order theory is not an answer set, since atom
r which is true in this model depends on its own
negation. In general, the answer sets of a logic
program are some of the minimal models of the
corresponding first-order theory, and in particu-
lar they are those minimal models (if any) which
are supported, in the sense that each atom true
in the model can be derived by means of a rule
whose conditions are true.

If we merge the two programs together, the re-
sulting program

p < not q
q < notp
T < notr

still has no answer set, since it contains a contra-
diction. If however we add for instance the rule
r « not p, we get a program with unique an-
swer set {¢,7}, where r is supported by not p,
thus making the potential contradiction harm-
less. Alternatively, the inconsistency can be elim-
inated by modifying rule » < not r into rule
r «— not r,not q, where assuming that ¢ is true
will force r to be false, thus obtaining the answer
set {q}.

Then, a program may admit zero, one or more
answer sets. Of particular interest is the problem
of determining whether a program is consistent,
i.e., it admits at least one answer set, which is
also the basis for applying ASP to symbolic (logic-
based) model checking [12].

Readers familiar with Prolog may refer to [13]
for an introduction to ASP. For a comprehensive
description of the ASP, the reader may refer to

Marek and Truszczynski [15]. For an overview
of the current research trends in ASP, the ASP
workshop proceedings [18] could be taken as a
guide.

In general, ASP is a very expressive and there-
fore complex logical formalism. If, as we do in this
letter, we restrict ourselves to consider only pro-
grams without function symbols, then ASP solves
all decision [19] and search [16] problems in NP.
Therefore, it is important to provide computa-
tional mechanisms that are efficient on relevant
subclasses of instances. Several implemented sys-
tems for answer sets computations are now avail-
able [20] and their performance is rapidly improv-
ing, approaching that of state-of-art SAT model
checkers.

ASP solvers are employed as follows. Suppose
that problem P at hand has solutions that can be
described in terms of sets of symbols taken from
a syntactic domain H (in our case, H is finite).
The programmer shall write the logic program ,
where each statement is seen as a constraint on
the sets of symbols that are solution to the prob-
lem. By feeding m to an ASP solver, we obtain
the answer sets; solutions to P can be read off the
answer sets. The Herbrand base of 7 corresponds
to or possibly extends H.

The basis for improving ASP solvers even fur-

ther lies, in these authors’ opinion, in a careful
analysis of programs, so as to circumscribe as
much as possible the sources of complexity, and
in adoption of graphs as the main data structure,
so as to reuse, directly, efficient graph-based al-
gorithms.
In this perspective, we have contributed to An-
swer Set Programming by studying the syntac-
tic structure of consistent programs [5, 7]; by
defining concise normal forms [8] (called ker-
nel), by proposing a graph-based representation
of logic programs [3, 6] (called Frtended Depen-
dency Graph). The Extended Dependency Graph
representation has enabled us to develop new an-
swer set computation algorithms that are based
on the finite- [17] and infinite-population | 1] ge-
netic models.

1.1. Recent Work Graph-based Represen-
tation of Logic Programs

In a recent IJCAI article, Linke [14] has pro-
posed

i) a normal form for logic programs where rules
have at most one positive condition, and

ii) a graph-based representation for such logic
programs, called block graph (BG).

These two definitions come together in the def-
inition of an answer set computation algorithm
based on graph coloring. Linke compares his work
with existing graph-based representations of logic
programs of Dimopoulos and Torres [9] and ours;
in [14] he says that

[they] are more or less rule-based
but have serious drawbacks: they
deal only with prerequisite-free pro-
grams, because (w.r.t. Answer Sets
semantics) there is some equivalent
prerequisite-free program for each
program. Since in general equivalent
prerequisite-free programs have expo-
nential size of the original ones, ap-
proaches which rely on this equiva-
lence need exponential space. (our
emphasis)

In this letter we study the relationship between
Linke’s block graphs and our Extended Depen-
dency Graphs. Next, we point to some pitfalls
in Linke’s results about the connection between
a-colorings of the Block graph and answer sets
of the program considered. Finally, we address
the claim that representations of prerequisite-free
programs (i.e., no positive conditions) is subject
to exponential blow-up of the instance size.

2. Technical preliminaries

This Section is intended for readers who are
unfamiliar with Logic Programming. The stan-
dard definitions of (propositional) logic program
syntax and those of Answer Sets [11] and Well-
founded [21] semantics will be given.

Assume a language of constants and predicate
constants. Assume also that terms and atoms are
built as in the corresponding first-order language.

Unlike classical logic and standard logic program-
ming, no function symbols are allowed. A rule is
an expression of the form:

p i Ag— A, ... Ap,not Ay, ... not A, (1)
where Agp,...A, are atoms and not is a logi-
cal connective called negation as failure. Also,
for every rule let us define head(p) = Ay,
pOS(p) = Alv s 7Am7 neg(p) = Aerlv cee aAn
and body(p) = pos(p) U neg(p). If body(p) = 0
we refer to p as a fact, while if head(p) = 0 we
refer to p as a constraint, meaning that body(p)
must be false in every answer set.

A logic program is defined as a collection of
rules. Rules with variables are taken as shorthand
for the sets of all their ground instantiations and
the set of all ground atoms in the language of a
program II will be denoted by Byy.

2.1. Semantics

For the sake of simplicity, we give here the def-
inition of stable model instead of that of answer
set, which is an extension given for programs that
also contain the explicit negation operator —; this
is not going to make a difference in the context of
this work. Intuitively, a stable model is a possi-
ble view of the world that is compatible with the
rules of the program. Rules are therefore seen as
constraints on these views of the world.
Let us start by defining stable models of the sub-
class of positive programs, i.e. those where, for
every rule p, neg(p) = 0.

Definition 1 (Stable Models of positive logic
programs)

The stable model a(I1) of a positive program 11 is
the smallest subset of Byy such that for any rule
(1) in II:

Aq, ..., Ay € a(Il) = Ap € a(ID) (2)

Clearly, positive programs have a unique stable
model, which coincides with its minimal model,
that can also be obtained applying other seman-
tics; in other words positive programs are un-
ambiguous. Moreover, the stable model of pos-
itive programs can be obtained as the fixpoint

of the immediate consequence operator Tr(I) =
{A:3p €1l s.t. A = head(p) N pos(p) C I}.
The iterated application of Ty from) on (i.e.,
Tu(0), T2(0),...) is guaranteed to have a fixed
point, which corresponds to the answer set of II.

A set of atoms S is a stable model of an (ar-
bitrary) program if it is a minimal model, and it
is supported. With respect of negation, we may
notice that, if we assume S to be a stable model:
(i) no atom can belong to S, which is derived by
means of a rule with a condition not C' where C
is true in S, i.e. C € S; (ii) all literals not B
in the body of rules where B is false in S are,
of course, true in S. Consequently, in order to
check whether S actually is a stable model, all
negations can be deleted according to the these
criteria, in order to apply the above formulation
for positive programs.

Definition 2 (Stable Model of arbitrary logic
programs)

Let 11 be a logic program. For any set S of atoms,
let TI° be a program obtained from I1 by deleting

(i) each rule that has a formula “not A” in its
body with A € S;

(ii) all formulae of the form “not A” in the bod-
ies of the remaining rules.

Since IIS does not contain not , its stable model
s already defined. If this stable model coincides
with S, then we say that S is a stable model of
II. Precisely, a stable model of 11 is characterized
by the equation:

S = a(I1%). (3)

The I operator, introduced by Gelfond and Lif-
schitz in [10], is defined as ['(II,S) = a(I1%).
When 1II is fixed, we may drop the first parame-
ter and refer to I' as a function from the powerset
of B to itself. In practice however, stable mod-
els are not computed by applying I' to all subsets
of Br. Answer set solvers [20] in fact apply more
effective and smarter algorithms.

In this letter, consistency means existence of an
answer set. Programs which have a unique stable

model are called categorical. Entailment of atoms
in the stable models semantics is defined in the
standard way and it can be readily extended to
arbitrary first-order formulae. However, it should
be stressed that the real goal here is to compute
solutions to the problem at hand in terms of sets
of atoms (the answer sets) from which the solu-
tion is read out.

2.2. The Well-founded semantics

The Well-founded semantics of [21] assigns to
a logic program II a unique, three-valued model,
denoted WFS(II) = (W, W ™). Intuitively, W
is the set of atoms deemed true, W~ is the set
of atoms deemed false, while atoms belonging
to neither set are deemed undefined. Clearly,
W+ and W~ are disjoint; they can be defined
as fixpoints of the I'? operator, that is, I ap-
plied twice. Contrary to I', I'? is monotonic, so
it provably has at least one fixpoint. We define
W+ = 1fp(T'?), i.e., the least (smallest) I C By
such that I = I'%(r,I). Conversely, we define
W~ = Bn\gfp(l?),i.e., W~ contains atoms that
are not in the greatest fixpoint of I'>. Note that
the least and greatest fixpoint can be derived from
one another, in particular gfp(I'?) = I'(1fp(I'?)).
The sets W+ and W~ are computed starting from
what is certainly true (i.e. facts of the program)
and what is certainly false, i.e. atoms not oc-
curring in the head of any rule. Subsequent it-
erations extend these sets, until W contains all
atoms that are supported by a possible deriva-
tion, and W~ contains all atoms that have cer-
tainly no possible derivation. Atoms which are
uncertain (basically, atoms directly or indirectly
involved in negative circularities), are considered
to be undefined.

For reasons that will be further discussed later
on, in | 8] we proposed to start computation of
answer with a preliminary simplification of the
program w.r.t. the well-founded semantics. In
fact, it is well-known that answer sets are always
a superset of the set of atoms which are true w.r.t.
the well-founded model. In fact, answer sets al-
ways contain W7 and are disjoint from W ~. The
atoms that are relevant for deciding whether an-
swer sets exist and finding them [5] are exactly
those that are deemed undefined under the Well-

founded semantics.

Definition 3 A program I is WFS-irreducible if
and only if WES(IT) = (0, 0).

That is, in WFS-irreducible programs all the
atoms have truth value undefined under the Well-
founded semantics.

Without loss of generality, we can always re-
strict to considering WFS-irreducible programs.
Technically, the simplification of a program with
respect to its well-founded model can be based
on the application of the DBFZ algorithm of
Dix et al. [2, 8. For an arbitrary program
II, DBFZ produces a WFS-irreducible program
bdfz(IT) and a set of facts ®. Each answer set of
IT corresponds to an answer set of bdf z(II), union
.

The BDFZ algorithm has several attractive fea-
tures: it runs in (low) polynomial time and per-
forms loop detection, thus deleting from the pro-
gram as many positive cycles as possible. The
latter property is of interest for the following dis-
cussion.

3. Graph representation of logic programs

In literature, certain properties of logic pro-
grams have been studied throughout a graph
representation called Dependency Graph (DG),
where nodes represent atoms and arcs, labeled +
(resp. —) are representing a positive (resp. nega-
tive, i.e., using not) dependence between atoms.
Dung (see [5]) provides a sufficient, but rather
strong condition for consistency in terms of DGs.
[3] and [6] show three programs that have the
same DG but different semantics: one of them is
inconsistent while the remaining two have answer
sets different from each other. In other words,
translating a program into its DG involves some
loss of information, hence the DG does not seem
an appropriate representation for developing an-
swer set computation algorithms.

3.1. Extended Dependency Graphs

In [3] the EDG representation is introduced so
as to achieve isomorphism (modulo the labeling of
the nodes) between logic programs and directed
graphs. The main shift in focus is that now ver-

tices of the graph represent rules of the program,
and are labeled with the atom in the conclusion
of the rule itself. Modulo the labeling of nodes,
these new graphs and programs are isomorphic |
6], so it becomes possible to study consistency of
program II, and to compute its answer sets, in
terms of EDG(II). This new graph is similar to
the DG but it is more accurate in representing
negative dependencies, and thus has been called
EDG (Extended Dependency Graph). The defi-
nition of EDG extends that of DG in the sense
that for programs where each atom is defined (ap-
pears as a conclusion) at most once, DG and EDG
coincide.

The definition of EDG is based upon distin-
guishing among rules defining the same atom, i.e.,
having the same head. To establish this distinc-
tion, we assign to each head an upper index, start-
ing from O(for the sake of clarity, we may write a;
instead of a§0>), e.g., {a < ¢,not b. a — not d.}
becomes {a®) — ¢, not b. a — not d.}. The
main idea underlying the next definition is to cre-
ate, for any atom a, as many vertices in the graph
as the rules with head a (labelled a,a™, a®) etc.).

Definition 4 (from [3]) (Extended depen-
dency graph)

For a logic program 11, its associated Fxtended
Dependency Graph EDG(II) is the directed finite
labeled graph (V, E,{+,—}) defined below.

V.1: For each rule in Il there is a vertex agk),
where a; is the name of the head and k is
the index of the rule in the definition of a;;

V.2: for each atom u never appearing in a head,
there is a verter simply labelled u;

E.1: for each cgl) € V, there is a positive edge

(cgl)7a£k)7+>, if and only if c; appears as a

positive condition in the k-th rule defining
a;, and

E.2: for each cg-l) € V, there is a negative edge

(cg-l),al(-k), —, if and only if c; appears as a
negative condition in the k-th rule defining

;.

3.2. Computation of answer sets by EDG
coloring

The EDG representation makes the design of

an answer set computation algorithm conceptu-

ally simple. [8] proposes the following algorithm.

1. First, the program instance is syntactically
simplified, reducing the instance to a nega-
tive program called the kernel. and a store
(extensional database) of facts. The details
of this reduction can be found in [8]. Af-
ter applying BDFZ, for the sake of time
and space complerity we perform further
simplifications so as to get rid of positive
atoms, that are irrelevant w.r.t. existence
and number of answer sets. These simplifi-
cations are grounded in semantics consider-
ations and preserve consistency and number
of answer sets. As a result, the next phase
needs to consider only EDGs described by
cases V.1 and E.2 above.

2. Second, the EDG of the kernel version of the
program is generated, and we start coloring,
i.e., we search for distinguished 2-colorings,
called admissible, of the EDG. Admissible
colorings correspond one-to-one to answer
sets of the kernel program, so it remains
easy to extract the correspondent answer
Set.

3. It also remains easy to project an answer
set of the kernel to the corresponding an-
swer sets of the original program, so there is
a third, final phase where linear-time prop-
agation algorithms are called to determine
all atoms that are to be part of the extended
answer set.

Notice that the central phase, the graph col-
oring, is the only one that implies search and in
general NP-hardness. The initial and final phases
take polynomial time.

3.3. Rule Graphs

The Rule Graph (RG) representation of Di-
mopoulos and Torres [9] allows useful conditions
about existence of answer sets to be obtained, cor-
responding to graph-theoretical properties. An-

swer sets are characterized by the kernels of the
RG.

Let {ry,...,r,} be the rules of a negative logic
program II, the rule graph RG(II) is a directed
graph, with vertices corresponding to the r;’s, and
there is and edge (r1, r2) whenever the conclusion
of r1 appears in the body of rs.

The relationship between RGs and EDGs has
been investigated by Costantini in [6]. With re-
spect to the EDG, the rule graph RG has the
same number of nodes, namely one per rule, and
almost the same number of edges, where however
the EDG in general has more edges. On the one
hand, when all rules have only one condition in
the body, the EDG and the RG are structurally
identical, since the head of a rule being in the
body of another collapses into the dependency be-
tween the two atoms. On the other hand, EDG
and RG may differ when rules have more than
one condition in the body; in such a case, we can
say that the RG representation does not distin-
guish which one condition is in common between
two rules [6].

While RGs are useful for studying program
properties, they seem not immediately viable for
the task of computing answer sets by graph algo-
rithms.

3.4. Block Graphs

The Block Graph (BG) representation of logic
programs is introduced by Linke for programs
with at most one positive condition in each rule.
Indeed, rules correspond to vertices of the graph
while arcs represent the block relation between
rules: rule p; blocks rule ps if an atom a is the
conclusion of p; and a condition of ps. Arcs are
labeled O (resp. 1) depending on whether the con-
clusion in the origin rule appears as a positive
(resp. negative) condition in ps.
One important point to notice is that the graph of
an arbitrary program II is defined by first deter-
mining its maximal grounded subset II’, which, in
short, is the greatest subprogram of II free from

1. cyclic definitions through positive condi-
tions (called positive cycles), and

2. undefined positive conditions.

In BG, arcs connect only vertices representing
rules of II'. Hence, the block graph thus results
less dense than one would expect.

Example 1 Let us consider program my:
rl. a<«b.
r2. b« a.

r3. c«d.
r4. e.
w1 18 categorical, with answer set {e}; The maz-
imum grounded subprogram is wy = {rd}. As

a result, the block graph BG(m1) contains four
nodes and mno arcs. In fact, node for rd has
no incoming arcs since it is a fact. Nodes for
rl, r2, and r3 have no incoming arcs since they
do not belong to ©j. So, all rules have nei-
ther O-predecessors (positive conditions) nor 1-
predecessors (negative conditions).

3.5. Computation of answer sets by BG
coloring

Linke defines a-coloring of a BG, as special 2-
coloring from vertices of the BG to {®,S}.

The a-coloring is related to answer sets by his
Theorem 3.2, which states that i) a program II
has an answer set if and only if BG(II) admits
an a-coloring and ii) the set of rules which are
grounded w.r.t. an answer set A corresponds
to the set of atoms that are in the conclusion
of rules that have their node labeled & by the
a~coloring. This suggests a straightforward ex-
traction of A from the a-coloring. However, for
programs that are not WFS-irreducible this char-
acterization seems at least redundant.

Fact 1 (counter-example to Th. 3.2 [14]) Con-
sider again program wy from Example 1. This
program has a positive cycle {a «— b,b «— a}, a
rule, r3, with an undefined positive condition d
and a rule, 4, which is a fact. Since {e} is the
unique answer set, it should correspond to an a-
coloring where r1, r2, r3 are labeled © and r4 is
labeled with .

In contrast, if we consider Definition 3.1 (Block
Graph) and Definition 3.2 (a-colorings) of [14],
we conclude that all nodes are labeled &.

In fact, the block graph of BG(m1) is composed
of four isolated nodes, so by condition A2 of Def-
inition 3.2, nodes with no 0-predecessors which

have each 1-predecessor (if any) labeled & are la-
beled ®. Condition A2 applies to all nodes of
BG(m), thus constituting a counterexample to
Theorem 3.2: all rules should have their condi-
tions satisfied but in actuality only r4 does.

3.6. Possible repairs

The problem shown in Example 1 above would

disappear if we restrict to considering the WFS-
irreducible version of the program, which is equiv-
alent to the original and equal to {r4}. In such a
case, simplified program and maximal grounded
program coincide and there are no isolated nodes.
This change in Linke’s algorithm does not add
computational costs since computing the maximal
grounded subset II’, which is required for build-
ing the block graph, is of complexity comparable
to applying BDFZ.
In the end, the nature of this fix makes the case
for applying graph representation only to Well-
founded irreducible programs. Programs that are
not WEFS-irreducible can be efficiently reduced
to WFS-irreducible form by applying BDFZ and
dropping useless rules (or individual conditions)
by an operator than simply extends Gelfond-
Lifschitz T" operator. Please refer to [8] for a dis-
cussion of this subject. It should be stressed that
while this proposal comes from semantics analy-
sis, it has an algorithmic value since BDFZ is an
efficient (quadratic) algorithm.

To conclude with graph-theoretical considera-
tions, we give the following equivalence result,
which shows that on WFS-irreducible programs
BG does not really extend EDG. Indeed, we can
state the following.

Fact 2 If I is WFS-irreducible and devoid of
positive cycles, then EDG(II) and BG(II) are
isomorphic.

Consider the following one-to-one correspon-
dences from labels of EDG to labels of BG:

(k)

1. a function A that maps each node a;

the corresponding rule label, and

on

o pO)

i Y5

(A@), A", 1).

2. each arc { is mapped on

4. Does reduction to Negative Programs
Require Exponential Space?

The answer is no, and to support this claim we
give below a simple, quadratic-time, linear-space
transformation from WZFS-irreducible programs
to negative equivalent programs. Consider an ar-
bitrary, WFS-irreducible program II containing
rules p: a < p1,...pn,not ng,...not n,. Let us
build the negative program II™ in the following
way.

1. Consider a positive-cycle-free version of the
program; this version can be obtained ei-
ther by applying BDFZ, or as follows. Take
the positive version I of II, i.e., drop all
negative conditions. Build the EDG and
identify all strongly-connected regions —
corresponding to positive cycles. Remove
from II all rules involved in positive cycles.
The resulting program is called I,cycric-

2. For each atom p; that appears as a positive
condition in Hgcyctic, add to II7 the rule
Pp; & Di < not p;.

3. For each rule p of IIcyeric add to II7 a cor-
responding rule p’, with all positive condi-
tions p; substituted with conditions not pj.

Under WFS-irreducibility?, the resulting pro-
gram II™ is equivalent to IT up to the language
of the latter, i.e., primed atoms should be disre-
garded.

Theorem 1 IfII is WFS-irreducible, then I1 and
II~ are equivalent modulo projection over L(II),
the language of II.

The proof is by repeated application of Marek
and Subrahmanian lemma. What is important in
the transformation seen above it that I1~ is larger
than II only for the p,, rules. The total number
of such rules has an upper bound in the number
of atoms appearing in II.

2For an example of a non-WFS-irreducible program for
which step 2. of the transformation would not preserve
equivalence, take program 7 and check that under the
transformation a spurious answer set {a,b, e} appears.

5. Conclusions

In this letter we have argued about the use-
fulness of shifting from general logic programs
to simplified well-founded irreducible programs,
which are more concise and more uniform in
structure while being equally expressive. This
simplification is useful from a conceptual point of
view: we have shown that is helps in evaluating
and comparing different graph representations of
logic programs. It is also useful from a practical
point of view, since answer set solvers can perform
the NP-hard search phase on a smaller instance.

In particular, we would like to point the reduc-
tion into the kernel normal form proposed in [8]
(kernelization) as a smart, semantically-grounded
transformation, that achieves very concise pro-
grams instances. One corroboration to this claim
is that kernelization greatly simplify average user
programs whereas hard programs, for instance
Extremal Programs of [4], are already in kernel
normal form.

Acknowledgments

Our work has benefitted from discussions
with Pedro Cabalar, Michael Gelfond and Tomi
Jahunen. Thanks also to David Lorenzo for hav-
ing helped us with the literature.

REFERENCES

1. Bertoni A., Grossi G., Provetti A., Kreinovich
V. and Tari L., 2001. The Prospect for An-
swer Set Computation by a Genetic Model.
AAAT Spring Symposium ASP 2001, pp.1-5.
AAAT press.

2. Brass S., Dix J., Freitag B., and Zukowski
U., 2001. Transformation-Based Bottom-
Up Computation of the Well-Founded Model.
Theory and Practice of Logic Programming.

3. Brignoli, G., Costantini, S., D’Antona, O.
and Provetti, A., 1999. Characterizing and
Computing Stable Models of Logic Programs:
the Non—stratified Case. Proc. of 1999 Con-
ference on Information Technology, pp. 197—
201.

4. Cholewinski, P. and Truszczynski, M., 1996.
Extremal problems in logic programming and

10.

11.

12.

13.

14.

15.

16.

17.

stable model computation. Proc. of I1JC-
SLP’96, pp. 408-422. Also in J. of Logic Pro-
gramming, 38 (1999): 219-242.

Costantini, S., 1995. Contribution to the sta-
ble model semantics of logic programs with
negation. Theoretical Computer Science,
149:231-255.

Costantini, S., 2001. On the Existence of Sta-
ble Models of Non-stratified Logic Programs.
AAAI Spring 2001 Symposium ASP 2001, pp.
21-26. AAAT press, SS-01-01.

Costantini, S., 2002. On the Existence of Sta-
ble Models of Non-stratified Logic Programs.
Submitted for pubblication.

Costantini, S., and Provetti A., 2002. Normal
Forms for Answer Set Programming. Submit-
ted for pubblication.

Dimopoulos, Y. and Torres, A., 1996. Graph
theoretical structures in logic programs and
default theories, Theoretical Computer Sci-
ence 170:209-244.

Gelfond, M. and Lifschitz, V., 1988. The sta-
ble model semantics for logic programming.
Proc. of 5th ILPS conference, pp. 1070-1080.
Gelfond, M. and Lifschitz, V., 1991. Classi-
cal negation in logic programs and disjunctive
databases. New Generation Computing, pp.
365—387.

Heljanko, K. and Niemela, 1., 2001. Bounded
LTL Model Checking with Stable Models.
Proc. of LPNMRO1. Springer LNAI2173 pp.
200-212.

Lifschitz, V., 1999. Answer Set Planning. In-
vited talk. Proc. of ICLP 99 Conference, pp.
23-37. MIT Press.

Linke, T., 2001. Graph Theoretical Charac-
terization and Computation of Answer Sets,
In Proc. of IJCAI 2001.

Marek, W., and Truszczynski, M., 1999. Sta-
ble models and an alternative logic program-
mang paradigm, In: The Logic Programming
Paradigm: a 25-Year Perspective, Springer-
Verlag: 375-398.

Marek V. and Remmel J. , 2001. On the
expressibility of Stable Logic Programming.
AAAI Spring 2001 Symposium ASP 2001, pp.
124-131. AAAT press, SS-01-01.

Provetti A. and Tari L., 2000. Answer Sets

18.

19.

20.

21.

Computation by Genetic Algorithms, Prelimi-
nary Report. Proc. of Genetic and Evolution-
ary Computation GECCO 2000 “Late break-
ing papers” track. pp. 303-308.

Provetti A. and Tran Cao S., editors, 2001.
Answer Set Programming: Toward Efficient
and Scalable Knowledge Representation and
Reasoning. AAAI Spring Symposium. AAAI
Press, SS-01-01

Schlipf J. , 1995. The expressive powers of the
logic programming semantics. Journal of the
Computer Systems and Science 51:64-86
Web location of the most known ASP solvers.
CCALC:

http://www. cs.utexas. edu/users/meain/cc
DeReS:

http://www.cs.engr.uky. edu/~Ipnmr/DeReS.html
DLV:

http://www. dbai. tuwien.ac.at/proj/dlv/
NoMoRe:

http://www. cs.uni-potsdam.de/~linke /nomore/
SMODELS:
http://www.tes.hut.fi/Software/smodels/

Van Gelder A., Ross K.A. and Schlipf J.,
1990. The Well-Founded Semantics for Gen-
eral Logic Programs. Journal of the ACM Vol.
38 N. 3.

