1

Coherence of Updates in Answer Set Programming

Stefania Costantini, Benedetto Intrigila
Dipartimento di Informatica, Universitdegli studi di L'Aquila
L'Aquila, 1-67010 (Italy), {stefcost, intrigi} @di.univagq.it
Alessandro Provetti
Dipartimento di Fisica, Universitdegli studi di Messina
Messina, 1-98166 (Italyyale@unime.it

Abstract

In the context of logic programming under the An-
swer Set semantics, we propose to introduce a Soft-
ware Engineering perspective, by discussing the
properties that a program should exhibit after an
update, i.e., after the addition/deletion of facts and
rules during the software development process. In
this sense, the property of Strong Equivalence has
recently become of interest for its practical implica-
tions, by characterizing which program optimiza-
tions preserve equivalence w.r.t. arbitrary updates.
In order to characterize how the answer sets change
after updates that significantly modify the program,
we introduce and discuss the new notion of Co-
herence. In particular, coherence of updates en-
sures that (some or all) the answer sets of the orig-
inal program become proper subsets of the answer
sets of the updated program. We study coherence
in detail for the recently-proposed class of kernel
logic programs, which have a simplified and uni-
form syntax, without loss of generality since every
logic program has a kernel counterpart. For kernel
programs, we define useful sufficient conditions for
coherence.

Introduction

changes because the available knowledge about the world
changes at “run-time”. Although indebted to all these ap-
proaches under many respects, we take the different perspec-
tive of software development, where a program changes be-
cause we are constructing it step by step, or because we are
modifying or refining it, or trying to make it more concise and
efficient.

To the best of our knowledge, the first attempt of consider-
ing Answer Set Semantics under such a perspective has been
that of [Dix, 1995a; Dix, 1995h that analyzes logical con-
sequence under the stable model semantics from the point of
view of the properties that a non—monotonic entailment rela-
tion should possess. It turns out that, in ASP, logical conse-
quences of programs cannot in general be stored as lemmas.
This is because the set of the answer sets of the resulting pro-
gram may change. In fact, logical consequence under the An-
swer Set semantics does not enjoy an important property re-
quired of non—monotonic entailment relatio@umulativity

In [Costantini et al., 1996this problem has been coped
with by showing that it is possible to assert a conclusibn
as a lemma, by asserting one or more sets of facts supporting
the conclusion (callebase sefs The effect on the meaning
of the program is that of selecting the answer sets containing
A. This has led to formulating a notion of Extended Cumula-
tivity.

Another important aspect of logical consequence under the
Answer Set semantics is the lack of tRelevanceroperty:
in order to establish whether atorh is true/false in one

This paper aims at studying problems related to the devel: . . .
oping, restructuring and updating of logic programs in An.answer set, it does not suffice to consider the subprogram

; A) = rel_rul(P, A), consisting of all rules that could con-
swer Set Programming (ASP). A lot of good research ha .(; R B
been done for dealing with modifications to a knowledge bas ribute to A's derivability, namely the set of rules concern

represented by a propositional theory under Answer Set Pra-9 all atoms on which! depends (positively/ negatively, di-

gramming (a very g.ood recent review wqh many referenceggaglhhn:;r:ﬁgaérgg és fﬁﬂfgohfsaﬁgﬂz Fér:é’ olﬂ ;ogr:)iﬁjases

s [Afferes and Pereira, 204)2 The two main approaches are be derivable inP(A) but not derivable inP, since its truth

Theory Revision, which deals with incorporating new knowl- ould makeP inconéistent '

edge about a static world, and Theory Update, which deal¥’ ' . .

W|th Changing Worlds_ ThUS, in these approaches a program The IaCk Of relevance makes |!.' more d|ﬂ:|CU|t to U_nderstar!d

- - - . what happens when a program is updated by adding/deleting
“We acknowledge the support of MIUR 40% projégigregate- facts and rules. Clearly, itis of practical interest to understand

and number-reasonlr)g for.compupng: from decision algorithms to,nder which conditions the updated program is still consis-

constraint programming with multisets, sets, and mapd of the ot “and which are the resulting answer sets. In this direc-

Information Society Technologies programme of the European Comﬁon: in a recent set of article{al.ﬂfschitz etal., 2001, Pearce

rsn;zsgzncl,\/:g;ugem?gg.Emergmg Technologieder the IST-2001- [Pearce, 1997 CabalafCabalar, 2001, Otero[Otero, 2001,

and others) some authors have introduced and studied the nates). Alternatively, one can see a program as a set of con-
tion of Strong Equivalence of logic programs under Answerstraints on the solution of a problem, where each answer
Set semantics. Two programs are equivalent if they have theet represents a solution compatible with the constraints ex-
same answer sets, while they are strongly equivalent if theressed by the program. Consider for instance the simple
programs resulting from adding the same set of fact and rulegrogram{q < notp. p < notgq.}: the first rule is read

to each are still equivalent. In other words, we can see strongs “assuming that is false, we carconcludethatgq is true.”
equivalence in terms of equivalence w.r.t. arbitrary updatesThis program has two answer sets. In the first gnis, true

The rationale for studying strong equivalence is therefore tavhile p is false; in the second ongjs true whileq is false.

establish when can we simplify a subprogram, supposedly A supsetds of the Herbrand basBy; of a DATALOG™

with the purpose of making it more concise, and thence easigfrogramII is an answer set dfl, if M/ coincides with the

to compute with, and maybe more readable, without alteringeast model of the redud™ of II with respect taVl. This

the overall semantics of the program. reduct is obtained by deleting frofi all rules containing a
The topic that we discuss in this paper concerns the invessonditionnot a, for somea in M, and by deleting all nega-

tigation of how the answer sets of a program change after ative conditions form the other rules. Answer sets are minimal

update that does not preserve equivalence, as it makes sign#fupported models, and form an anti-chain. Whenever a pro-

icant extensions/modifications to the given program. We ingram has no answer sets, we will say that the prograim-is

troduce the new notion afoherencethat relates the answer consistentCorrespondingly, checking for consistency means

sets of the given program to the answer sets of the updatethecking for the existence of answer sets.

program. In particular, suppose one identifies certain conclu- The \Well-founded semanticBvan Gelder et al., 1990
sions as interesting. Treore answer setf an answer se¥ Jefines a three-valued Well-Founded modEIFS(IT) =
is defined as the intersection 8fwith the interesting atoms. (T, F) that always exists, giving the sets of atoms which are
We will call an updatecoherentif it ensures that the core (resp.) true and false. All the other atoms have, implicitly,
answer sets anqgreservedys proper subsets of the answer setgruth value “undefined”, and are crucial for finding the an-
of the updated program. Coherence will be defined both in awer sets: in fact, every answer set extendsisewith no
weak and a strong form. intersection with sef'.
An important issue is that of identifying sufficient condi-
tions for coherence. As a first step, in this paper we addressefinition 1 A programIl is WFS-irreducible if and only if
this issue for the class of kernel logic prografBsignoli et W EFS(IT) = (0, 0).
al., 1999 [Costantini and Provetti, 2002that due to their
simple and uniform syntactic form allow us to understand in)) i
many significant cases which are the effects of an update. It is easy to see that in WFS-irreducible programs there are
The paper is organized as follows: after some preliminar;)ﬁIO facts, that would belong to st Given an arbitrary logic

e . : . : - program, it is possible to obtain a WFS-irreducible reduct
definitions (Section 2), in Section 3 we introduce and d|s§y getting rid of atoms that are true/false w.r.t. HeFS

cuss the notion of coherence of updates. In Section 4 we d =
fine kernel programs, and in Section 5 we introduce for thi Costantini, 199p Several ASP solveASP solversapply

class of programs significant sufficient conditions for coher—i::; k'rr:)d grﬁ'?fr:'ft;%ate'ggh S'ggfamg dafr;f,vnvqe{hie;gv?resgif},f
ence. Finally, in Section 6 we discuss future development brog y

and in particular we give hints on how to go beyond kerne?t’ne reduct.

programs. _Inthe rest of the paper, arpdateis understood as a mod-
ification to the program performed by addition/deletion of

2 Background definitions facts/rules.

In th!s paper we considgr the syntaxlofélT.ALOGﬁ for de.—. efinition 2 LetII be a logic program. A positive update (or

ﬁ)%?gvgrgg:grnanswiensé v(\f[?]lechr;(;gcr)r;;@strrg;t;dk&;r;Iire;?]lgona}lﬁst update)l,, is a set of facts and/or rules to be added to
o9 . . . I1. A negative updatél, is a set of facts and/or rules to be

Truszczyiski, 1999 for a discussion). In the following, we deleted fronil up

will implicitly consider the ground version dD AT ALOG™ '

programs. A rulep is defined as usual, and can be seen

as composed of a conclusidread(p), and a set of condi- According to the above definition, for modifying a rule one

tionsbody(p). The latter can be divided into positive condi- has first to perform a negative update for deleting the rule, and

tionspos(p) each one of the forml, and negative conditions then a positive update for adding the modified rule. Notice

neg(p), each one of the formot A. In what follows,IT will that, since the answer set semantics is non-monotonic, even

denote a generic logic program. For the sake of simplicitypositive updates may drop some previous consequences of

we assume that no two rules Ih with the same conclusion a program. Take for instance simple program— not g:

have the bodies in subset relation. updateg makesp false.

The answer sets semantigSelfond and Lifschitz, 19498 If after an update there are two rules with the same con-
[Gelfond and Lifschitz, 1991is a view of logic programs clusion and the bodies in subset relation, we assume that they
as sets of inference rules (more precisely, default inferencare merged together, keeping the “shortest” one.

3 Toward a Theory of Updates: Coherence Definition 3 Let A(TT) = {S4,..., S, }.

.. S(I) = {My,...,M,} is a set of core answer sets for
In the early stages of program development, after modlfy|an for each M; € S(II) there existsS; € A(II) such that

a programlI by performing updatél,,,, the answer sets of Cg. E _
the resulting progranil’ = IT U IL,,, may well be very dif- M € S;. We say thab; is a core answer set df;.

ferent in number and content from thoselbf In subsequent Below we introduce the novel notion of Coherence of up-
stages, however, one may want assume that the modificatiafates. Firstly, we consider the effect of an update on a single
is conservativei.e. that well-established, intended contentsanswer set. In particular, Local Coherence requires that the
of some or all of the answer setsidfare in some seng®e- core M of answer sef5 of programlI be preserved (though
served. To illustrate the point, consider the development of possibly extended) after upddie,,,.
the following simple program.

Definition 4 (Local Coherence) Given programiI and core
Example 1 Let, be answer sef\/ € S(IT), an updatdl,,, of IT is locally coher-
entw.rt. ITand M if there exists\M/” € A(IIUII,,) such that

at_work «— notat_home M C M.

at_home < notat_work

with answer set§at_work}, {at_-home}. Suppose that we Example 2 (Local Coherence)Letr; be
would like to obtain that one is happy at home, and bored at

work. As a first attempt (made by a not-very-good program- @ < Notb

mer), updater,,,; could be: b < nota

with (core) answer setsa} and {b}. Given updater
happy «— not happy, notat_home (core) b {0} P up

The resulting program has the unique answersg¢thome}: e < not f
one answer set is lost, the intended effect is not achieved. f <+ note

As a second attempt, trying to fix the problem, updaig the resulting program has answer sdis e}, {a, f}, {b, e},
could be: {b, f}, where each answer set of is a subset of some an-
swer set of the updated program. Then, updajgis locally

happy — nothappy, notat_home coherent w.r.t. both answer setsmf.

bored «— notbored, notat_work
Unfortunately, the resulting program is inconsistent. Another Notice that local coherence of,,;, requires thall U 11,

updater,,3 could be: is consistent, which is not always the case, and may be very
expensive (computationally) to check. Take for instance pro-
happy < notbored, notat_work gram{p < notp,p < nota} which is consistent, with
bored < nothappy unique answer sefp}: update consisting simply in the ad-

Thence, the answer sets are: {at_work,bored}, dition of facta < produces an inconsistent program, while
{at_home, happy} and {at_home,bored}. There is an update{a <, p < notb} produces a consistent program with

unwanted answer set! unique answer sefp, a}.
Finally, updater 4 A more general notion of coherence concerns the whole
set of the answer sets of the given progrAmand requires
happy < notbored, notat_work that some or all the core answer sHtbe preserved (though
bored <— not happy, notat_home possibly extended) after updaltk,,. Let us consider an in-

gets the correct effect, with answer sétg_work, bored}, termediate formulation where we require that all the answer
sets of the updated program extend some of the answer sets
of the original program. That is, the updated program is al-
The example above shows that a formal theory of updatelwed to have any number of answer set, even fewer than
is really needed. The aim of this paper is to start lying thethe original program. This definition is useful in those cases
foundations of such theory and practice. where some unwanted models have to be dropped (typically

Although one cannot in general look into the intendedby adding constraints to the program).
meaning of programs, we believe that in many practical cases
it is possible to identify, for some or all of the answer setsBei;'r\]A'lt";;rll(F (Cvglﬁgfeﬁwwfr?{‘ﬁ%’?‘g;fﬁ;};ﬂua?hpfgar;
of IT, an interesting subset corresponding to intended concl here exist)s?w S(IT such that\f C M’ € up
sions that we want to preserve. We will call these sub=ats € S(II) =

answer sets. Example 3 (Weak Coherence)Let s be
The property otoherenceof updatell,,,, is defined as the

preservation of core answer sets as proper subsets of the ar < notb

swer sets of the updated program. Since an answer set cah < Nnota

coincide with its core, For the sake of simplicity, in the exam-|_et updater,,, consist of the rule

ples we will assume that this is the case. Also, in what follows

let A(IT) be the set of the answer sets of given progiam g < notg, notb

{at_home, happy}.

Updater,,, is weakly coherent w.r.tr3: while 73 has (core) Example 5 To informally illustrate which are the elements
answer setga} and{b}, 73 Um,, has the unique answer set a kernel program is composed of, we propose the following
{b}. This update in fact consists in a constraint that statessample program.

that b must be true (otherwise, the program is inconsistent)

and thus rules out every answer set not includingCon- 1. a < notb

straints are widely used in Answer Set Programming and in 2. b < nota

fact all the answer set solvers allow to express them in the3. ¢« notf

compact form— notb. 4. f <« notg,nota
. . 5. g« note
We now define the stronger notion of Global coherence, 6. ; — notp, notg

that requires the answer sets of the updated program to ex7. f — notb
tend all the core answer sets of the original program. This Rules 1 and 2 form megative even cyclesince atoma
definition works in those cases where all the answer sets OJ 9 4

the original program contain relevant consequences that hav epends (negatively) upon riatand vice versa. In the rest
to be pgreserF\)/ec? q ot this paper we consider only negative dependencies, and

thus only negative cycles, that for short we call jagtles.
Definition 6 (Global Coherence) An updateTl,,, to pro- This cycle iseven,since it involves an even number of atoms.
gram 1II is globally coherentv.rt. II if for each M € S(II) Rules 3, 4, and 5 form aodd cycle, that involves the three

there exists\/’ € A(I1 UTIL,,) such thath C M. atomse, f andg. Literal nota which occurs in a rule of the
cycle, where however atois not involved in the cycle itself,
Example 4 (Global Coherence)Let, be is called an AND handle of the cycle. Rule 6 is a particular
0 < notb case of an odd cycle with an AND handle, namelyqaince
b — nota it involves just one rule: it is called aelf-loop. Rule 7 does

not belong to any cycle, although its hedds involved in
with (core) answer setfa} and {b}. Given updater,,, the (odd) cycle consisting of rules 3, 4 and 5. This kind of
rule is called anauxiliary rule of that cycle and the literal
notb which occurs in its body is called akND handleof the
cycle.

e <« not f

f < note
the resulting program has answer séts e}, {a, f}, {b, e},))
{b, f}, where each answer set of is a subset of some an- _Handles constitute theonnectiondetween cycles. As we
swer set of the updated program. will see later, looking at these connections will allow us to

understand (at least in some cases) what is the effect of an
Global coherence as defined above alléWsII,, to have update. Formally:

more answer sets thdh A rigid position where the number o] o
of the answer sets ﬁUHuP is required to be the same as the DEfIan[Ion 8 A set of rulesC' is called a cycle if it has the
number of the answer setsldfis formalized by the following ~ following form:

notion.
A — nOt/\g,A1, - ,)\n — not)\l,An

Definition 7 (Strong Coherence)An updateIl,, of pro- o))
gram IT is strongly coherent.r.t. IT if it is globally coherent, ~ Where the\;'s are distinct atomsp > 1. EachA,; is a (possi-
and the cardinality ofA(IT) and A(IT U IL,,,,) is the same. bly empty) conjunctiod;y, . . ., §;;, of literals (either positive
))) or negative) and for eachy;, §;; # A; andd;; # not);. The

Checking coherence of updates is a challenging problemy ;s are called the AND handles of the cycle. We say that
related to the more general one of existence and number @ an AND handle for (or referring to) atork;.
answer sets. As a first step, in what follows we will show
that by referring to a limited though in our opinion significant Forn = 1 we have the self-loop; < not A\;, A;. We
class of logic programs, relevant sufficient conditions for co-say thatC' has sizen and it is even (respectively odd) if

herence can be defined. n = 2k, k > 1 (respectivelyn = 2k + 1, £ > 0). We
call Composing_atoms(C) the set containing all the atoms
4 Preliminary definitions: Kernel Programs involvedin cycle C. We say that the rules listed aboke-

longto the cycle, oformthe cycle.

Kernel logic programs (or simplgerneld have a simple uni- L) -
form structure, and are actually a normal form any logic pro-Definition 9 Arule is called arauxiliary rule of cycleC’ (or,
gram can be reduced {€ostantini, 1995[Costantini and €duivalentlyto cycleC) if it is of this form:
Provetti, 2002. In this context however, we take kernels just \; «— A
as arelevant class of programs for which sufficient conditiongynere \; ¢ ComposingAtoms(?), and A is a non-empty
for coherence can be specified in an elegant and concise Waypnjunctions;s, . . . , &, of literals (either positive or nega-
although our future objective is to extend these conditions tjye) and for eachd;;, 0;; # A\; andd;; # not\;. Ais called
more general classes of programs. an OR handle of cycl€' (more specifically, an OR handle for,

Kernel programs aréV F'S-irreducible, and the body of or referring to, \;). A cycle may possibly have several aux-
their rules is composed of negative literals only. iliary rules, corresponding to different OR handles. It may

be the case that different auxiliary rules have the same body, Sincell,,, in general is not a kernel, we cannot properly

although referring to different atoms among those involved indefine Ands(IL,,) and Ors(IL,,). However, givenll’ =

the cycle. IT U I1,, and thus giverdnds(II') and Ors(Il'), by abuse
of notation we indicate wittAnds(I1,,) andOrs(11,,) their

Definition 10 A logic programlI is in kernel normal form sypsets, corresponding to the AND and OR hand|&§ afc-
(or, equivalently,II is a kernel programor for short justa curring in its subprograrfl,,,,.

kerne) if and only if: The handles ofl,,, are of interest for coherence, since, as

1. II is WFS-irreducible (and thus there are no facts); illustrated in the example below, if an atom occurs in an han-
. . dle ofII,,, it mayhave tochange its truth value in the answer
2. every rule has its body composed of negative literalggig of1/ (the reader may refer {€ostantini, 200Bfor a dis-
only; cussion). Below we give a sufficient condition to ensure that
3. every atom il occurs both in the head and in the body 1L, is a locally coherent update w.r.t. (core) answer\gedf
of some rule; I1. This condition can then be used for checking either weak

. . . or global coherence.
4. every rule either belongs to a cycle, or is auxiliary to a

cycle. Proposition 1 LetIl be a kernel andlL,,, an update such that
ITUIL,, is still a kernel.IL,, is a locally coherent update for
5 Technical Results about Coherent Updates II Wlt.h' respect .to core answer s&f of II, if the following
conditions hold:
An updatell,,, is not required to be a kernel. Everlifis a
kernel, the resulfl’ = II UII,,, of the update is in general
not in kernel form. In the rest of this section however, for the (i) M N Ors(Il,,) = 0;
sake of simplicity we assume thdtu 1T, is still a kernel. (iii) for everya € M, Ands(Il,;) N Support(a) = 0.
We make the following further simplifying assumptions, . .
that we mean to remove in the future developments of thig cr)(r)toef dl.rssj\lzegg?).gsat‘;%ltbg Iopglgg;g 0 arllrcl)stvzer:(;stdt[Icsosnudp:
research: we assume that an answer set coincides with iEIS ' ' y rulen <) & :

core, we consider positive updates only, and we suppose th pn g) forb'dShH“P fr_ortr: %ontammg new clﬁluses férand f
1T, is consistent. ¢, otherwise they might become true in the answer sets o

Asiti Ik (see for instandéCostantini, 1995 II' = IT U IL,,, thus leaving: without support.
s it is well-known (see for instandeCostantini, , e L L
in an answer seb/ every true atomu is supported, in the Condition (ii) instead, ensures thatwhich is true inM is not

H 1 H !/
sense that there exists a rule in the program with head forced to become false in the answer setilofor keepingI

body true w.r.t. M. In kernel programs, since the body is cgnystent. o]
composed of negative literals only, this is equivalent to say-inally, condition (iii) ensures that no atom that supports
that all the atoms occurring in the body must be false w.r.t} (by being false) is forced to be assumed true for keeping
M. In the above definition, we build the set of all the atomsI1’ consistent.

that potentially support (by being false) a given atoenrby
collecting them in the bodies of rules with head

(i) foreverya € M, Head(I1,;,) N Support(a) = 0;

The conditions are illustrated by the following example,
where again we assume that the answer sets of given program

Definition 11 Given (core) answer se¥/ of II, and given ~ Ccoincide with their core.
atoma € M, let {a «— Bodyy, ..., a «— Body,} be Example 6 Let - be

the rules with headi and body which is true in/. The P i
set Support(a) is composed of all the atoms occurring in ¢ «— notb
Body, ..., Body,. b« nota

. . . p <« notp, notb.
The setSupport(a) is of interest for coherence, since a . pot ¢

potential source of problems is that one atom belonging tof < note
Support(a), that is false w.r.t. M, becomes true due to the
rules ofII,,, thus potentially leaving: unsupported. This
would imply the risk that cannot be true in the answer sets
of IT", which means thdil,,,, is not locally coherent fof/.

For any given kernel prograi, let:

with (core) answer set$b, e} and {b, f}. We consider be-
low three different updates, each one not satisfying one of the
conditions (i)-(iii) for answer se{b, e}, while satisfying all

the conditions for answer s¢b, f}. We will show that in fact
each of the three updates is not locally coherent w{hte},

(@) heads(II) be the set of atoms occurring as the heads oiWh”e itis locally coherent w.r.t{b. f}.
the rules offT; The updater,,;;

(b) Ands(II) be the set of atoms occurring in the AND han- f « nota

dles of the rules ofl; does not satisfy condition (i) for answer géte} of 75, since

(c) Ors(IT) be the set of atoms occurring in the OR handlesSupport(e) = { f} and there are clauses fgftin this update.
of the rules ofiI. In fact, the updated program! = 75 U m,, has unique

answer sef{b, f}, and thusr,,; is not locally coherent w.r.t. always exists and is unique, which means that the kernel con-

{b, e} while it is locally coherent w.r.t{b, }. tains all the relevant information. Nevertheless, one has to
The updater,,; cope with the indirectness introduced by positive atoms in the
bodies of rules, by “bridges” between cycles, and by atoms

q «— notq which occur in the heads but not in the bodies of rules. Such
q < note. a deeper analysis of the inherent structure of arbitrary pro-

. e rams is a topic for future research.
does not satisfy condition (ii) for answer gét e} of 5, be- 9 P

causee occurs inOrs(myp2). Here, assuming true would
mean to have an inconsistent self-loop nThen, the up- References

dated programm? = 75 U m,p2 Cannot have answer sets [Alferes and Pereira, 2002). J. Alferes, L. M. Pereira.

wheree is true. In fact, 7,2 is not locally coherent w.r.t. Logic Programming Updating - A Guided Approach,
{b, e}, sincen? it has the unique answer séf, f, ¢}. Computational Logic: Logic Programming and Be-
The updater,,,3 yond, Essays in Honor of Robert A. Kowalski, Part I,

LNAI 2408, Springer-Verlag, Berlin: 382—-412, 2002.

q < notg,not f [Brignolietal., 1999 G. Brignoli, = S. Costantini,
does not satisfy condition (iii) for answer sfi, e} of s, O. D'Antona, and A. Provetti. Characterizing
becauseSupport(e) = {f} and f occurs in Ands(myp3). and Computing Stable Models of Logic Programs:
Here, f must be true for avoiding an inconsistent self-loop the Non-stratified CaséProc. of 1999 Conference on
ong. Then, the updated progran¥ cannot have answer sets Information Technology, held in Bhubaneswar, India,
where f is false. On the other hand howevgr,should be December 1999.
false for supporting:. In fact, 7., is not locally consistent [capajar, 2001 P. CabalarWell-founded Semantics as Two-
for {b, e}, sincen? has unique answer s¢b, f}. dimensional Here and ThereProc. of AAAI Spring
Finally, the updater,,;4 Symposium ASP2001, AAAI Press, Tech. report

SSS01, 2001.

p < hota [Costantini, 199P S. Costantini Contributions to the Stable
satisfies all the three conditions, and consequently is locally Model semantics of Logic Programs with Negation
coherent, for both the answer setsf. In fact, the up- in: A. Nerode and V.S. Subrahmanian (eds.), “Logic
dated programr; = m5 U 4 has answer setfh, e, p} and Programming and Non-Monotonic Reasoning”, Pro-
{b, f,p}. Notice that this update is strongly coherent, since ceedings of the 2nd International Workshop. The MIT
the number of answer sets remains the same. Press, USA, 1993.

9[Costantini, 1995 S. Costantini. Contributions to the sta-

deeper into the syntactic form BfandIT,,. Itis however im- ble model semantics of logic programs with negation
portant to notice that the conditions stated in the above propo- Theoretical Computer Science, 149: 231-255, 1995.
sition work in many practical cases, and are easy to check. [Costantini etal., 1996S. Costantini, G. A. Lanzarone,
G. Magliocco.Asserting Lemmas in the Stable Model
Semantics Logic Programming: Proc. of the 1996
Joint International Conference and Symposium (held

In this paper we have proposed the new notion of coherence, ill]SB:nlnééBGermany, September 1996). The MIT Press,
for relating the programs produced in subsequent steps of a ' :
software development process in Answer Set ProgrammindCostantini, 200B S. Costantini.On the Existence of Stable

Itis possible in perspective to define finer conditions, goin

6 Concluding Remarks: beyond kernels

We have defined various notions of coherence, that establish Models of Non-stratified Logic Programdechnical
what relation there should be between the answer sets of the Report Univ. of L'Aquila, submitted.

original programs, and the answer sets of the programs resultcostantini and Provetti, 2002S. Costantini, and
ing from update/modification. We have introduced significant A. Provetti. Normal Forms for Answer Set Pro-
sufficient conditions for coherence on the claskerhelpro- gramming Technical Report Univ. of LAquila,
grams, that are a normal form of logic programs that allow submitted.

one to distinguish the elements the program is composed o£ .
namely cycles and handles, and thus to reason more eas P'X’ 1 .) .
about what happens when the program is modified. A more Normal Logic Programs: I. St.rong Properties-un-
difficult issue is that of investigating conditions for coherence damenta Informaticae XXII(3): 227-255, 1995.

in wider classes of programs. This would require a carefulDix, 19951 J. Dix. A Classification Theory of Semantics of

9954 J. Dix. A Classification Theory of Semantics of

analysis, in order to identify for more general cases the ele- Normal Logic Programs: |. Weak PropertieBunda-

ments a program is composed of, and how they are related. menta Informaticae XXII(3) : 257-288, 1995.
Essentially, the elements are still the same: the answer sefGelfond and Lifschitz, 1988 M. Gelfond, and V. Lifschitz.

of any program can be easily obtained from the answer sets The stable model semantics for logic programming

of its kernel[Costantini and Provetti, 2002and the kernel Proc. of 5th ILPS conference : 1070-1080.

[Gelfond and Lifschitz, 1991 M. Gelfond, and V. Lifschitz.
Classical negation in logic programs and disjunctive
databasesNew Generation Computing: 365—-387.

[Lifschitz et al., 2001 V. Lifschitz, D. Pearce, and
A. Valverde. Strongly Equivalent logic pro-
grams ACM Transactions on Computational Logic,
2:526-541.

[Marek and Truszczyski, 1999 W. Marek, and
M. Truszczyrski. Stable models and an alter-
native logic programming paradigm, The Logic
Programming Paradigm: a 25-Year Perspective,
Springer-Verlag: 375-398.

[Otero, 200] R. Otero. Pertinence Logic Characterization
of Stable Models Proc. AAAI Spring Symposium
ASP2001, AAAI Press, Tech. report SSS01, 2001.

[Pearce, 1997D. Pearce.A New Logical Characterization
of Stable Models and Answer Setdon-Monotonic
Extensions of Logic Programming, Springer-Verlag,
Berlin, LNAI 1216: 55-70.

[ASP solvers Web location of some ASP solvers:
CCALC: http:/lwww.cs.utexas.edu/users/mcain/cc
Cmodelshttp://www.cs.utexas.edu/users/tag/cmodels.html
DeReShttp://www.cs.engr.uky.edupnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-
potsdam.de/linke/nomore/
SMODELS:http://www.tcs.hut.fi/Software/smodels/

[Turner, 2001 H. Turner.Strong Equivalence for Logic Pro-
grams and Default Theories (Made Easlypgic Pro-
gramming and NonMonotonic Reasonirgpringer-
Verlag, Berlin, LNAI 2173: 81-92.

[Van Gelder et al., 1990A. Van Gelder A., K. A. Ross, and
J. Schlipf J.The Well-Founded Semantics for General
Logic Programs Journal of the ACM 38(3).

