
Coherence of Updates in Answer Set Programming∗

Stefania Costantini, Benedetto Intrigila
Dipartimento di Informatica, Università degli studi di L’Aquila

L’Aquila, I-67010 (Italy),{stefcost, intrigil}@di.univaq.it
Alessandro Provetti

Dipartimento di Fisica, Università degli studi di Messina
Messina, I-98166 (Italy),ale@unime.it

Abstract

In the context of logic programming under the An-
swer Set semantics, we propose to introduce a Soft-
ware Engineering perspective, by discussing the
properties that a program should exhibit after an
update, i.e., after the addition/deletion of facts and
rules during the software development process. In
this sense, the property of Strong Equivalence has
recently become of interest for its practical implica-
tions, by characterizing which program optimiza-
tions preserve equivalence w.r.t. arbitrary updates.
In order to characterize how the answer sets change
after updates that significantly modify the program,
we introduce and discuss the new notion of Co-
herence. In particular, coherence of updates en-
sures that (some or all) the answer sets of the orig-
inal program become proper subsets of the answer
sets of the updated program. We study coherence
in detail for the recently-proposed class of kernel
logic programs, which have a simplified and uni-
form syntax, without loss of generality since every
logic program has a kernel counterpart. For kernel
programs, we define useful sufficient conditions for
coherence.

1 Introduction

This paper aims at studying problems related to the devel-
oping, restructuring and updating of logic programs in An-
swer Set Programming (ASP). A lot of good research has
been done for dealing with modifications to a knowledge base
represented by a propositional theory under Answer Set Pro-
gramming (a very good recent review with many references
is [Alferes and Pereira, 2002]). The two main approaches are
Theory Revision, which deals with incorporating new knowl-
edge about a static world, and Theory Update, which deals
with changing worlds. Thus, in these approaches a program

∗We acknowledge the support of MIUR 40% projectAggregate-
and number-reasoning for computing: from decision algorithms to
constraint programming with multisets, sets, and mapsand of the
Information Society Technologies programme of the European Com-
mission, Future and Emerging Technologiesunder the IST-2001-
37004 WASP project.

changes because the available knowledge about the world
changes at “run-time”. Although indebted to all these ap-
proaches under many respects, we take the different perspec-
tive of software development, where a program changes be-
cause we are constructing it step by step, or because we are
modifying or refining it, or trying to make it more concise and
efficient.

To the best of our knowledge, the first attempt of consider-
ing Answer Set Semantics under such a perspective has been
that of [Dix, 1995a; Dix, 1995b], that analyzes logical con-
sequence under the stable model semantics from the point of
view of the properties that a non–monotonic entailment rela-
tion should possess. It turns out that, in ASP, logical conse-
quences of programs cannot in general be stored as lemmas.
This is because the set of the answer sets of the resulting pro-
gram may change. In fact, logical consequence under the An-
swer Set semantics does not enjoy an important property re-
quired of non–monotonic entailment relations:Cumulativity.

In [Costantini et al., 1996] this problem has been coped
with by showing that it is possible to assert a conclusionA
as a lemma, by asserting one or more sets of facts supporting
the conclusion (calledbase sets). The effect on the meaning
of the program is that of selecting the answer sets containing
A. This has led to formulating a notion of Extended Cumula-
tivity.

Another important aspect of logical consequence under the
Answer Set semantics is the lack of theRelevanceproperty:
in order to establish whether atomA is true/false in one
answer set, it does not suffice to consider the subprogram
P (A) = rel rul(P,A), consisting of all rules that could con-
tribute toA’s derivability, namely the set of rules concern-
ing all atoms on whichA depends (positively/ negatively, di-
rectly/indirectly). This is for two reasons. First, in some cases
P (A) has answer sets, whileP has none. Second,A could
be derivable inP (A), but not derivable inP , since its truth
would makeP inconsistent.

The lack of relevance makes it more difficult to understand
what happens when a program is updated by adding/deleting
facts and rules. Clearly, it is of practical interest to understand
under which conditions the updated program is still consis-
tent, and which are the resulting answer sets. In this direc-
tion, in a recent set of articles ([Lifschitz et al., 2001], Pearce
[Pearce, 1997], Cabalar[Cabalar, 2001], Otero[Otero, 2001],



and others) some authors have introduced and studied the no-
tion of Strong Equivalence of logic programs under Answer
Set semantics. Two programs are equivalent if they have the
same answer sets, while they are strongly equivalent if the
programs resulting from adding the same set of fact and rules
to each are still equivalent. In other words, we can see strong
equivalence in terms of equivalence w.r.t. arbitrary updates.
The rationale for studying strong equivalence is therefore to
establish when can we simplify a subprogram, supposedly
with the purpose of making it more concise, and thence easier
to compute with, and maybe more readable, without altering
the overall semantics of the program.

The topic that we discuss in this paper concerns the inves-
tigation of how the answer sets of a program change after an
update that does not preserve equivalence, as it makes signif-
icant extensions/modifications to the given program. We in-
troduce the new notion ofcoherencethat relates the answer
sets of the given program to the answer sets of the updated
program. In particular, suppose one identifies certain conclu-
sions as interesting. Thecore answer set,of an answer setS
is defined as the intersection ofS with the interesting atoms.

We will call an updatecoherent if it ensures that the core
answer sets arepreserved,as proper subsets of the answer sets
of the updated program. Coherence will be defined both in a
weak and a strong form.

An important issue is that of identifying sufficient condi-
tions for coherence. As a first step, in this paper we address
this issue for the class of kernel logic programs[Brignoli et
al., 1999] [Costantini and Provetti, 2002], that due to their
simple and uniform syntactic form allow us to understand in
many significant cases which are the effects of an update.

The paper is organized as follows: after some preliminary
definitions (Section 2), in Section 3 we introduce and dis-
cuss the notion of coherence of updates. In Section 4 we de-
fine kernel programs, and in Section 5 we introduce for this
class of programs significant sufficient conditions for coher-
ence. Finally, in Section 6 we discuss future developments,
and in particular we give hints on how to go beyond kernel
programs.

2 Background definitions
In this paper we consider the syntax ofDATALOG¬ for de-
ductive databases, which is more restricted than traditional
logic programming (the reader may refer to[Marek and
Truszczýnski, 1999] for a discussion). In the following, we
will implicitly consider the ground version ofDATALOG¬

programs. A ruleρ is defined as usual, and can be seen
as composed of a conclusionhead(ρ), and a set of condi-
tionsbody(ρ). The latter can be divided into positive condi-
tionspos(ρ) each one of the formA, and negative conditions
neg(ρ), each one of the formnot A. In what follows,Π will
denote a generic logic program. For the sake of simplicity,
we assume that no two rules inΠ with the same conclusion
have the bodies in subset relation.

The answer sets semantics[Gelfond and Lifschitz, 1988]
[Gelfond and Lifschitz, 1991] is a view of logic programs
as sets of inference rules (more precisely, default inference

rules). Alternatively, one can see a program as a set of con-
straints on the solution of a problem, where each answer
set represents a solution compatible with the constraints ex-
pressed by the program. Consider for instance the simple
program{q ← not p. p ← not q.}: the first rule is read
as “assuming thatp is false, we canconcludethatq is true.”
This program has two answer sets. In the first one,q is true
while p is false; in the second one,p is true whileq is false.

A subsetM of the Herbrand baseBΠ of a DATALOG¬

programΠ is an answer set ofΠ, if M coincides with the
least model of the reductΠM of Π with respect toM . This
reduct is obtained by deleting fromΠ all rules containing a
conditionnot a, for somea in M , and by deleting all nega-
tive conditions form the other rules. Answer sets are minimal
supported models, and form an anti-chain. Whenever a pro-
gram has no answer sets, we will say that the program isin-
consistent. Correspondingly, checking for consistency means
checking for the existence of answer sets.

The Well-founded semantics[Van Gelder et al., 1990]
defines a three-valued Well-Founded modelWFS(Π) =
〈T, F 〉 that always exists, giving the sets of atoms which are
(resp.) true and false. All the other atoms have, implicitly,
truth value “undefined”, and are crucial for finding the an-
swer sets: in fact, every answer set extends setT , with no
intersection with setF .

Definition 1 A programΠ is WFS-irreducible if and only if
WFS(Π) = 〈∅, ∅〉.

It is easy to see that in WFS-irreducible programs there are
no facts, that would belong to setT . Given an arbitrary logic
program, it is possible to obtain a WFS-irreducible reduct
by getting rid of atoms that are true/false w.r.t. theWFS
[Costantini, 1992]. Several ASP solvers[ASP solvers] apply
this kind of simplification, since the answer sets of the orig-
inal program can be easily obtained from the answer sets of
the reduct.

In the rest of the paper, anupdateis understood as a mod-
ification to the program performed by addition/deletion of
facts/rules.

Definition 2 LetΠ be a logic program. A positive update (or
just update)Πup is a set of facts and/or rules to be added to
Π. A negative updateΠ−

up is a set of facts and/or rules to be
deleted fromΠ.

According to the above definition, for modifying a rule one
has first to perform a negative update for deleting the rule, and
then a positive update for adding the modified rule. Notice
that, since the answer set semantics is non-monotonic, even
positive updates may drop some previous consequences of
a program. Take for instance simple programp ← not q:
updateq makesp false.

If after an update there are two rules with the same con-
clusion and the bodies in subset relation, we assume that they
are merged together, keeping the “shortest” one.



3 Toward a Theory of Updates: Coherence

In the early stages of program development, after modifying
a programΠ by performing updateΠup, the answer sets of
the resulting programΠ′ = Π ∪ Πup may well be very dif-
ferent in number and content from those ofΠ. In subsequent
stages, however, one may want assume that the modification
is conservative, i.e. that well-established, intended contents
of some or all of the answer sets ofΠ are in some sensepre-
served.To illustrate the point, consider the development of
the following simple program.

Example 1 Letπ1 be

at work ← notat home
at home← notat work

with answer sets{at work}, {at home}. Suppose that we
would like to obtain that one is happy at home, and bored at
work. As a first attempt (made by a not-very-good program-
mer), updateπup1 could be:

happy ← nothappy, notat home

The resulting program has the unique answer set{at home}:
one answer set is lost, the intended effect is not achieved.

As a second attempt, trying to fix the problem, updateπup2

could be:

happy ← nothappy, notat home
bored← not bored, notat work

Unfortunately, the resulting program is inconsistent. Another
updateπup3 could be:

happy ← not bored, notat work
bored← nothappy

Thence, the answer sets are: {at work, bored},
{at home, happy} and {at home, bored}. There is an
unwanted answer set!

Finally, updateπup4

happy ← not bored, notat work
bored← nothappy, notat home

gets the correct effect, with answer sets{at work, bored},
{at home, happy}.

The example above shows that a formal theory of updates
is really needed. The aim of this paper is to start lying the
foundations of such theory and practice.

Although one cannot in general look into the intended
meaning of programs, we believe that in many practical cases
it is possible to identify, for some or all of the answer sets
of Π, an interesting subset corresponding to intended conclu-
sions that we want to preserve. We will call these subsetscore
answer sets.

The property ofcoherenceof updateΠup is defined as the
preservation of core answer sets as proper subsets of the an-
swer sets of the updated program. Since an answer set can
coincide with its core, For the sake of simplicity, in the exam-
ples we will assume that this is the case. Also, in what follows
letA(Π) be the set of the answer sets of given programΠ.

Definition 3 LetA(Π) = {S1, . . . , Sr}.
S(Π) = {M1, . . . ,Mn} is a set of core answer sets forΠ
if for eachMi ∈ S(Π) there existsSj ∈ A(Π) such that
Mi ⊆ Sj . We say thatMi is a core answer set ofSj .

Below we introduce the novel notion of Coherence of up-
dates. Firstly, we consider the effect of an update on a single
answer set. In particular, Local Coherence requires that the
coreM of answer setS of programΠ be preserved (though
possibly extended) after updateΠup.

Definition 4 (Local Coherence) Given programΠ and core
answer setM ∈ S(Π), an updateΠup of Π is locally coher-
entw.r.t. Π andM if there existsM ′ ∈ A(Π∪Πup) such that
M ⊆M ′.

Example 2 (Local Coherence)Letπ2 be

a← not b
b← nota

with (core) answer sets{a} and{b}. Given updateπup

e← notf
f ← note

the resulting program has answer sets{a, e}, {a, f}, {b, e},
{b, f}, where each answer set ofπ2 is a subset of some an-
swer set of the updated program. Then, updateπup is locally
coherent w.r.t. both answer sets ofπ2.

Notice that local coherence ofΠup requires thatΠ ∪ Πup

is consistent, which is not always the case, and may be very
expensive (computationally) to check. Take for instance pro-
gram {p ← not p, p ← not a} which is consistent, with
unique answer set{p}: update consisting simply in the ad-
dition of facta ← produces an inconsistent program, while
update{a←, p← notb} produces a consistent program with
unique answer set{p, a}.

A more general notion of coherence concerns the whole
set of the answer sets of the given programΠ, and requires
that some or all the core answer setsΠ be preserved (though
possibly extended) after updateΠup. Let us consider an in-
termediate formulation where we require that all the answer
sets of the updated program extend some of the answer sets
of the original program. That is, the updated program is al-
lowed to have any number of answer set, even fewer than
the original program. This definition is useful in those cases
where some unwanted models have to be dropped (typically
by adding constraints to the program).

Definition 5 (Weak Coherence)An updateΠup of program
Π is weakly coherentw.r.t. Π if for eachM ′ ∈ A(Π ∪ Πup)
there existsM ∈ S(Π) such thatM ⊆M ′.

Example 3 (Weak Coherence)Letπ3 be

a← not b
b← nota

Let updateπup consist of the rule

q ← not q, not b



Updateπup is weakly coherent w.r.t.π3: while π3 has (core)
answer sets{a} and{b}, π3 ∪ πup has the unique answer set
{b}. This update in fact consists in a constraint that states
that b must be true (otherwise, the program is inconsistent)
and thus rules out every answer set not includingb. Con-
straints are widely used in Answer Set Programming and in
fact all the answer set solvers allow to express them in the
compact form← not b.

We now define the stronger notion of Global coherence,
that requires the answer sets of the updated program to ex-
tend all the core answer sets of the original program. This
definition works in those cases where all the answer sets of
the original program contain relevant consequences that have
to be preserved.

Definition 6 (Global Coherence) An updateΠup to pro-
gram Π is globally coherentw.r.t. Π if for eachM ∈ S(Π)
there existsM ′ ∈ A(Π ∪Πup) such thatM ⊆M ′.

Example 4 (Global Coherence)Letπ4 be

a← not b
b← nota

with (core) answer sets{a} and{b}. Given updateπup

e← notf
f ← note

the resulting program has answer sets{a, e}, {a, f}, {b, e},
{b, f}, where each answer set ofπ4 is a subset of some an-
swer set of the updated program.

Global coherence as defined above allowsΠ∪Πup to have
more answer sets thanΠ. A rigid position where the number
of the answer sets ofΠ∪Πup is required to be the same as the
number of the answer sets ofΠ is formalized by the following
notion.

Definition 7 (Strong Coherence)An updateΠup of pro-
gram Π is strongly coherentw.r.t. Π if it is globally coherent,
and the cardinality ofA(Π) andA(Π ∪Πup) is the same.

Checking coherence of updates is a challenging problem,
related to the more general one of existence and number of
answer sets. As a first step, in what follows we will show
that by referring to a limited though in our opinion significant
class of logic programs, relevant sufficient conditions for co-
herence can be defined.

4 Preliminary definitions: Kernel Programs

Kernel logic programs (or simplykernels) have a simple uni-
form structure, and are actually a normal form any logic pro-
gram can be reduced to[Costantini, 1995] [Costantini and
Provetti, 2002]. In this context however, we take kernels just
as a relevant class of programs for which sufficient conditions
for coherence can be specified in an elegant and concise way,
although our future objective is to extend these conditions to
more general classes of programs.

Kernel programs areWFS-irreducible, and the body of
their rules is composed of negative literals only.

Example 5 To informally illustrate which are the elements
a kernel program is composed of, we propose the following
sample program.

1. a← not b
2. b← nota
3. c← notf
4. f ← notg, nota
5. g ← note
6. p← notp, notg
7. f ← not b

Rules 1 and 2 form anegative even cycle,since atoma
depends (negatively) upon notb, and vice versa. In the rest
of this paper we consider only negative dependencies, and
thus only negative cycles, that for short we call justcycles.
This cycle iseven,since it involves an even number of atoms.
Rules 3, 4, and 5 form anodd cycle, that involves the three
atomse, f andg. Literal nota which occurs in a rule of the
cycle, where however atoma is not involved in the cycle itself,
is called an AND handle of the cycle. Rule 6 is a particular
case of an odd cycle with an AND handle, namely notg, since
it involves just one rule: it is called aself-loop. Rule 7 does
not belong to any cycle, although its headf is involved in
the (odd) cycle consisting of rules 3, 4 and 5. This kind of
rule is called anauxiliary rule of that cycle and the literal
notb which occurs in its body is called anAND handleof the
cycle.

Handles constitute theconnectionsbetween cycles. As we
will see later, looking at these connections will allow us to
understand (at least in some cases) what is the effect of an
update. Formally:

Definition 8 A set of rulesC is called a cycle if it has the
following form:

λ1 ← notλ2,∆1, . . . , λn ← notλ1,∆n

where theλi’s are distinct atoms,n ≥ 1. Each∆i is a (possi-
bly empty) conjunctionδi1, . . . , δih of literals (either positive
or negative) and for eachδij , δij 6= λi andδij 6= notλi. The
∆i’s are called the AND handles of the cycle. We say that∆i

is an AND handle for (or referring to) atomλi.

For n = 1 we have the self-loopλ1 ← not λ1,∆1. We
say thatC has sizen and it is even (respectively odd) if
n = 2k, k ≥ 1 (respectively,n = 2k + 1, k ≥ 0). We
call Composing atoms(C) the set containing all the atoms
involvedin cycle C. We say that the rules listed abovebe-
longto the cycle, orform the cycle.

Definition 9 A rule is called anauxiliary rule of cycleC (or,
equivalently,to cycleC) if it is of this form:

λi ← ∆
whereλi ∈ ComposingAtoms(C), and ∆ is a non-empty
conjunctionδi1, . . . , δih of literals (either positive or nega-
tive) and for eachδij , δij 6= λi andδij 6= notλi. ∆ is called
an OR handle of cycleC (more specifically, an OR handle for,
or referring to,λi). A cycle may possibly have several aux-
iliary rules, corresponding to different OR handles. It may



be the case that different auxiliary rules have the same body,
although referring to different atoms among those involved in
the cycle.

Definition 10 A logic programΠ is in kernel normal form
(or, equivalently,Π is a kernel program,or for short just a
kernel) if and only if:

1. Π is WFS-irreducible (and thus there are no facts);

2. every rule has its body composed of negative literals
only;

3. every atom inΠ occurs both in the head and in the body
of some rule;

4. every rule either belongs to a cycle, or is auxiliary to a
cycle.

5 Technical Results about Coherent Updates

An updateΠup is not required to be a kernel. Even ifΠ is a
kernel, the resultΠ′ = Π ∪ Πup of the update is in general
not in kernel form. In the rest of this section however, for the
sake of simplicity we assume thatΠ ∪Πup is still a kernel.

We make the following further simplifying assumptions,
that we mean to remove in the future developments of this
research: we assume that an answer set coincides with its
core, we consider positive updates only, and we suppose that
Π′, is consistent.

As it is well-known (see for instance[Costantini, 1995]),
in an answer setM every true atoma is supported, in the
sense that there exists a rule in the program with heada, and
body true w.r.t. M . In kernel programs, since the body is
composed of negative literals only, this is equivalent to say
that all the atoms occurring in the body must be false w.r.t.
M . In the above definition, we build the set of all the atoms
that potentially support (by being false) a given atoma, by
collecting them in the bodies of rules with heada.

Definition 11 Given (core) answer setM of Π, and given
atom a ∈ M , let {a ← Body1, . . . , a ← Bodyn} be
the rules with heada and body which is true inM . The
set Support(a) is composed of all the atoms occurring in
Body1, . . . , Bodyn.

The setSupport(a) is of interest for coherence, since a
potential source of problems is that one atom belonging to
Support(a), that is false w.r.t.M , becomes true due to the
rules ofΠup, thus potentially leavinga unsupported. This
would imply the risk thata cannot be true in the answer sets
of Π′, which means thatΠup is not locally coherent forM .

For any given kernel programΠ, let:

(a) heads(Π) be the set of atoms occurring as the heads of
the rules ofΠ;

(b) Ands(Π) be the set of atoms occurring in the AND han-
dles of the rules ofΠ;

(c) Ors(Π) be the set of atoms occurring in the OR handles
of the rules ofΠ.

SinceΠup in general is not a kernel, we cannot properly
defineAnds(Πup) and Ors(Πup). However, givenΠ′ =
Π ∪ Πup and thus givenAnds(Π′) andOrs(Π′), by abuse
of notation we indicate withAnds(Πup) andOrs(Πup) their
subsets, corresponding to the AND and OR handles ofΠ′ oc-
curring in its subprogramΠup.

The handles ofΠup are of interest for coherence, since, as
illustrated in the example below, if an atom occurs in an han-
dle ofΠup, it mayhave tochange its truth value in the answer
sets ofΠ′ (the reader may refer to[Costantini, 2003] for a dis-
cussion). Below we give a sufficient condition to ensure that
Πup is a locally coherent update w.r.t. (core) answer setM of
Π. This condition can then be used for checking either weak
or global coherence.

Proposition 1 LetΠ be a kernel andΠup an update such that
Π∪Πup is still a kernel.Πup is a locally coherent update for
Π with respect to core answer setM of Π, if the following
conditions hold:

(i) for everya ∈M , Head(Πup) ∩ Support(a) = ∅;
(ii) M ∩Ors(Πup) = ∅;

(iii) for everya ∈M , Ands(Πup) ∩ Support(a) = ∅.

Proof 1 (sketch) If atoma belonging to answer setM is sup-
ported inM for instance by rulea ← not b, not c, condi-
tion (i) forbids Πup from containing new clauses forb and
c, otherwise they might become true in the answer sets of
Π′ = Π ∪Πup, thus leavinga without support.

Condition (ii) instead, ensures thata which is true inM is not
forced to become false in the answer sets ofΠ′ for keepingΠ′

consistent.

Finally, condition (iii) ensures that no atom that supportsa in
M (by being false) is forced to be assumed true for keeping
Π′ consistent.

The conditions are illustrated by the following example,
where again we assume that the answer sets of given program
coincide with their core.

Example 6 Letπ5 be

a← not b
b← nota
p← notp, not b.
e← notf
f ← note

with (core) answer sets{b, e} and {b, f}. We consider be-
low three different updates, each one not satisfying one of the
conditions (i)-(iii) for answer set{b, e}, while satisfying all
the conditions for answer set{b, f}. We will show that in fact
each of the three updates is not locally coherent w.r.t.{b, e},
while it is locally coherent w.r.t.{b, f}.
The updateπup1

f ← nota

does not satisfy condition (i) for answer set{b, e} of π5, since
Support(e) = {f} and there are clauses forf in this update.
In fact, the updated programπ1

5 = π5 ∪ πup1 has unique



answer set{b, f}, and thusπup1 is not locally coherent w.r.t.
{b, e} while it is locally coherent w.r.t.{b, f}.
The updateπup2

q ← not q
q ← note.

does not satisfy condition (ii) for answer set{b, e} of π5, be-
causee occurs inOrs(πup2). Here, assuminge true would
mean to have an inconsistent self-loop onq. Then, the up-
dated programπ2

5 = π5 ∪ πup2 cannot have answer sets
wheree is true. In fact,πup2 is not locally coherent w.r.t.
{b, e}, sinceπ2

5 it has the unique answer set{b, f, q}.
The updateπup3

q ← not q, notf

does not satisfy condition (iii) for answer set{b, e} of π5,
becauseSupport(e) = {f} and f occurs inAnds(πup3).
Here, f must be true for avoiding an inconsistent self-loop
onq. Then, the updated programπ3

5 cannot have answer sets
wheref is false. On the other hand however,f should be
false for supportinge. In fact,πup3 is not locally consistent
for {b, e}, sinceπ3

5 has unique answer set{b, f}.
Finally, the updateπup4

p← nota

satisfies all the three conditions, and consequently is locally
coherent, for both the answer sets ofπ5. In fact, the up-
dated programπ4

5 = π5 ∪ πup4 has answer sets{b, e, p} and
{b, f, p}. Notice that this update is strongly coherent, since
the number of answer sets remains the same.

It is possible in perspective to define finer conditions, going
deeper into the syntactic form ofΠ andΠup. It is however im-
portant to notice that the conditions stated in the above propo-
sition work in many practical cases, and are easy to check.

6 Concluding Remarks: beyond kernels

In this paper we have proposed the new notion of coherence,
for relating the programs produced in subsequent steps of a
software development process in Answer Set Programming.
We have defined various notions of coherence, that establish
what relation there should be between the answer sets of the
original programs, and the answer sets of the programs result-
ing from update/modification. We have introduced significant
sufficient conditions for coherence on the class ofkernelpro-
grams, that are a normal form of logic programs that allow
one to distinguish the elements the program is composed of,
namely cycles and handles, and thus to reason more easily
about what happens when the program is modified. A more
difficult issue is that of investigating conditions for coherence
in wider classes of programs. This would require a careful
analysis, in order to identify for more general cases the ele-
ments a program is composed of, and how they are related.

Essentially, the elements are still the same: the answer sets
of any program can be easily obtained from the answer sets
of its kernel[Costantini and Provetti, 2002], and the kernel

always exists and is unique, which means that the kernel con-
tains all the relevant information. Nevertheless, one has to
cope with the indirectness introduced by positive atoms in the
bodies of rules, by “bridges” between cycles, and by atoms
which occur in the heads but not in the bodies of rules. Such
a deeper analysis of the inherent structure of arbitrary pro-
grams is a topic for future research.

References
[Alferes and Pereira, 2002] J. J. Alferes, L. M. Pereira.

Logic Programming Updating - A Guided Approach,
Computational Logic: Logic Programming and Be-
yond, Essays in Honor of Robert A. Kowalski, Part II,
LNAI 2408, Springer-Verlag, Berlin: 382–412, 2002.

[Brignoli et al., 1999] G. Brignoli, S. Costantini,
O. D’Antona, and A. Provetti. Characterizing
and Computing Stable Models of Logic Programs:
the Non–stratified Case. Proc. of 1999 Conference on
Information Technology, held in Bhubaneswar, India,
December 1999.

[Cabalar, 2001] P. Cabalar.Well-founded Semantics as Two-
dimensional Here and There. Proc. of AAAI Spring
Symposium ASP2001, AAAI Press, Tech. report
SSS01, 2001.

[Costantini, 1992] S. Costantini.Contributions to the Stable
Model semantics of Logic Programs with Negation.
in: A. Nerode and V.S. Subrahmanian (eds.), “Logic
Programming and Non-Monotonic Reasoning”, Pro-
ceedings of the 2nd International Workshop. The MIT
Press, USA, 1993.

[Costantini, 1995] S. Costantini. Contributions to the sta-
ble model semantics of logic programs with negation.
Theoretical Computer Science, 149: 231-255, 1995.

[Costantini et al., 1996] S. Costantini, G. A. Lanzarone,
G. Magliocco.Asserting Lemmas in the Stable Model
Semantics. Logic Programming: Proc. of the 1996
Joint International Conference and Symposium (held
in Bonn, Germany, September 1996). The MIT Press,
USA, 1996.

[Costantini, 2003] S. Costantini.On the Existence of Stable
Models of Non-stratified Logic Programs. Technical
Report Univ. of L’Aquila, submitted.

[Costantini and Provetti, 2002] S. Costantini, and
A. Provetti. Normal Forms for Answer Set Pro-
gramming. Technical Report Univ. of L’Aquila,
submitted.

[Dix, 1995a] J. Dix. A Classification Theory of Semantics of
Normal Logic Programs: I. Strong Properties. Fun-
damenta Informaticae XXII(3): 227–255, 1995.

[Dix, 1995b] J. Dix. A Classification Theory of Semantics of
Normal Logic Programs: I. Weak Properties. Funda-
menta Informaticae XXII(3) : 257–288, 1995.

[Gelfond and Lifschitz, 1988] M. Gelfond, and V. Lifschitz.
The stable model semantics for logic programming.
Proc. of 5th ILPS conference : 1070–1080.



[Gelfond and Lifschitz, 1991] M. Gelfond, and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Computing: 365–387.

[Lifschitz et al., 2001] V. Lifschitz, D. Pearce, and
A. Valverde. Strongly Equivalent logic pro-
grams. ACM Transactions on Computational Logic,
2:526–541.

[Marek and Truszczýnski, 1999] W. Marek, and
M. Truszczýnski. Stable models and an alter-
native logic programming paradigm, The Logic
Programming Paradigm: a 25-Year Perspective,
Springer-Verlag: 375–398.

[Otero, 2001] R. Otero. Pertinence Logic Characterization
of Stable Models. Proc. AAAI Spring Symposium
ASP2001, AAAI Press, Tech. report SSS01, 2001.

[Pearce, 1997] D. Pearce.A New Logical Characterization
of Stable Models and Answer Sets. Non-Monotonic
Extensions of Logic Programming, Springer-Verlag,
Berlin, LNAI 1216: 55–70.

[ASP solvers] Web location of some ASP solvers:
CCALC: http://www.cs.utexas.edu/users/mcain/cc
Cmodels:http://www.cs.utexas.edu/users/tag/cmodels.html
DeReS:http://www.cs.engr.uky.edu/˜ lpnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-
potsdam.de/˜ linke/nomore/
SMODELS:http://www.tcs.hut.fi/Software/smodels/

[Turner, 2001] H. Turner.Strong Equivalence for Logic Pro-
grams and Default Theories (Made Easy). Logic Pro-
gramming and NonMonotonic Reasoning, Springer-
Verlag, Berlin, LNAI 2173: 81–92.

[Van Gelder et al., 1990] A. Van Gelder A., K. A. Ross, and
J. Schlipf J.The Well-Founded Semantics for General
Logic Programs. Journal of the ACM 38(3).


