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Abstract. Various approaches exist to the application of Answer Set Program-
ming (ASP) in the agent realm. Nonetheless, a controversial point is how to
combine answer set modules with the other modules an agent is composed of,
considering that an agent can be seen as a set of “capabilities” that in suitable
combination produce the overall agent behavior as an emergent behavior. In this
paper, we outline a possible fruitful integration of ASP into many agent architec-
tures, by introducing two kinds of modules: one that allows for complex reaction,
the other one that allows for reasoning about necessity and possibility.

1 Introduction

Logic programming under the answer set semantics (Answer Set Programming, for
short ASP) is nowadays a well-established programming paradigm, with applications in
many areas, including problem solving, configuration, information integration, security
analysis, agent systems, semantic web, and planning (see among many [1,2,3,4,5] and
the references therein).

The application of ASP in agents has been advocated since long, with ASP mainly
taking the form of Action Description Languages. These kind of ASP-based languages
were first introduced in [6] and [7] and have been since then extended and refined in
many subsequent papers by several authors. Action Description Languages are formal
models used to describe dynamic domains, by focusing on the representation of effects
of actions. In particular, an action specification represents the direct effects of each
action on the state of the world, while the semantics of the language takes care of all
the other aspects concerning the evolution of the world (e.g., the ramification problem).

The first approaches have been extended in many ways, recently also in order to
cope with, interpret, and recover from, exogenous events and unexpected observations,
on the line of [8]. In this direction we mention [7], [9], and the recent work presented
in [10]. In this work, an architecture (called AAA) is described where both the descrip-
tion of the domain’s behavior and the reasoning components are written in Answer Set
Programming, selected because of its ability to represent various forms of knowledge
including defaults, causal relations, statements referring to incompleteness of knowl-
edge, etc. An AAA agent executes a main cycle according to the Observe-Think-Act
model proposed in the seminal paper [11]. Unexpected observations are coped with by
hypothesizing the undetected occurrence of exogenous actions. In [12], this notion of



an agent is extended to enable communication between agents through the introduction
of special named sets of fluents known as “requests”.

In other directions, we mention a different line of work, focusing upon modeling
agent decisions in an extended ASP by means of game theory [13]. In [14,15] and
other papers by the same group, ASP is exploited to model dynamic updates of an
agent’s knowledge base. We are also aware of ongoing work about modeling properties
of multi-agent systems in ASP, e.g., [16].

Despite this corpus of work is technically and conceptually very well-developed, the
view of an agent based upon having an ASP program as its “core” does not appear to be
fully convincing. One reason is that the basic feature of ASP, which is that a program
may have several answer sets that correspond to alternative coherent views of the world,
is in our opinion not fully suitable for the agent main cycle, while it can be very useful
for many of the agent reasoning activities. Another reason is that the architecture out-
lined above appears to be too rigid with respect to the other approaches to defining agent
architectures in computational logic, among which one has to mention at least MetateM,
3APL, AgentSpeak, Impact, KGP and DALI [17,18,19,20,21,22,23,24,25] (for a recent
survey the reader may refer to [26]). All these architectures, and their operational mod-
els, are in practice or at least in principle more dynamic and flexible. If we consider
for instance the KGP [24,25] architecture, we find many modules (“capabilities”) and
many knowledge bases, integrated by control theories that can be interchanged accord-
ing to the agent’s present context and tasks. In KGP, capabilities are supposed to be
based upon abductive logic programming [27] but the architecture might in principle
accommodate modules defined in different ways.

We believe that an “ideal” agent architecture should exploit the potential of inte-
grating several modules/components representing different behaviors/forms of reason-
ing, with these modules possibly based upon different formalisms. The “overall agent”
should emerge from dynamic, non-deterministic combination of these behaviors that
should occur also in consequence of the evolution of the agent’s environment. There-
fore, in our view an important present and future direction of ASP is that of being
able to encapsulate ASP programs into modules suitable to be integrated into an over-
all agent program, the latter expressed in whatever languages/formalisms. There is a
growing corpus of literature about modules in ASP (see Section 3). However, the ex-
isting approaches mainly refer to traditional programming techniques and to software
engineering methodologies. To the best of our knowledge, except for the approach of
[28] in the context of action theories, there is no existing approach to modules which is
tailored for the agent realm.

Building upon our long-termed experience in logical agents, involving the defini-
tion and implementation of the DALI agent-oriented logic language [22,23,29,30], in
this paper we propose two kinds of ASP modules to be possibly integrated into a vari-
ety of agent architectures. A first perspective is that of “Reactive ASP modules”, aimed
at defining complex reaction strategies to cope with external events and establish what
could be done. An ASP module will determine the different possibilities, among which
the agent will choose according either to preferences or to an overall planning strat-
egy. A second particularly relevant perspective is that of “Modal ASP modules”, that
exploit the multi-model nature of answer set semantics to allow for reasoning about



possibility and necessity in agents, at a comparatively low complexity. The proposed
approach allows for interesting forms of reasoning suitable for real applications. From
the implementation point of view, we implemented and we have been experimenting
ASP modules within the DALI multi-agent system [31].

The paper is structured as follows. In Section 2 we briefly introduce answer set
programming to the non-expert reader. In Sections 3 and 4 we review the existing
research about modules in ASP and we quickly discuss logical agents. In Sections 5 and
6 we introduce Reactive and Modal ASP modules respectively, of which we propose a
possible operative usage and some examples of application. Finally, we conclude in
Section 7.

2 Answer Set Programming in a Nutshell, and some Terminology

“Answer set programming” (ASP) is the well-established logic programming paradigm
adopting logic programs with default negation under the answer set semantics, shortly
summarized below. For the applications of ASP, the reader can refer for instance to
[1,2,3,4,5]. Several well-developed answer set solvers [32] that compute the answer
sets of a given program can be freely downloaded by potential users [32].

In the rest of the paper, whenever it is clear from the context, by “a (logic) program
Π” we mean a datalog program Π (for datalog the reader may refer for instance to
[33]), and we will implicitly refer to the “ground” version of Π . The ground version of
Π is obtained by replacing in all possible ways the variables occurring in Π with the
constants occurring inΠ itself, and is thus composed of ground atoms, i.e., atoms which
contain no variables. The Herbrand base BΠ of a ground ASP program Π is composed
of all ground atoms that can be constructed out of the set of predicate symbols and the
set of constant symbols occurring in Π . We indicate with BΠ the restriction of BΠ to
the atoms actually occurring in the ground version of Π . This assumption is due to the
fact that ASP solvers produce the grounding of the given program as a first step. In fact,
they are presently able to find the answer sets of ground programs only (though work is
under way to overcome at least partially this limitation, cf.,e.g., [34,35]).

Let V be a set of variables. To the purposes of this paper, we will call abstract atom
(referring to program Π) any non-ground atom built out of a ground atom A ∈ BΠ by
substituting some of the constants occurring in it by variables in V . We will call BaΠ
the set of all the abstract atoms obtained from BΠ . Vice versa, a proper instantiation
(w.r.t. program Π) of an abstract atom B ∈ BaΠ is an instantiation (ground instance) A
of B such that A ∈ BΠ . If S is a set of abstract atoms, we let Ground(S) be the set
of its proper instantiations. Instantiations and proper instantiations of a conjunction of
abstract atoms have the obvious definition.

A normal program (or, for short, just “program”) Π is a collection of rules of the
form

H ← L1, . . . , Lm, not Lm+1, . . . ,not Lm+n.

where H is an atom, m > 0 and n > 0, and each Li is an atom. An atom Li and
its negative counterpart not Li are called literals. In the examples, ← will often be
indicated with :−, which is the symbol adopted in practical programming systems. In



the version ofΠ defined by a programmer, all atoms will be in general abstract atoms. In
the ground version of Π they become ground atoms, as each original rule is substituted
by all its ground instantiations. Various extensions to the basic paradigm exist, that we
do not consider here as they are not essential in the present context. The left-hand side
and the right-hand side of the clause are called head and body, respectively. A rule with
empty body is called a fact. A rule with empty head is a constraint, where a constraint
of the form

← L1, ..., Ln.

states that literals L1, . . . , Ln cannot be simultaneously true in any answer set.
The answer sets semantics [36,37] is a view of logic programs as sets of inference

rules (more precisely, default inference rules). Alternatively, one can see a program as
a set of constraints on the solution of a problem, where each answer set represents a
solution compatible with the constraints expressed by the program. Consider the simple
program {q ← not p. p ← not q.}. For instance, the first rule is read as “assuming
that p is false, we can conclude that q is true.” This program has two answer sets. In
the first one, q is true while p is false; in the second one, p is true while q is false.
The programming paradigm based upon logic programs under the answer set seman-
tics is called “Answer Set Programming” (ASP), and programs are called “answer set
programs” (ASP programs).

A subset M of BΠ is an answer set of Π if M coincides with the least model of
the reduct PM of P with respect to M . This reduct is obtained by deleting from Π
all rules containing a condition not a, for some a in M , and by deleting all negative
conditions from the other rules. Answer sets are minimal supported models, and form
an anti-chain. Referring to the original terminology of [36], answer sets are sometimes
called stable models. Unlike other semantics, a program may have several answer sets,
or may have no answer set, because conclusions are included in an answer set only if
they can be justified. The following program has no answer set:
{a← not b. b← not c. c← not a.}
The reason is that in every minimal model of this program there is a true atom that de-
pends (in the program) on the negation of another true atom, which is strictly forbidden
in this semantics, where every answer set can be considered as a self-consistent and
self-supporting set of consequences of a given program. Whenever a program has no
answer sets, we will say that the program is inconsistent. Correspondingly, checking for
consistency (or stability) means checking for the existence of answer sets.

By some abuse of notation, given programΠ and a set of facts and rules I , byΠ∪I
we indicate the new program obtained by adding the atoms and rules occurring in I to
Π . Also, if a consistent program Π has a number k of answer sets, we will assume
an arbitrary enumeration M1, . . . ,Mk of these answer sets, and we will refer to Mh

(h ≤ k) as the h − th answer set. Given answer set program Π which is inconsistent,
we call a set of atoms R ⊆ BΠ a trigger for Π whenever Π ∪R is consistent.

As it is well known (cf., e.g., [38]), an ASP program is inconsistent whenever there
is some odd cycle, like for instance the above one
{a← not b. b← not c. c← not a.}



For obtaining a potentially consistent program from one including such a cycle,
the cycle should constrained by adding, in the terminology of [38], some handle for
the cycle. A handle for the above cycle can consist of, e.g., rule {a ← d.}. Or, it can
consist of an additional literal, e.g., not r, added to any of the rules of the cycle, say
for instance the second one. If at least one handle of an odd cycle is active, then the
program fragment including the odd cycle and the handles is consistent. The former
handle is active if d occurs somewhere in the overall program. Thus, the head a of
the rule becomes true. The latter handle is active if r occurs somewhere in the overall
program. Thus, not r is false and then the head b of the rule where this literal occurs
becomes true. In both cases, the circularity is broken, i.e., if there are active handles the
cycle becomes (again in the terminology of [38]) actually constrained. For the overall
program to be consistent, every odd cycle must be actually constrained. This requires
that, if there are several odd cycles, they admit handles which are compatible, i.e., that
do not expect opposite truth values for the same atom.

An inconsistent program Π necessarily involves some “problematic” odd cycle
which is not actually constrained. Therefore, a trigger R for Π includes a set of atoms
that make all the odd cycles inΠ actually constrained. I.e., a trigger includes atoms that
make at least one handle for each problematic odd cycle active, where these handles are
compatible among themselves and with those already present in Π .

In the following sections, triggers will be exploited as a “control” device to manage
modules consisting of an ASP program. Such a module will be supposed to provide
some kind of answer to an agent which “invokes” it by providing suitable input. We
will assume the ASP program defining a module to be inconsistent on purpose, and
to be designed so that a trigger must include the significant input the module needs in
order to provide meaningful answers. Then, providing a trigger will be the way for an
agent to invoke a module and get answers.

As mentioned before, ASP has the peculiarity that an ASP program may have none,
one or several answer sets. These answer sets can be interpreted in various possible
ways. If the program formalizes a search problem, e.g., a colorability problem or a path
finding problem for graphs, then the answer sets represents the possible solutions to
the problem, namely, in the examples, the possible colorings or the existing paths for
given graph. In knowledge representation, an ASP program may represent a formal def-
inition of the known features of a situation/world of interest. In this case, the answer
sets represent the possible consistent states of this world, that can be several whenever
the formalization involves some kind of uncertainty. Also, and ASP program can be
seen as the formalization of the knowledge and beliefs of a rational agent about a sit-
uation/world, and the answer sets represent the possible belief states of such an agent,
that can be several if either uncertainty or alternative possible choices are involved in
the description. Such an agent can exploit an ASP module for several purposes, such
as answering questions, building plans, explaining observations, making choices, etc.
Some potential uses of ASP modules in agents will be proposed and discussed in the
rest of the paper.



3 Related Work on ASP Modules

There are several approaches to modularization of ASP programs with software en-
gineering purposes, i.e., to govern the complexity of programs and their development
process. For a review of the state of the art in this field the reader may refer for instance
to [39] and to the references therein.

In the approach of [40,39], in conformance with programming-in-the-large princi-
ples, a suitable input-output interface for ASP modules is defined, in order to compute
the combination of compatible answer sets of joinable modules. By providing a notion
of equivalence for modules, the approach tackles the issue of the replacement of a mod-
ule with another one without altering the semantics of the program when seen as an
overall entity.

This proposal is related to that of [41], then evolved into [42], as each one can
be rephrased in terms of the other. However, in the latter proposal the point of view
is different, as modules are seen as “procedures” that can invoke each other, even re-
cursively, by providing input parameters. An overall program is composed of several
modules where a “main” module without input can be identified. Providing the seman-
tics of a program requires to identify, via a call graph, the relevant modules, i.e., those
that are actually invoked. Complexity ranges from exponential to double exponential,
due to the complex module interaction that the approach admits.

In [43], modules import answer sets from other modules in order to compute the
overall solution, where no cycles are admitted among modules. [44] provides mod-
ules specification with information hiding, where modules exchange information with
a global state.

Some approaches exist [45,46] that, in order to encourage code reusability, define
modules in terms of macros or “templates” that factorize predefined definitions, again
with no cycle allowed among these entities.

In [47], a technique is proposed that allows an answer set program to access the
brave or cautious consequences of another answer set program. The technique is based
upon joining the two programs into a single one and then performing a suitable rewriting
with the addition of weak constraints.

In the following sections we will propose Reactive ASP Modules, where com-
plex forms of reaction can be specified in an agent program, in contrast to the simple
“condition-action rules” that are often adopted. Namely, an ASP module will describe
how an agent might behave upon the occurrence of certain events, also depending upon
particular circumstances and/or the agent’s past experiences (e.g., when and why lend
or not lend a certain resource upon request). When provided with information about the
present context, the answer sets of such a module will encode the possible courses of
action that the agent might undertake. We will also propose Modal ASP Modules, where
an agent will be enabled to reason about possibility and necessity. I.e., such a module
will describe what an agent knows or believes about some situation, and the agent will
be enable to inspect its answer sets so as to “bring to consciousness” its own mental
states and understand what is possible in that situation (because it occurs in some an-
swer set) and/or what is mandatory (because it occurs in every answer set). In previous
example, lending some resource to a certain requester might be possible given some



conditions, or even mandatory if for instance the agent has previously contracted an
obligation. This will imply encoding in an ASP module a fragment of the domain of in-
terest of the agent and examining the answer sets of the module. In the present proposal,
ASP modules do not interact with each other. For future extensions in the direction of
interacting modules, the techniques presented in [47] might be of use for a principled
implementation.

The first idea of exploiting possibility and necessity in ASP is due to Michael Gel-
fond and presented in [48]. In this proposal, possibility and necessity operators can
occur in ASP programs, thus called “epistemic logic programs”, in the body of rules.
Therefore, concluding or not the head of these rules will depend upon the contents of
a program’s own answer sets. A suitable extension of the answer set semantics is in-
troduced to cope with the enhanced expressivity. The work presented in [49,50] inves-
tigates computational complexity of this approach by redefining its semantics as world
view semantics. On the one hand it is concluded that the consistency check problem un-
der this semantics is PSPACE-complete. On the other hand however, non-trivial classes
of programs where the complexity is ΣP

2 -complete or even NP-complete are identi-
fied. In [16], the authors adopt a different perspective and employ meta-programming
techniques to model in an ASP program multi-agent systems involving agents with
knowledge about other agent’s knowledge.

Related to the present work is ASP-PROLOG [51], that proposes an integration be-
tween prolog and ASP where prolog programs are enabled to invoke ASP modules and
examine the answers sets. These modules can be customized by adding and removing
rules prior to invocation. The similarity with the approach presented in this paper lays
in the fact the the prolog program invoking ASP modules can be seen as analogous to
a logical agent program exploiting ASP modules, though the kind of application and
the envisaged use of modules is different. ASP-PROLOG is procedural in nature and
extends the standard prolog notation. It might be a good implementation tool for many
kinds of ASP modules, included those presented here.

In Section 6.1 we will show how to exploit possibility and necessity to perform inter-
esting forms of meta-reasoning. An approach to meta-reasoning within ASP programs
is that of [52], which proposes “template” rules with variables in place of predicates
(to be suitable instantiated to actual predicate symbols occurring in the program), in the
style of Reflective Prolog [53,54]. The work presented in [55] interprets ASP programs
as agents and allows for various forms of reasoning by introducing deontic operators
(such as for instance Obligation) in such programs.

4 Logical Agents in short

Recently, the computing landscape has changed from a focus on standalone computer
systems to a situation characterized by distributed, open and dynamic heterogeneous
systems that must interact, and must operate effectively within rapidly changing circum-
stances and with increasing quantities of available information. In this context, agents
constitute a suitable design metaphor, that provides designers and developers with a way
of structuring an application around autonomous, communicative and flexible elements
[56].



Agents should be intelligent so as to face changing situations by modifying their be-
havior, or their goals, or the way to achieve their goals. This requires agents to be able
to perform, interleave and combine various forms of commonsense reasoning, possibly
based upon different kinds of representation. Several agent-oriented languages and ar-
chitecture exist and in particular several computational logic-based agent architectures
and models. A common feature is the aim at building agents that are able to adapt or
change their behavior when they encounter a new or different situation.

A logical agent is based upon an “agent program” which consists of a knowledge
base and of a set of rules aimed at providing the entity with the needed capabilities.
Rules may include object-level rules and meta-(meta-. . .)rules that determine the agent
behavior. The knowledge base may itself include rules, which either define knowledge
(and meta-knowledge) in an abstract way or constitute part of the agent knowledge.
The knowledge base constitutes in fact the agent “memory” while rules define the agent
behavior. An underlying inference engine, or more generally a control mechanism, puts
an agent at work. Agents in general evolve in time as a result of both their interaction
with the environment and their own self-modifications. Despite the differences, all log-
ical agent-oriented architectures and languages, or “agent models”, exhibit at least the
following basic features (for a general discussion about logical agent models the reader
may see, e.g., [57] and [58], and for a general logical semantics for evolving agents
[29]):

– A logical “core”, that for instance in both KGP and DALI is a resolution-based
logic program (prolog-like for DALI and abductive for KGP).

– Reactivity, i.e., the capability of managing external stimuli.
– Proactivity, i.e., the capability of managing internal “initiatives”.
– The capability of performing actions.
– The capability of recording what has happened and has been done in the past.
– The capability of managing communication with other agents.
– A basic cycle that interleaves the application of formerly specified capabilities.

E.g., in DALI the basic cycle is integrated within the logical core into an extended
resolution, while in KGP the basic cycle has a meta-level definition and thus can be
varied.

Taking for instance KGP and DALI, which are two well-known and fully imple-
mented agent models based upon logic programming, we can identify the following
more specific features.

KGP agents are equipped with the following components.
(1) A set of beliefs, equipped with a set of reasoning capabilities, for reasoning

with the information available in the agent state. These capabilities include Planning,
Temporal Reasoning, Reactivity, Goal Decision, and Temporal Constraint Satisfiability.
Beliefs include a records of the information sensed from the environment, as well as a
history of executed actions.

(2) A set of goals and plans to which the agent is committed.
(3) A sensing capability, allowing agents to observe their environment and actions

(including utterances) by other agents.



(3) An actuating capability, allowing agents to affect their environment (including
by performing utterances).

(4) Control information, including a set of transition rules, changing the agent’s
state and a set of selection functions to select inputs to transitions.

(5) A control component, for deciding which enabled transition should be next [59].
The DALI agent model includes:
(i) A set of beliefs, including reactive rules, support for proactivity and reason-

ing, planning, constraint satisfiability. Beliefs also include past events that record what
has happened in the past: events perceived and reacted to, proactive initiatives, goals
reached, etc. Past events can be organized into histories on which properties can be
verified by means of constraints.

(ii) A sensing capability, allowing agents to observe their environment and actions
by other agents.

(iii) A set of constraints for verifying that the agent’s course of actions respects
some properties and does not present anomalies.

(iv) A learning component for recording past events and building histories; a belief
revision component for removing old information based on conditions and for either
incorporating or dropping knowledge acquired from other agents.

(v) Control information that may influence proactive behavior and the recording of
past events.

Both KGP and DALI are by their very natural modular architectures, as agents are
composed of various modules. ASP modules may be exploited in these architectures to
implement various capabilities, for instance planning. In subsequent sections, we will
propose however some kinds of ASP modules that may actually under some respects
empower these agent models.

5 Reactive ASP Modules

Since [60], it is universally recognized that reactivity is an essential feature in logical
agents, in the sense of an agent being able to respond in a timely and appropriate way
to the reception of stimuli coming from an external environment which is in general
subject to change and that can generate events in an unforeseeable sequence. Reactions
are often expressed in condition-action rules, say e.g. of the form

IF 〈Conditions〉 DO 〈Actions〉
which are also present in ASP-based action languages, where however they are not
meant to be triggered by the conditions, but are rather processed contextually to the rest
of the program. The problem was tackled in [28] where reactive control modules com-
posed of condition-action rules were introduced and the problem of their correctness
w.r.t. the overall program (action theory) was discussed.

Here, we intend to introduce modules that allow for “complex” reactivity, where
some kind of reasoning has to be performed in order to devise suitable reactions. These
modules are intended to “sleep” in the background and enter into play when activated
by the occurrence of external events. In order to choose among the different actions



that is possible to perform, corresponding to different answer sets of a reactive module,
we build upon previous work [61], where we introduced priorities among (conditional)
actions in logic agent-oriented languages.

In the rest of this section, we propose a formulation, a possible operational behav-
ior and some examples of use of reactive ASP modules. Technically, we will specify
reactive ASP modules by exploiting a distinguished, ASP feature, i.e., the constraints.
We also make the reactive behavior parametric w.r.t. context conditions that may be
different in different module invocations.

The basic idea is that of constructing a reactive ASP module around an inconsistent
ASP program, where inconsistency is due to one or more constraints of the form

:−not A1, . . . ,not An

where the Ai’s are atoms, which represent the events that must happen in order to
activate the module. In fact, if no event has happened, all the Ai’s are false which
implies that the constraint is violated (as all the not Ai’s are true) and therefore the
module is inconsistent. A module will stay “asleep” until one or more events happen:
events which have occurred will be asserted as facts, thus acting as triggers that make
the module consistent. The module will now have answer sets which encompass the
possible reactions to these events. The proposed formulation of reactive ASP modules
is aimed at their introduction in the basic cycle of the agent architecture at hand. In
this basic cycle, there will be at some stage a check of reactive modules that, whenever
active, will generate possible reactions one of which will be chosen and put into play
either nondeterministically or based on preferences.

A reactive ASP module will have an input/output interface. The input interface spec-
ifies the events that may trigger the module. The output interface specifies the actions
that the module answer sets (if any) can possibly encompass. However, at the invoca-
tion the module will return not only the actions, but also the conditions (if any) for their
being actually performed. For instance, if the module performs some form of default
reasoning [62], the output may include the normality/abnormality assumptions.

We introduce below the definition that specifies an ASP reactive module after giving
some guidelines about the logic program which constitutes its “core”.

Definition 1. A completed logic programΠ is obtained from an inconsistent logic pro-
gram Πgiven containing at least one constraint of the form :−not A1, . . . ,not An by
adding, for each atom A that in Πgiven does not occur in a constraint and does not
occur as the head of a rule, the even cycle (composed of two rules): A :−not noA,
noA :−not A where noA is a fresh atom.

A will be called an assumption (w.r.t. programΠ) and the set of all the assumptions
will be called AΠ . The purpose of assumptions will be illustrated below in relation to
an example.

Definition 2. A reactive ASP module M is a triple 〈In, Π,Out〉 where Π is a com-
pleted logic program and In,Out ⊆ BaΠ are sets of abstract atoms, called the abstract
inputs and abstract outputs respectively, where AΠ ⊆ Ground(Out).



A reactive ASP module can be invoked by providing an input including the proper
instantiations of (some of) the atoms in In (i.e., it is not mandatory to provide all the
specified inputs). Symmetrically, it may be the case that only part of the outputs is
returned. However, the input may also include facts and rules that represent additional
contextual knowledge useful for the evaluation of the reaction. These facts and rules are
here required to be ground.

Given actual input I , an invocation implies to determine the answer sets of Π ∪ I
and to extract proper instantiations for the outputs. If Π ∪ I is consistent, there may
be different results corresponding to the different answer sets. Otherwise, no result will
be returned. We may notice that the assumptions which belong to each answer set are
returned in the output by definition, unless they have been provided as input. In fact, no
input atom is returned as output.

Definition 3. An invocation result of a reactive ASP module M = 〈In, Π,Out〉 is a
triple 〈I,Π,O〉, where: I , called the actual input, is a set of ground facts and rules1,
including proper instantiations of (some of the) atoms in In; O ⊆ BΠ , called the actual
output, includes proper instantiations of (some of the) atoms in Out , where eitherΠ∪I
is inconsistent and O = ∅ or O ⊆ (M \ I) where M is an answer set of Π ∪ I and O
is composed of all the proper instantiations of atoms in Out which occur in M , except
those given in the input.

It is easy to see that, given input I , there are as many invocation results as the answer
sets of Π ∪ I (among which the actual course of action must be somehow selected by
the agent), and that O 6= ∅ only if I includes a trigger R for Π .

Operationally, invocation of ASP modules can explicitly occur in an agent program,
where the precise way to invoke a module will depend upon the agent language at hand.
In DALI for instance, the simple reactive rules of the language can be used to directly
resort to a reactive module whenever the relevant events occur together (where DALI
provides a way of specifying what does it mean to happen together for a given set of
events, e.g., in the same day, same second, etc.). Other methods for invocation are also
possible: e.g., the inputs related to an invocation can be written on a blackboard which
is examined from time to time by an underlying control component which performs the
invocation, and puts the results on the blackboard.

The ASP modules so defined are suitable for specifying the reaction to external
stimuli, where, in an invocation, the inputs include the external stimuli and the out-
puts include a set of actions to be executed in response to the stimuli according to the
assumptions. In our view in fact, reactive ASP modules should be used to describe
knowledge and beliefs concerning how an agent would cope with some events in a
given situation. The answer sets of a reactive module are meant to represent the pos-
sible courses of action that the agent might undertake whenever these events actually
occur, given the present context. They will in general contain plans that the agent might
execute to cope with the events together with the assumptions these plans are based

1 Facts and rules composed of ground atoms. Notice, here and in what follows, that they are not
required to be composed only of atoms in BΠ , i.e., fresh predicate and constant symbols are
allowed to occur.



upon. In simple cases, like in the examples below, a plan may plainly consist of few
actions whose order does not matter. The module “core” is a completed program so that
whatever is not known and is not provided as input can possibly be assumed. An agent
invokes an ASP module by providing an actual input including a trigger for the module
and all the relevant information which is available. Among the resulting answer sets,
the agent will have to choose according to some criteria and put the selected course of
action into operation.

Below we propose an example of an ASP module. For the sake of clarity, here and
in the rest of the paper we adopt the DALI syntax, and thus we assume to indicate
predicates denoting actions with suffix ’A’ and those denoting external stimuli with
suffix ’E’. The external stimulus to be coped with is bell ringsE . Program Π is the
following. It is a completed program, where good weather is an assumption, i.e., if not
provided as input, the agent may assume that the weather is good or not. The agent
will open the door if the bell rings whenever the situation does not look dangerous (i.e.,
we are not at night with strangers around). It opens the window whenever the weather
good, or, precisely, whenever either it is known to be good (because this information
has been received in input) or it has been assumed to be good. Notice that the former
action is generated by means of a very simple form of proactivity, i.e., on the agent’s
own initiative. In fact, it is not a reaction to an external event and it is not necessarily
a consequence of what is known (the weather being good can arbitrarily be assumed if
not known). Proactivity is commonly assumed to be a main feature of agents.

:- not bell_ringsE.
openA(door) :- bell_ringsE.
:- openA(door), at_night, strangers_around.
openA(window):- good_weather.
good_weather :- not nogood_weather.
nogood_weather :- not good_weather.

The trigger that makesΠ consistent is the external event bell ringsE and the result-
ing programΠ ∪ bell ringsE has a number of answer sets which depends upon whether
both at night and strangers around are given, and whether good weather is either
given or assumed. If we do not either have as input or assume good weather we can
possibly conclude openA(door) but not openA(window), which has good weather
as a condition. If we have both at night and strangers around , we cannot con-
clude openA(door) but, if we assume good weather , then we can possibly conclude
openA(window).

A reactive ASP module associated to Π can be for instance:
〈{bell ringsE , at night , strangers around}, Π, {openA(X )}〉

Among the possible invocation results, each one corresponding to an answer set of
Π ∪ I , we have the following :
〈{bell ringsE}, Π, {openA(door)}〉
〈{bell ringsE , good weather}, Π, {openA(door), openA(window)}〉
〈{bell ringsE}, Π, {good weather , openA(door), openA(window)}〉



〈{bell ringsE , at night , strangers around}, Π, ∅〉
〈{bell ringsE , at night}, Π, {good weather , openA(window)}〉
As another example, program Π below states that the agent may or may not lend

money to somebody, however: (s)he never lends money to unreliable persons; (s)he
normally lends money to friends, unless this friend is an unreliable person. Notice that
lending/not lending money is chosen arbitrarily, unless conditions occur (stated in the
constraints) to force an agent to make a certain choice. Going back to the definition of
completed program (Definition 1), it may be noticed that every item of information
occurring in the program can be assumed if not provided in input, except the conditions
occurring in the constraints. For instance, in the module below the agent will force itself
to lend the money if the request comes from a friend, but the requester being a friend
must be explicitly specified in input (of course, if at the invocation the agent believes
that this is the case).

:- not requestE.
lend_moneyA :- not no_land, requestE.
no_land :- not lend_moneyA.
:- lend_moneyA, unreliable_person.
:- not lend_moneyA, requestE, friend.

A reactive ASP module associated to Π can be for instance:
〈{requestE , friend , unreliable person}, Π, {lend moneyA}〉

We may have for instance the following invocation results, where notice that, if the
requester is stated to be unreliable, the output is empty (thus no action is prescribed) as
the module is inconsistent.
〈{requestE , friend}, Π, {lend moneyA}〉
〈{requestE , friend , unreliable person}, Π, ∅〉
〈{requestE}, Π, ∅}〉 and 〈{requestE}, Π, {lend moneyA}〉

With input requestE , one of the two possible outcomes must be chosen as the actual
course of action.

6 Reasoning on Possibility and Necessity: Modal ASP Modules

In this section, we propose another kind of ASP module, defined so as to allow forms
of reasoning to be expressed on possibility and necessity analogous to those of modal
logic. As it is well-known, in classical modal logic (see [63]) a proposition is said to
be possible if and only if it is not necessarily false (regardless of whether it is actually
true or actually false), and to be necessary if and only if it is not possibly false. The
meaning of these terms refers to the existence of multiple “possible worlds”: something
“necessary” is true in all possible worlds, something “possible” is true in at least one
possible world. These “possible world semantics” are formalized with Kripke seman-
tics. Either the notion of possibility or that of necessity may be taken to be basic, where
the other one is defined in terms of it. Possibility and necessity are related to credulous



and skeptical (or brave and cautious) reasoning in non-monotonic reasoning, where in
the credulous (brave) approach a proposition is believed if it is possible, while in the
skeptical (cautious) approach it is believed only if it is necessary.

In our setting, the “possible worlds” that we consider refer to an ASP program Π
and are its answer sets. Therefore, given A ∈ BΠ , we will say that A is possible if it
belongs to some answer set, and that A is necessary if it belongs to the intersection of
all the answer sets.

A comment is in order about why we do not choose to refer to the well-founded
model (wfm) [64]. In fact, as it is well-known every answer set M of a given program
Π is a superset of the wfm of the program. This means that, given WFM = 〈T ;F 〉
where atoms in T are considered to be true, atoms in F are considered to be false
and all the other atoms are considered to be undefined (i.e., the WFM is a three-valued
semantics) we have T ⊆M . However, T is in general smaller than the intersection of all
the answer sets, as it includes only the consequences derivable from the acyclic part of
the program. Therefore, T does not include consequences deriving from assumptions,
even when these assumptions lead to the same conclusion in all the answer sets2.

6.1 Definition, Use and Applications of Modal ASP Modules

We introduce below an operator of possibility, that we indicate with P (instead of the
traditional �, or M ), and an operator of necessity, that we indicate with N (instead of
the classical 2, or L). We change the terminology as we re-define the operators w.r.t. the
answer sets of a program considered as a theory. In this specific setting, properties of the
operators can be proved rather than defined axiomatically. These operators define Modal
ASP Expressions that can be either possibility expressions or necessity expressions.

Definition 4. Given answer set program Π with answer sets enumerated as
M1, . . . ,Mk, and an atom A, the possibility expression P (wi, A) is deemed to hold
(w.r.t. Π) whenever A ∈ Mwi

, wi ∈ {1, . . . , k}. The possibility operator P (A) is
deemed to hold whenever ∃M ∈ {M1, . . . ,Mk} such that A ∈M .

Definition 5. Given answer set programΠ with answer setsM1, . . . ,Mk, and an atom
A, the necessity expression N(A) is deemed to hold (w.r.t. Π) whenever A ∈ (M1 ∩
. . . ∩Mk).

We are now able to define the negation of possibility and necessity operators.

Definition 6. Given answer set program Π with answer sets enumerated as
M1, . . . ,Mk, and an atom A: the possibility expression ¬P (wi, A) is deemed to hold
(w.r.t. Π) whenever A 6∈ Mwi

, wi ∈ {1, . . . , k}; the expression ¬P (A) is deemed to
hold whenever ¬∃M ∈ {M1, . . . ,Mk} such that A ∈ M ; the necessity expression
¬N(A) is deemed to hold (w.r.t. Π) whenever A 6∈ (M1 ∩ . . .Mk).

2 For the interested reader, in previous work [38] we have discussed the role of cycles and of
connections between cycles for the consistency of the program.



It is easy to see that, given answer set program Π:

Proposition 1. N(A) implies P (A) and implies that ∃wi such that P (wi, A).

Proposition 2. ¬P (A) implies ¬N(A).

The extension of the above operators to conjunctions is straightforward, where a con-
junction is deemed to be possible in a certain answer set wi (resp. possible in general)
whenever all conjuncts belong to wi (resp. to the same answer set) and a conjunction is
deemed to be necessary whenever all conjuncts belong to the intersection of the answer
sets.

We now extend the definition of modal ASP expressions to include a context for
their evaluation

Definition 7. Let E(Args) be either a possibility or a necessity expression. The cor-
responding contextual expression has the form E(Args) : Context where Context
is a set of ground facts and rules. E(Args) : Context is deemed to hold whenever
E(Args) holds w.r.t. Π ∪ Context .

The abstract counterparts of modal ASP expressions are expressions of the form
P (I,X), P (X) and N(X) (resp. P (I,X) : C, P (X) : C and N(X) : C for their
contextual version) where: I is a variable ranging over natural numbers;X can be either
an abstract atom or a conjunction of abstract atoms or also a metavariable intended to
denote either an abstract atom or a conjunction of abstract atoms; C can be either a set
of abstract atoms or a metavariable intended to denote a set of abstract atoms.

Possibility and necessity expressions are evaluated w.r.t. an underlying modal ASP
module of the following form.

Definition 8. A modal ASP moduleM is a tuple
〈Module name,AbstrQuery ,AbstrContext , Π,AbstrPos,AbstrNec〉 where:

– Module name is the name of the module;
– Π is a logic program;
– AbstrQuery is either an abstract atom or a conjunction of abstract atoms (that can

be intended as a set), i.e., AbstrQuery ⊆ BaΠ and AbstrQuery 6= ∅;
– AbstrContext is a metavariable denoting a set of ground facts and rules;
– AbstrPos is a metavariable denoting a set of abstract possibility expressions of the

form P (I, AbstrQuery);
– Nec is a metavariable denoting either a necessity expressions of the form
N(AbstrQuery) or the empty set.

A modal ASP module is invoked whenever a modal ASP expression has to be eval-
uated, by providing a proper instantiation of the abstract query and of the context by
means of the arguments of the modal ASP expression at hand.

Definition 9. An invocation result of a modal ASP moduleM is a tuple
〈Module name,Query ,Context , Π,Pos,Nec〉 where:



– Query ⊆ BΠ , Query 6= ∅, is composed of proper instantiations of (some of) the
abstract atoms in AbstrQuery;

– Context is a set of ground facts and rules;
– Pos is the set of the expressions P (wi,Query) that hold w.r.t. Π ∪Context , or the

expression ¬P (Query) if no possibility has been found to hold;
– Nec is either N(Query) or ¬N(Query) depending upon which of the two holds

w.r.t. Π ∪ Context .

Notice that, from the practical point of view, once the module has been invoked on
some input, its invocation result can be stored for subsequent use.

For the case where there are several modal ASP modules, the straightforward
extension of the above-defined modal ASP expressions can be E(T,Args) (resp.
E(T,Args) : Context for the contextual form) where the given expression is meant to
be evaluated w.r.t. module (theory) T (precisely, w.r.t. program Π included in T ).

The Kripke structure that we propose is simple, but yet it allows significant forms
of reasoning to be performed. For instance, one is able to define meta-axioms, like, e.g.,
the following, which states that a proposition is plausible w.r.t. theory T if, say, it is
possible in at least two different worlds:

plausible(T,Q) :−P (T, I,Q), P (T, J,Q), I 6= J.

We can also formulate the contextual counterpart of the above:

plausible(T,Q,C) :−P (T, I,Q) : C,P (T, J,Q) : C, I 6= J.

As we were mentioning before, to evaluate an instance of the meta-axioms above one
has to invoke module T on query Q just once.

Among the relevant realms of possible application of modal ASP expressions are
in our view normative reasoning and negotiation. Consider for instance the famous
example proposed in the seminal work about meta-interpreters [65]:

guilty(X ) :−demo(Facts, guilty(X ))

meaning that one can be considered to be guilty only if (s)he is provably guilty within
theory Facts representing both the laws/regulations and the evidence. We can gener-
alize this kind of reasoning by allowing Facts to be an answer set program, i.e., by
allowing non-monotonic reasoning and multiple possible solutions. In our setting, we
might rephrase this example as follows:

guilty(X ) :−N (Facts, guilty(X ))

We might also allow evidence that one proposes to her/his excuse, e.g.,



innocent(X ) :−¬P(Facts, guilty(X )) : Evidence

Here, we have used a contextual expression where we say that one has to be considered
innocent if it is impossible that (s)he is not, assuming to accept the Evidence (s)he
proposes as excuse.

6.2 Extension to Multi-Agent Setting

It can be interesting to extend our setting so as to allow an agent to reason not only
about what is possible or necessary for herself/himself, but also about what is possible
or necessary for other agents.

In this discussion, we assume that there are several agents, which are able to com-
municate with each other. We will however abstract from the details of the communi-
cation mechanism, assuming the existence of two primitives: tell(Ag ,Prop), to sig-
nify that the agent in which it occurs communicates proposition Prop to agent Ag ;
told(Ag ,Prop), to signify that the agent in which it occurs receives proposition Prop
from agent Ag .

As a first simple example, let us assume for instance that agent Mary includes a
modal ASP module where she decides whether to spend the evening going out (e.g,
to cinema) or not. Let us also assume that there exists another agent, say John, who
would like to invite Mary to cinema. In our approach, John can reason about Mary’s
possibilities, e.g., by means of a condition-action rule that might look like the following:

told(mary ,P(go to cinema)) OR
told(mary ,P(go to cinema) : lend money)

DO tell(mary , lend money if needed , invite to cinema)

stating that if John is told by Mary that she would possibly go to cinema, either at her
own expenses or upon the condition she can borrow some money, he offers to lend the
money and invites her to go.

The next example refers to negotiation between agents. In the example, a benevo-
lent agent accepts the justification of a partner agent for a contract violation if the part-
ner is known to be reliable and offers a justification which is plausible w.r.t. a theory
describing the negotiation domain, given a context (that presumably includes common
knowledge about what has been going on). We refer to the above definition of plausible .

excused(Ag, V iol, Context facts) :−
N(Reputation theory, reliable(Ag)), told(Ag, Justification),
plausible(Domain theory, Justification, Context facts)

6.3 Complexity

As it is well-known, deciding the existence of an answer set has been proved NP-
complete and the same for deciding whether an atom is a member of some answer



set, while the problem whether a given atom is in the intersection of all stable models
is co-NP-complete (see [66] and [67])3.

It is useful to remark that complexity of epistemic logic programs [48] recalled in
Section 3 is not related to the complexity of the approach presented here. In fact, in
epistemic logic programs necessity and possibility operators may occur within a theory,
while here we reason about an inner theory which is a plain ASP program.

We state here the complexity of reasoning about possibility and necessity with the
above-mentioned operators, that is in accordance with the above results. In fact, we may
notice that there is no real difference between computing the answer sets and enumer-
ating them. Therefore, deciding whether an atom is a member of the i-th answer set has
the same complexity of deciding whether an atom is a member of some answer set. We
can then easily state the following.

Proposition 3. Given atom A, the problem of deciding whether P (wi, A) holds w.r.t.
program Π is NP-complete.

Proposition 4. Given atom A, the problem of deciding whether N(A) holds w.r.t. pro-
gram Π is co-NP-complete.

Notice however that the above complexity results refers to the ground version of
the logic program included in an ASP module: in fact, this is always the case when one
adopts ASP. Therefore, either one bases a module upon ground programs as we have
assumed up to now, or it is necessary to be careful about possible exponential blowup
of program size (e.g., by stating constraints on the program structure or by avoiding to
introduce too many new constants in the input). In the present setting, the input and the
context of modal ASP expressions are provided by the overall agent (logic) program,
and we have seen in the examples that several modal expressions may occur in the same
rule. However, we assume (cf. Definition 9) that every modal ASP expression can be
evaluated whenever all its arguments are ground. Then, no interaction is possible due
to conjunctions of modal atoms. Relaxing at least to some extent this limitation, i.e.,
allowing modal ASP expressions to return results rather than simply evaluate to true or
false will be a subject of future work.

Notice also that the increase of complexity that one can find, e.g., in the approach
of [42] due to the interaction between modules that invoke each other even recursively
cannot be found here. This because in the present setting modules cannot be nested
and do not interact: in fact, an agent uses the possibility and necessity operator without
nesting in its main agent program. Thus, there is no possible interaction among different
invocations of such operators. The topic of allowing the use of possibility and necessity
operators within modal ASP modules, where a module is allowed to refer to another one
(presumably in an acyclic fashion) and the topic of nesting of possibility and necessity
will be interesting subjects of future work, but have not been tackled here.

Whenever a logical agent uses only possibility in the body of its rules, the resulting
system fits into the framework of [68]. In fact, rules with the possibility operator in

3 These results hold for normal ASP programs as defined in Section 2. If one considers addi-
tional constructs such as for instance disjunction, the complexity increases.



the body can easily be seen in their terminology as “bridge rules”. The agent program
under, e.g., the semantics defined in [29] and the invoked modules under the answer
set semantics form, again in their terminology, a set of logics. Finally, the belief state
composed of the semantics of the agent program and the answer sets of the invoked
modules and selected by the possibility operator constitutes what they call an “equilib-
rium”. However, the complexity is lower that the more general case that they consider,
because bridge rules can be used in the agent program only.

7 Concluding Remarks

We have proposed a framework for integrating ASP modules into virtually any agent
architecture so as to allow for complex reactivity, and for hypothetical reasoning based
upon possibility and necessity. From the implementation point of view, the integration
of such modules into logic-based architectures is straightforward. In fact, we have im-
plemented the approach within the DALI interpreter. The implementation is described
in detail in [69], and uses the DLV answer set solver [70].

Our approach is different from previous ones under several respects. To the best of
our knowledge in fact, except for the approach of [28] in the context of action theo-
ries, there is no existing approach which is comparable with the proposed one. On the
first place, ASP modules are adopted for empowering reasoning capabilities of logical
intelligent agents. Then, they are exploited to introduce forms of complex reactivity.
Finally, we allow an agent to reason about what is possible given the corpus of agent’s
knowledge. The forms of hypothetical reasoning which are allowed are interesting, and
may be used to design real applications at a comparatively low complexity.
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