
A Multi–Agent System for Industrial Fault
Detection and Repair

Vincenzo Bevar1, Stefania Costantini2, Arianna Tocchio2, Giovanni De Gasperis2

Abstract A Multi Agent System is described, capable of monitoring a telecommuni-
cation industrial test & measurement setup, designed as an application of the DALI
agent language. The autonomy of the MAS is necessary to supervise the measure-
ment apparatus during off-work time without human intervention, increasing the
quality and efficacy of the overall test procedure. The MAS can decide whether to
recover or repair the set of software process needed to achieve a correct test se-
quence without user intervention.

Key words: Fault tolerance, Automatic Test Systems, Logical Agents

1 Introduction

Nowadays, many kinds of applications need some degree of autonomy. There are ap-
plication contexts that actually offer no alternative to autonomous software. Agents
provide a tool for structuring an application in a way that supports its design
metaphor in a direct way. Agents and multi-agent systems (MAS) have emerged as
a powerful technology to face the complexity of a variety of ICT scenarios. Agents
technology and methods have been thoroughly reviewed in many papers, among
which we mention [1, 2, 3, 4]. There are now several industrial applications that
demonstrate the advantage of using agents, e.g., in the manufacturing process [5],
or even about planning and scheduling how to best cut wood in order to minimize
loss of natural material [6]. The telecommunication sector has also seen a signif-
icant amount of effort on agent technology since the 1990’s. The development of
agent systems requires dedicated basic concept and languages: at the level of indi-

1 Techolabs, R. & D. Strada Statale 17, L’Aquila, Italy, e-mail: vincenzo.bevar@technolabs.it
2 Dipartimento Ingegneria e Scienze dell’Informazione e Matematica, Universitá degli Studi
dell’Aquila, Via Vetoio 1, 67100 L’Aquila,
e-mail: (stefcost,tocchio,giovanni.degasperis)@univaq.it

1



2 Vincenzo Bevar et al.

vidual agents, representational elements such as observations, actions, beliefs, goal
are required. Typical features of agents are reactivity and proactivity, not found in
conventional controllers. At the MAS level, communication, coordination and so-
cial aspects such as joint goals and trust requirements need to be be expressed.
Going further on the line of autonomous software, new applications need “intelli-
gence” in the sense of the ability to exhibit, compose and adapt behaviors, and being
able to learn the appropriate way of performing a task rather than being instructed
in advance. Logic languages are evolving from static to “active”, and in the last
years have been enriched with new capabilities based on the “agency” metaphor.
Due to their traditional “fast prototyping” character, to new efficient implementa-
tions and to the new concepts they are able to embody, they are good candidates for
experimenting such advanced applications. A good survey about current state and
future directions of logic languages in multiagent systems can be found in [7, 8]
and in [9]. These papers emphasize how agent-oriented language may provide an
affordable way of introducing the engineering of intelligent behaviors into software
engineering and development practice. Among the industrial applications, process
control appears to be potentially a natural application for agents, by virtue of con-
trollers being in principle autonomous entities [10]. This kind of application implies
measuring a system, so as to verify whether specific measurable values are within
a pre-defined range, and acting on the system so as to keep specific observable val-
ues stay within the range characterizing an acceptable behavior of the system itself.
Measuring a system implies selecting the correct checks to perform at each stage.
Controlling the system implies being able to either modify or restore its operational
parameters and behavior as required. Agents can replace a human operator in this
kind of task. If the controlled system is composed of several parts, single agents
can control the various parts, and can cooperate so as to enforce the system overall
behavior. In this paper, we discuss the use of a logic active agent-oriented language
for the development of an industrial application in the field of process control. The
case study is focused on an Automatic Test System (ATS) developed by Techno-
labs (L’Aquila, Italy) and we will discuss how its features has been enhanced by
the agent technology, so as to recover the ATS system execution from unexpected
events, thus resulting in an Automatic Test-recovery Method (ATM). At the core
of the MAS implementation the DALI agent-oriented language [11, 12, 13, 14, 15]
has been adopted. DALI is a long term project developed at the Computer Science
Department of the University of L’Aquila.

2 Technolabs Automatic Test System

Technolabs is a R&D Lab (located in L’Aquila, Italy) specialized in design and
development of telecommunication equipments for transport networks. Technolabs
adopts industrial design and production processes that comply with consolidated
factory standards, in order to guarantee good quality levels satisfying market re-
quirements. To this aim, new testing techniques have been recently introduced in



A Multi–Agent System for Industrial Fault Detection and Repair 3

order to improve the dependability of equipment which has to be connected to the
carrier network. Below we describe the current testing methodology. We then iden-
tify how to improve this methodology by adopting the agent technology. Testing
a HW/SW system requires at each stage the selection of a relevant test procedure
(i.e., the Test Selection phase) and its execution (i.e., the Test Execution phase). The
Automatic Test System (ATS) is a methodology developed by the Systems Integra-
tions & Test area of Technolabs, aimed at handling both activities. In particular,
ATS allows both phases to be performed without the intervention of a human tech-
nical supervision. The ATS architecture contains five main HW/SW components, as
shown in Figure 1:

Fig. 1 The Automatic Test System Architecture. DUT device under test, DUT Controller, ME
Measuring Equipments which collect and check observable values from the DUT, the ME Con-
troller connected with the ME

The device which is currently under test (DUT) is the MSI FP (Multi-Services
Integrator Flat Pack), which is a multi-service platform used in metropolitan and re-
gional carrier networks for optimizing packet transportation across legacy networks.
The DUT controller is composed by two components: (1) the Technolabs Local
Craft Terminal (LCT), which offers the capability to remotely manage telecommu-
nication equipments through a graphical user interface. It can be used for coping
with faults, monitoring traffic and for the configuration of the equipment. (2) Win-
Runner, an HP software application which allows emulating in a graphical way the
actions of a human operator as if (s)he were really present at the test bench. Using
scripts written in a C-like language called TSL (Test Script Language), it can send
command sequences to both the DUT Controller and to the ME Controller in order
to perform measurements in the test session; it acts like a human operator in a fast,
efficient and, above all, repeatable way. In the ATS system, WinRunner is used to
configure the DUT (through the LCT application) and to synchronize the operation
done on the DUT, sending, if necessary, suitable commands through the LAN to
the ME Controller. The task of the Measurement Equipment is twofold: verify the
system performance compliance to requirements and check the equipment state by
detecting failures in the service quality. Measuring instruments that may be used
for testing the DUT are an oscilloscope or an SDH analyzer, which allows one to
evaluate signal quality of data transmitted and received and to detect and propa-
gate alarm. The ME Controller is a software application developed by Technolabs



4 Vincenzo Bevar et al.

(Instrument Server) which allows the management and remote control of test and
measurement equipments. In the ATS architecture, the ME Controller is remotely
controlled by WinRunner. The ATS acts over both the DUT Controller and the ME
Controller, setting up both the DUT and the ME, executing test suites, and stor-
ing tests results in files (database files) that can be examined off line also remotely
through an Internet/Intranet connection.

3 Enhancing ATS by Agent Technology: Motivations

During the test of HW/SW systems, the most important activity is the test exe-
cution flow integrity and correctness. Often, a test lasts many hours and, for op-
timization reason of the resources occupation and costs reduction, it is executed
during night-time, in order to have test results available the day after. Then, all test
sessions are to be performed without human supervision. However, while testing
hardware/software prototypes it may happen that a software process unexpectedly
terminates during the night or the week-end, thus blocking any testing activity un-
til the next working day. This of course strongly reduces the testing efficiency and
increases costs. To improve reliability and enhancing features of the ATS, an agent-
based solution has been chosen for two main reasons: (1) each component of the
ATS system has to be supervised individually in autonomous way, reacting to every
state change, detecting these changes and taking appropriate measures. An agent is
able to perform this task. (2) The distributed nature of the ATS that implies the need
for each agent to communicate the events occurred to the other agents. Then, the
agents supervising single components have to form a MAS which has the overall
objective of coordinating ATS activities and restoring its functionalities also in case
of critical situations. Supervisor agents should be intelligent and proactive, so as
to properly combine the abilities of checking and restoring ATS activities. Logical
agents have been chosen in a first stage due to the fast-prototyping nature of the
selected language, i.e., the logic-based language DALI (defined and implemented at
the Computer Science Department of the University of L’Aquila) [16]. In the present
experimentation, DALI has proven to be efficient, reliable and flexible.

4 Automatic Test recovery Method

Below we present the Automatic Test recovery Method (ATM), implemented in
DALI, which has the aim of recovering the ATS system execution from unexpected
events, such as devices crashes. ATM automatically detects unexpected termination
of HW/SW devices through continuous system monitoring, restarts the system and
resumes the test procedure execution. It extends the basic architecture of an ATS,
by adding a multi-agent system which automatically checks the test procedures and
equipment execution status. The new architecture is shown in details in the com-



A Multi–Agent System for Industrial Fault Detection and Repair 5

panion demonstrator paper. It includes this set of agents: Executor, Master, Slaves.
A slave agent monitors a specific ATS software component and informs the master
agent about crashes. It may also execute recovery when authorized by the master
agent (by means of a special message). A master agent monitors the slave agents
and receives messages from them about environment changes. On the basis of re-
ceived messages, it decides whether it is possible to recover the hardware/software
crash happened in the ATS.

Fig. 2 The Automatic Test recovery Mechanism Architecture

4.1 Design

Two steps are needed for the involved agents to provide the required capabilities:
Step 1: Perception phase; Step 2: Reaction and Action phase. Each involved agent
perceives its related environment and devises consequent actions whenever some (in
this case unwanted) change occurs.

Perception phase: the agent must control if the process corresponding to the LCT
application is in an active state, in order to perceive the LCT state changes.

Reaction and Action phase: the agent can either enter a reaction/action phase or
remain in the perception phase, depending on different execution scenarios: if LCT
is in a crash state, then the agent reacts in order to restore its correct functioning
by running the “restart the TNMS-CT application” command by which the agent
emulates, through the WinRunner application, all the steps a human operator would
perform in order to restart the LCT. If LCT is not in crash state, the agent remains
in the perception phase, waiting for possible state changes.

The above-described MAS has been fully implemented, tested and experimented
with very good results. Actually, the MAS is able to replace a human operator with
high reliability. By exploiting advanced features of DALI [17] the involved agents
can self-monitor themselves so as to keep their own behavior within the expected
range. The full set of DALI programs that implements the multi-agent system can be



6 Vincenzo Bevar et al.

obtained from the authors, and can be run on the DALI interpreter [16]. More details
are available in the companion demonstrator paper. The overall system behavior,
measurement quality improvement and temporal charts, for lack of space will be
presented at a later extended paper.

5 Related Work

In the telecommunication sector, TILAB (Telecom Italia Lab) developed and dis-
tributes JADE (Java Agent DEvelopment Framework, cf. http://jade.tilab.com/), a
software framework fully implemented in Java language. JADE [18] simplifies the
implementation of multi-agent systems through a middle-ware that complies with
the FIPA standard for communication and provides a set of tools that support the
debugging and deployment phases. Telecom Italia LAB uses the JADE platform for
several internal projects of interest for the Telecom Italia Business Units, but also
other companies in the last years adopted JADE for their applications: BT Exact is
developing, on top of the JADE platform and the LEAP add-on for mobile terminals,
an application supporting the coordination and the activities of a mobile workforce,
including the distributed scheduling of jobs, job management on the fly, travel and
knowledge management, and location-based coordination. In the health care field,
the JADE team collaborates with Swisstransplant, the Swiss National Transplant
Coordination center for organ transplants, in order to develop an agent-based sys-
tem for decision making support in organ transplant centers. Singular Software SA
uses JADE in the context of the IST project ”Intelligent Mobility Agent for Com-
plex Geographic Environments”. JADE, moreover, has been used in Acklin B.V.
and Fraunhofer IITB projects. FactoryBrokerTM is a solution to Holonic Control
System composed by mechatronics autonomous components that have relevant re-
sponsibility. Agent technology also in this case fits very well. Some groups with a
strong business science orientation are incorporating DAI ideas in the area of finan-
cial services (ALLFIWIB and MASIFprojects). Moreover, we mention the works
by Leckie et al. [19] and by Friedman-Hill [20]. In the first one the authors describe
a prototype agent-based system for performance monitoring and fault diagnosis in
a telecommunications network. In the second one Friedman-Hill introduces JESS,
the Java Expert System Shell used to realize a system useful for monitoring all
processes, instrumentation and data flows of the Kennedy Space Center’s Launch
processing System. In both cases, the adopted language is not a logical language, so
no direct comparison with our approach is possible.

Among the many interesting applications of agents, we mention: co-operative
supervision systems for energy management and distribution at Atlas-Elektronik in
the context of the ARCHON project; dynamic cargo allocation for forwarding agen-
cies at Univ. Erlangen-Nuernberg and at DFKI in cooperation with Daimler-Benz;
loading dock scenarios at DFKI; cooperative traffic management(KIK-Teamware);
traffic management at FZI Karlsruhe; group appointment scheduling at DFKI (KIK-
Teamware and AKA-Mod) and at ECRC.



A Multi–Agent System for Industrial Fault Detection and Repair 7

6 Concluding Remarks

The DALI language has proved to be a competitive tool for building intelligent
agents able to work in a real contexts. The application presented and discussed in
this paper and in the companion demo paper allows us to argue that logical agents
can face complex problems where reactivity and pro-activity must be sapiently inter-
leaved. In many industrial applications, logical agents are not yet used because their
capability to reason and to pro-act autonomously is seen as a threaten for the control
of applications. This problem, however, has been greatly alleviated by approaches
to logical agents verification and self-verification, such as those of [21], [22], [23],
[17] and others, proposing both static and run-time verification mechanisms. The
possibility of experimenting logical autonomous agents in a critical context such as
the Automatic Test System in Technolabs has been very important for demonstrating
that logical reasoning potentiality (joined with reactive, pro-active and social behav-
ior) can be applied with success in replacing critical human tasks. DALI agents, in
particular, have sustained this task of crash control and system test exhibiting a high
reliability and dependability. It can be observed that DALI has been usefully adopted
in other complex applications, such as the one described in [24]. The present work
has taken profit also from the experience of [25], where DALI had been used for
developing a complex MAS aimed at supervising software systems.

We thank Prof. Henry Muccini for helping the team during the startup of the
project and for insightful discussion afterwards, and Dr. Manuele Colarossi for em-
bedded software development and testing involved in the Thesis work for his BSc
degree in Computer Science.

References

1. H. S. Nwana , Software Agents: An Overview. In: Knowledge Engineering Review, Vol. 11,
No 3, pp.1-40, Sept 1996 Cambridge University Press.

2. M. Wooldridge, N. R. Jennings, Intelligent Agents: Theory and practice, In: The Knowledge
Engineering Review, 10(2):115-152, 1995.

3. K. P. Sycara, Multiagent Systems, In: AI Magazine vol. 19(2), pp. 79-92, 1998.
4. M. Fisher, R. Bordini, B. Hirsch and P. Torroni, Computational logics and agents: A road

map of current technologies and future trends In: Computational Intelligence Vol: 23, No:1,
pp. 61-91, 2007

5. Y. Chen, L.-J. Zhang and Q. Wang Intelligent scheduling algorithm and application in mod-
ernizing manufacturing services, In: Proceedings - 2011 IEEE International Conference on
Services Computing, pp 568-575, 2011

6. E. Elghoneimy, W.A. Gruver, Intelligent decision support and agent-based techniques applied
to wood manufacturing In: Advances in Intelligent and Soft Computing Vol: 91 pp 85-88, 2011

7. P. TORRONI, Computational Logic in Multi-Agent Systems: recent advances and future di-
rections, In: Annals of Mathematics and of Artificial Intelligence, vol. 42, pp. 293-305, 2004.

8. Baldoni, M., Baroglio, C., Mascardi, V., Omicini, A., Torroni, P., Agents, Multi-Agent Systems
and Declarative Programming: What, When, Where, Why, Who, How?, 25 Years GULP, Vol.
6125, Springer, 204-230, 2010.

9. Dal Pal, A., Torroni, P.: 25 Years of Applications of Logic Programming in Italy, In: 25 Years
GULP. Vol. 6125, Springer, pp. 300-328, 2010.



8 Vincenzo Bevar et al.

10. Åstrom, K.J., Wittenmark, B.: Computer-Controlled Systems.Theory and Design, Prentice
Hall Internal Inc. (1990)

11. S. Costantini. Towards active logic programming, In A. Brogi and P. Hill, editors, Proc. of 2nd
International Workshop on component-based Software Development in Computational Logic
(COCL’99), PLI’99, 1999.

12. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems, In: Logics
in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002. LNAI 2424, Springer-
Verlag, Berlin (2002)

13. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language, In: Log-
ics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004. LNAI 3229,
Springer-Verlag, Berlin (2004)

14. S. Costantini, A. Tocchio and A. Verticchio. A Game-theoretic operational semantics for the
DALI Communication Architecture. In: M. Baldoni, F. De Paoli, A. Martelli and A. Omicini,
(eds.). Proceedings of WOA04, Pitagora Editrice (2004) Bologna, ISBN: 88-371-1533-4 ,
Also available on-line, at the URL: http://woa04.unito.it/Pages/atti.html. Accessed January
8th 2012

15. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages, In
Baldoni, M., Torroni, P., eds.: Declarative Agent Languages and Technologies. LNAI 3229.
Springer-Verlag, Berlin (2006) Post-Proc. of DALT 2005.

16. Costantini, S., D’Alessandro, S., Lanti, D., Tocchio, A. with the contribution of many under-
graduate and graduate students of Computer Science, L’Aquila.: DALI web site, download of
the interpreter (2010)
http://www.di.univaq.it/stefcost/Sito-Web-DALI/WEB-DALI/index.php. Accessed January
8th, 2012
For beta-test versions of the interpreter (latest advancements) please ask the authors.

17. Costantini, S., Dell’Acqua, P., Pereira, L.M., Tsintza, P.: Runtime verification of agent prop-
erties, In: Proc. of the Int. Conf. on Applications of Declarative Programming and Knowledge
Management (INAP09). (2009)

18. Bellifemine, F., L., Caire, G., Greenwood, D. Developing Multi-Agent Systems with JADE,
John Wiley & Sons, Hoboken, NJ, USA, 2007

19. Leckie, C., Senjen, R., Ward, B., Zhao, M., Communication and coordination for intelligent
fault diagnosis agents, In:Proceedings Eighth IFIP/IEEE International Workshop for Dis-
tributed Systems Operations and Management, pp. 21-23, 1997.

20. Friedman-Hill, E., Jess in Action: Java Rule-Based Systems, In: Action series, Manning
Publications, 2002.

21. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via unbounded
model checking, In: Proc. of the Third Int. Joint Conf. on Autonomous Agents and Multiagent
Systems, AAMAS ’04, ACM Press, New York, NY pp. 638-645 (2004)

22. Fisher, M.: Model checking AgentSpeak, In: Proceedings of the Second Int. Joint Conf. on
Autonomous Agents and Multiagent Systems AAMAS03. LNCS 3862, ACM Press 409-416
(2003)

23. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: The sciff framework, ACM Trans. Comput. Logic
9 29:1–29:43 (2008)

24. Costantini, S., Mostarda, L., Tocchio, A., Tsintza, P.: Dalica agents applied to a cultural
heritage scenario, IEEE Intelligent Systems, Special Issue on Ambient Intelligence 23(8)
(2008)

25. Castaldi, M., Costantini, S., Gentile, S., Tocchio, A.: A logic-based infrastructure for recon-
figuring applications, In Leite, J.A., Omicini, A., Sterling, L., Torroni, P., eds.: Declarative
Agent Languages and Technologies, revised selected papers presented at DALT 2003. LNAI
2990, Springer-Verlag, Berlin, Hot Topics Sub-series. (2004)


