
1

A Game-Theoretic Operational Semantics for the
DALI Communication Architecture

Stefania Costantini Stefania Costantini Alessia Verticchio
Universit̀a degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost,tocchio }@di.univaq.it

Abstract— In this paper we present the communication ar-
chitecture of the DALI Logic Programming Agent-Oriented
language and we discuss its semantics. We have designed a
meta-level where the user can specify, via the distinguished
tell/told primitives, constraints on communication or even a
new protocol. Moreover, the user can define meta-rules for
filtering and/or understanding messages via applying ontologies
and commonsense/case-based reasoning. Declaratively and proce-
durally, these forms of meta-reasoning are automatically applied
by a form of implicit, logical reflection. Operationally, we define
a transition system based on a dialog game syntax. Thus, our
operational semantics provides a formal link between the dialog
locutions and the DALI semantic mechanisms. We embed the
DALI/FIPA locutions and protocol within a framework that filters
and interprets messages, without resorting to the definition of
”mental states” of the agent. The locutions we consider include
the relevant FIPA-compliant primitives, plus others which we
believe to be needed in a logic programming setting.

I. I NTRODUCTION

Interaction is an important aspect of Multi-agent systems:
agents exchange messages, assertions, queries. This, depend-
ing on the context and on the application, can be either in
order to improve their knowledge, or to reach their goals, or
to organize useful cooperation and coordination strategies. In
open systems the agents, though possibly based upon different
technologies, must speak a common language so as to be able
to interact.

However, beyond standard forms of communication, the
agents should be capable of filtering and understanding mes-
sage contents. A well-understood topic is that of interpreting
the content by means of ontologies, that allow different
terminologies to be coped with. In a logic language, the
use of ontologies can be usefully integrated with forms of
commonsense and case-based reasoning, that improve the
“understanding” capabilities of an agent. A more subtle point
is that an agent should also be able to enforce constraints
on communication. This requires to accept or refuse or rate
a message, based on various conditions like for instance the
degree of trust in the sender. This also implies to be able to
follow a communication protocol in “conversations”. Since the
degree of trust, the protocol, the ontology, and other factors,
can vary with the context, or can be learned from previous

We acknowledge support by theInformation Society Technologies
programme of the European Commission, Future and Emerging
Technologiesunder the IST-2001-37004 WASP project.

experience, in a logic language agent should and might be
able to perform meta-reasoning on communication, so as to
interact flexibly with the “external world.”

This paper presents the communication architecture of the
DALI agent-oriented logic programming language [2] [3],
and the operational semantics of this architecture. DALI is
an enhanced logic language with fully logical semantics [4],
that (on the line of the arguments proposed in [7]) integrates
rationality and reactivity, where an agent is able of both
backwards and forward reasoning, and has the capability to
enforce “maintenance goals” that preserve her internal state,
and “achievement goal” that pursue more specific objectives.
An extended resolution and resolution procedure are provided,
so that the DALI interpreter is able to answer queries like in
the plain Horn-clause language, but is also able to cope with
different kinds of events.

In this paper we also present the operational semantics of the
communication architecture that we present. Actually, we have
defined a full operational semantics for the DALI language,
which has been a basis for implementing the DALI system
and is being used for developing model-checking tools for
verifying program properties. For providing the operational
semantics of the DALI communication architecture, following
[8] and the references therein, we define a formal dialogue
game framework that focuses on the rules of dialogue, regard-
less the meaning the agent may place on the locutions uttered.
This means that we formulate the semantics of communication
locutions as steps of a dialogue game, without referring to the
mental states of the participants. This because we believe that
in an open environment agents may also be malicious, and
falsely represent their mental states. However, the filter layer
of the DALI communication architecture (discussed below)
allows an agent to make public expression of its mental states,
and other agents to reason both on this expression and on their
own degree of belief, trust, etc. about it.

The DALI communication architecture specifies in a flexible
way the rules of interaction among agents, where the various
aspects are modeled in a declarative fashion, are adaptable to
the user and application needs, and can be easily composed.
DALI agents communicate via FIPA ACL [6], augmented with
some primitives which are suitable for a logic language. As
a first layer of the architecture, we have introduced a check
level that filters the messages. This layer by default verifies
that the message respects the communication protocol, as well

as some domain-independent coherence properties. The user
can optionally add other checks, by expanding the definition
of the distinguished predicatestell/told. Several properties can
be checked, however in our opinion an important role of the
filter layer is that of making it explicit which assumption
an agent makes about the mental states of the other agents,
their reliability, their skills, how much they can be trusted,
etc. If a message does not pass the check, it is just deleted.
As a second layer, meta-level reasoning is exploited so as to
try to understand message contents by using ontologies, and
forms of commonsense reasoning. The third layer is the DALI
interpreter.

The declarative and procedural semantics (not treated here)
are defined as an instance of the general frameworkRCL
(Reflective Computational Logic) [1] based on the concept of
reflection principle as a knowledge representation paradigm
in a computational logic setting. Application of both the
filter layer and the meta-reasoning layer are understood as
application of suitable reflection principles, that we define
in the following. RCL then provides a standard way of
obtaining the declarative and procedural semantics, which can
be gracefully integrated with the semantics of the basic DALI
language [4].

The paper is organized as follows. We start by shortly
describing the main features of DALI in Section II and the
communication architecture in Section III. Then, we face the
Operational semantics in Section IV. In order to make it clear
the usefulness and usability of the proposed architecture, we
present an example in Section V. Finally, we conclude with
some concluding remarks.

II. T HE DALI LANGUAGE

DALI [2] [4] is an Active Logic Programming language
designed for executable specification of logical agents. A
DALI agent is a logic program that contains a particular kind
of rules, reactive rules, aimed at interacting with an external
environment. The environment is perceived in the form of
external events, that can be exogenous events, observations,
or messages by other agents. In response, a DALI agent can
perform actions, send messages, invoke goals. The reactive
and proactive behavior of the DALI agent is triggered by
several kinds of events: external events, internal, present and
past events. It is important to notice that all the events and
actions are timestamped, so as to record when they occurred.
The new syntactic entities, i.e., predicates related to events
and proactivity, are indicated with special postfixes (which
are coped with by a pre-processor) so as to be immediately
recognized while looking at a program.

The external events are syntactically indicated by the postfix
E. When an event comes into the agent from its “external
world”, the agent can perceive it and decide to react. The
reaction is defined by a reactive rule which has in its head
that external event. The special token:>, used instead of: −,
indicates that reactive rules performs forward reasoning. The
agent remembers to have reacted by converting the external
event into apast event(time-stamped). The set of past events

in a way constitutes the set of the new beliefs that the agent
has collected from her interaction with the environment.

Operationally, if an incoming external event is recognized,
i.e., corresponds to the head of a reactive rule, it is added into
a list called EV and consumed according to the arrival order,
unless priorities are specified.

The internal events define a kind of “individuality” of
a DALI agent, making her proactive independently of the
environment, of the user and of the other agents, and allowing
her to manipulate and revise her knowledge. An internal event
is syntactically indicated by the postfixI, and its description is
composed of two rules. The first rule contains the conditions
(knowledge, past events, procedures, etc.) that must be true so
that the reaction, specified in the second rule, may happen.

Internal events are automatically attempted with a default
frequency customizable by means of directives in the initial-
ization file. The user’s directives can tune several parameters:
at which frequency the agent must attempt the internal events;
how many times an agent must react to the internal event
(forever, once, twice,. . .) and when (forever, when triggering
conditions occur, . . .); how long the event must be attempted
(until some time, until some terminating conditions, forever).

When an agent perceives an event from the “external
world”, it does not necessarily react to it immediately: she has
the possibility of reasoning about the event, before (or instead
of) triggering a reaction. Reasoning also allows a proactive
behavior. In this situation, the event is called present event
and is indicated by the suffixN.

Actions are the agent’s way of affecting her environment,
possibly in reaction to an external or internal event. In DALI,
actions (indicated with postfixA) may have or not precondi-
tions: in the former case, the actions are defined by actions
rules, in the latter case they are just action atoms. An action
rule is just a plain rule, but in order to emphasize that it is
related to an action, we have introduced the new token:<,
thus adopting the syntaxaction :< preconditions. Similarly
to external and internal events, actions are recorded as past
actions.

Past events represent the agent’s “memory”, that makes her
capable to perform future activities while having experience
of previous events, and of her own previous conclusions. Past
events are kept for a certain default amount of time, that can
be modified by the user through a suitable directive in the
initialization file.

III. DALI C OMMUNICATION ARCHITECTURE

A. The Architecture

The DALI communication architecture (Fig.1) consists of
three levels. The first level implements the DALI/FIPA com-
munication protocol and a filter on communication, i.e. a set
of rules that decide whether or not receive or send a message.
The second level includes a meta-reasoning layer, that tries
to understand message contents, possibly based on ontologies
and/or on forms of commonsense reasoning. The third level

2

consists of the DALI interpreter.

Fig. 1. The communication architecture of a DALI agent

The DALI/FIPA protocol consists of the main FIPA primi-
tives, plus few new primitives which are peculiar of DALI.

In DALI, an out-coming message has the format:

message(Receiver, primitive(Content, Sender))

that the DALI interpreter converts it into an internal form,
by automatically adding the missing FIPA parameters, and
creating the structure:

message(receiver address, receiver name,
sender address, sender name,
language, ontology,
primitive(Content, sender name))

Using this internal structure, an agent can include in the
message the adopted ontology and the language. When a
message is received, it is examined by a check layer composed
of a structure which is adaptable to the context and modifiable
by the user. This filter checks the content of the message,
and verifies if the conditions for the reception are verified.
If the conditions are false, this security level eliminates the
supposedly wrong message. The DALI filter is specified by
means of meta-level rules defining the distinguished predicates
tell and told.

Whenever a message is received, with content partprimi-
tive(Content,Sender)the DALI interpreter automatically looks
for a correspondingtold rule, which is of the form:

told(Sender, primitive(Content)) : −
constraint1, . . . , constraintn.

where constrainti can be everything expressible either
in Prolog or in DALI. If such a rule is found, the inter-
preter attempts to provetold(Sender, primitive(Content)).
If this goal succeeds, then the message is accepted, and
primitive(Content)) is added to the set of the external events
incoming into the receiver agent. Otherwise, the message is
discarded.

Example: the proposal to perform an action is acceptable if the
agent is specialized for the action and the Sender is reliable
(this suggests that this model allows one to integrate into the
filtering rules the concept the degree of trust).

told(Sender agent, propose(Action, Preconditions)) : −
not(unreliableP (Sender agent)),
specialized for(Action).

Symmetrically to told rules, the messages that an agent
sends are subjected to a check viatell rules. There is, however,
an important difference: the user can choose which messages
must be checked and which not. The choice is made by setting
some parameters in the initialization file. The syntax of atell
rule is:

tell(Receiver, Sender, primitive(Content)) : −
constraint1, . . . , constraintn.

For every message that is being sent, the interpreter auto-
matically checks whether an applicabletell rule exists. If so,
the message is actually sent only upon success of the goal
tell(Receiver, Sender, primitive(Content)).

Example: thetell rule authorizes the agent to send the mes-
sage with the primitiveinform if the receiver is active in the
environment and is presumably interested to the information.

tell(Agent To, Agent From, inform(Proposition)) : −
active in the world(Agent To),
specialized(Agent To, Specialization),
related to(Specialization, Proposition).

The FIPA/DALI communication protocol is implemented by
means a piece of DALI code including suitabletell/told rules.
This code is contained in a separate file,communication.txt,
that each DALI agent imports as a library, so that the com-
munication protocol can be seen an “input parameter ”of the
agent. As mentioned, whenever an incoming message passes
the told check, its contentprimitive(Content, Sender) is
treated as an external eventprimitive(Content, Sender)E.
If it corresponds to a DALI/FIPA locution, then it is managed
by predefined reactive rules (included incommunication.txt)
that behave according to the protocol. Ifprimitive is the
distinguished primitivesend message, then Content is in-
terpreted as an external eventContentE which is sent to the
agent, in the sense that no predefined reactive rule is defined,
and thus the agent has to react herself to this event.

Each DALI agent is also provided with a distinguished
procedure calledmeta, which is automatically invoked by the
interpreter in the attempt of understanding message contents.
This procedure includes by default a number of rules for cop-
ing with domain-independent standard situations. The user can
add other rules, thus possibly specifying domain-dependent
commonsense reasoning strategies for interpreting messages,
or implementing a learning strategy to be applied when all
else fails.

Example: below are the default rules that apply the equiva-
lences listed in an ontology, and possibly also exploit symme-
try of binary predicates:

3

meta(
Initial term, F inal term, Agent Sender) : −
clause(agent(Agent Receiver),),
functor(Initial term, Functor, Arity), Arity = 0,
((ontology(Agent Sender, Functor, Equivalent term);
ontology(Agent Sender, Equivalent term, Functor));
(ontology(Agent Receiver, Functor, Equivalent term);
ontology(Agent Receiver, Equivalent term, Functor))),
F inal term = Equivalent term.

meta(
Initial term, F inal term, Agent Sender) : −
functor(Initial term, Functor, Arity), Arity = 2,
symmetric(Functor), Initial term = ..List,
delete(List, Functor, Result list),
reverse(Result list, Reversed list),
append([Functor], Reversed list, F inal list),
F inal term = ..F inal list.

Since the FIPA/DALI protocol is implemented by means
of a piece of DALI code, and the link between the agent
and the interpreter sending/receiving messages is modeled
by the reflection principles specified above, the semantics of
DALI communication is now complete. However, in the next
section we propose an operational semantics that specifies in
a language/independent fashion how the FIPA/DALI protocol
works.

B. Related Approaches

The problem of a secure interaction between the agents is
also treated in [9], [5]. However, [9] defines a system (Moses)
with a global law for a group of agents, instead of a set of
local laws for every single agent as in DALI. Moreover, in
Moses there is a special agent, calledcontroller, for every
agent, while in DALI it is necessary to define a filter for each
agent, defining constraints on the communication primitives.
Our definition of tell/told rules is structurally different from the
Moses approach: each law in Moses is defined as a prolog-
like rule having in the body both the conditions that match
with a control state of the object and some fixed actions that
determine the behavior of the law. In DALI, the told/tell rules
are the constraints on the communication and do not contain
actions. The behavior (and in particular the actions) performed
by an agent are determined by the logic program of the agent.
Another difference is that the DALI filter rules can contain past
events, thus creating a link between the present communication
acts and the experience of the agent. A particularity of the
Minsky law-governed system is that is possible to update
on-line the laws [10]. In DALI, presently it is possible to
change the rules locally by varying the name of the file that
contains the tell/told rules but in the future we will improve
our language by allowing an agent to modify even filter rules.

Santoro in [5] defines a framework for expressing agent
interaction laws by means of a set of rules applied to each
ACL message exchanged. Each rule has a prefixed structure
composed by precondition, assignment and constraint where
the precondition is a predicate on one or more fields of the
message which triggers the execution of the assignment or the
checking of the constraint. The constraint is a predicate which
specifies how the message meeting the precondition has to be
formed, and it is used to model the filtering function. The rules

consider some specific fields of a message like the name of
agents, the performative name, language, ontology, delivery
mode and content. We think that the approach followed in
DALI is only apparently similar. The Agent Communication
Context (ACC) in JADE is applied only to outcoming mes-
sages, while in DALI we submit to the filter both the received
messages and the sent messages. The structure of a DALI filter
rule is different and more flexible: in ACC the rule specifies
that if the preconditions are true, some fields of the message
must be defined by the assignments in the body; in DALI,
the body of a filter rule specifies only the constraints for the
acceptance/sending of a message. Moreover, the constraints in
DALI do not refer to specific fields. They can be procedures,
past events, beliefs and whatever is expressible either in DALI
or in Prolog. Therefore, even though both the approaches
use the concept of communication filter, we think that there
are notable differences also due to ability of Prolog to draw
inferences and to reason in DALI with respect to java.

IV. OPERATIONAL SEMANTICS

The operational semantics that we propose in this Section
follows the approach of [8] (see also the references therein).
We define a formal dialogue game framework that focuses on
the rules of dialogue, regardless the meaning the agent may
place on the locutions uttered. This means, we reformulate
the semantics of FIPA locutions as steps of a dialogue game,
without referring to the mental states of the participants. This
approach has its origin in the philosophy of argumentation,
while approaches based on assumptions about the mental
states of participants build on speech-act theory. This because
we believe that in an open environment agents may also be
malicious, and falsely represent their mental states. However,
as we have seen the filter layer of the DALI communication
architecture allows an agent to make public expression of
its mental states, and other agents to reason both on this
expression and on their own degree of belief, trust, etc. about
it.

The rules of the operational semantics show how the state of
an agent changes according to the execution of the transition
rules. We define each rule as a combination of states and laws.
Each law links the rule to interpreter behavior and is based on
the interpreter architecture.

We have three kinds of laws: those that model basic
communication acts; those describing the filter levels; those
that modify the internal state of the agent by adding items to
the various sets of events. In order to make it clear how we
express the formal link between the agent actual activity and
the semantic mechanisms, we adopt some abbreviations:

• Agx to identify the name of the agent involved by the
transition;

• SAgx or NSAgx to identify the state before and after the
application of laws.

• Lx to identify the applied law.

We adopt the pair< Agx, SAgx > to indicate a link between
the name of an agent and her state. The state of a DALI agent
is defined as a triple:SAgx ≡< PAg, ISAg, ModeAg >

4

wherePAg is the logic program,ISAg is the internal state and
Mode is a particular attribute describing what the interpreter
is doing. Hence, we can introduce the following equivalence:
< Agx, SAgx >≡< Agx, < PAg, ISAg, ModeAg >>

The internal state of an agent is the tuple
< E, N, I,A, G, T, P > composed by the sets of, respectively,
external events, present events, internal events, actions,goals,
test goals and past events.

Moreover, we denote byNPAg the logic program modified
by the application of one or more laws and byNISAg the
internal state modified. We distinguish the internal state IS
from the global state S because we want to consider separately
the influence of the communication acts on the classes of
events and actions within the agent. The semantic approach
we describe in this paper is based on the framework of
(labeled)transition rules. We apply them in order to describe
the interactive behavior of the system. Each transition rule is
described by two pairs and some laws. Starting from the first
pair and by applying the current laws, we obtain the second
pair where some parameters have changed (e.g., name, internal
state or modality).

First, we introduce the general laws that modify the pairs.
We start with the transitions about the incoming messages,
by showing the behavior of the communication filter level.
Next we show the semantic of meta-level and finally the
communication primitives. For lack of space, we just consider
some of them.

• L0: The receivemessage(.)law:
Locution: receive message(
Agx, Agy, Ontology, Language, Primitive)
Preconditions: this law is applied when the agentAgx finds
in the Tuple Space a message with her name.
Meaning: the agent Agx receives a message from
Agy(environment, other agents,...). For the sake of simplicity
we consider the environment as an agent.
Response: the interpreter takes the information about the
language and the ontology and extracts the name of sender
agent and the primitive contained in the initial message.

• L1: The L1 told check true(.) law:
Locution:told check true(Agy, P rimitive)
Preconditions: the constraints of told rule about the name of
the agent senderAgy and the primitive must be true for the
primitive told checktrue.
Meaning: the communication primitive is submitted to the
check-level represented by the told rules.
Response:depends on the constraints of told level. If the
constraints are true the primitive can be processed by the next
step.

• L2 : The L2 understood(.) law:
Locution: understood(Primitive)
Preconditions:in order to process the primitive the agent must
understand the content of the message. If the primitive is
sendmessage, the interpreter will check if the external event
belongs to a set of external events of the agent. If the primitive
is propose, the interpreter will verify if the requested action is
contained in the logic program.
Meaning: this law verifies if the agent understands the message.
Response:the message enters processing phase in order to
trigger a reaction, communicate a fact or propose an action.

• L3 : The L3 apply ontology(.) law:
Locution: apply ontology(Primitive)
Preconditions: in order to apply the ontology the primi-
tive must belong to set of locutions that invoke the meta-
level(sendmessage,propose,executeproc,queryref,is a fact).

Meaning: this law applies, when it’s necessary, the ontologies
to the incoming primitive in order to understand its content.
Response:the message is understood by using the ontology of
the agent and properties of the terms.

• L4: The L4 send messagewith tell(.) law:
Locution:send msg with tell(Agx, Agy, P rimitive)
Preconditions: the precondition for L4 is that the primitive
belongs to set of locutions submitted to tell check.
Meaning: the primitive can be submitted to the constraints in
the body of tell rules.
Response:the message will be sent to the tell level.

• L5: The L5 tell check(.) law :
Locution: tell check(Agx, Agy, P rimitive)
Preconditions:the constraints of tell rule about the name of the
agent receiverAgx, the agent senderAgy and the primitive are
true for L5.
Meaning: the primitive is submitted to a check using the
constraints in the tell rules.
Response: the message will either be sent to addressee
agent(L5).

• Lk: The add X(.) law:
Locution: add X(.)
where
X ∈ {internal event, external event, action,
message, past event}
Preconditions:the agent is processing X.
Meaning: this law updates the state of the DALI agent adding
an item to corresponding set to X.
Response:the agent will reach a new state. The stateSAg of
the agent will change in the following way.
k=6 and X=internalevent:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I1, A, G, T, P >, Mode > where
I1 = I ∪ Internal event.
k=7and X=externalevent:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E1, N, I, A, G, T, P >, Mode > where
E1 = E ∪ external event.
k=8 and X=action:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I, A1, G, T, P >, Mode > where
A1 = A ∪ Action or A1 = A \ Action if the communication
primitive is cancel.
k=9 and X=message:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I, A1, G, T, P >, Mode > where
A1=A∪Message. In fact, a message is an action.
k=10 and X=pastevent:
SAg =< PAg, < E, N, I, A, G, T, P >, Mode >
NSAg =< PAg, < E, N, I, A, G, T, P1 >, Mode > where
P1 = P ∪ Past event.

• L11: The L11 check cond true(.) law:
Locution: check cond true(Cond list)
Preconditions: The conditions of thepropose primitive are
true.
Meaning: this law checks the conditions inside thepropose
primitive.
Response:the proposed action will either be executed.

• L12: The update program(.) law:
Locution: update program(Update)
Preconditions:No preconditions.
Meaning: this law updates the DALI logic program by adding
new knowledge.
Response:the logic program will be updated.

• Lk: The processX law:
Locution: processX(.)
where
X ∈ {send message, execute proc, propose,
accept proposal, reject proposal}

5

Preconditions:The agent calls the primitive X.
Meaning and Response:We must distinguish according to the
primitives:
k=13 and X=send message: this law calls the external event
contained in the primitive. As response the agent reacts to
external event.
k=14 and X=execute proc:this law allows a procedure to
be called within the logic program. As response the agent
executes the body of the procedure.
k=15 and X=propose: If an agent receives apropose, she can
choose to do the action specified in the primitive if she accepts
the conditions contained in the request. The response can be
eitheraccept proposal or reject proposal.
k=16 and X=accept proposal: An agent receives an
accept proposal if the response to a sent propose is yes.
As response the agent asserts as a past event the acceptance
received.
k=17 and X=rejectproposal: An agent receives a
reject proposal if the response to a sent proposal is
no. In response, the agent asserts as a past event the refusal.

• L18: The L18 action rule true(.) law:
Locution: action rule true(Action)
Preconditions:The conditions of the action rule corresponding
to the action are true.
Meaning: In a DALI program, an action rule defines the
preconditions for an action.This law checks the conditions
inside the action rule in the DALI logic program.
Response:the action will be executed.

We now present the operational semantics of the DALI
communication. The following rules indicate how the laws
applied to a pair determine, in a deterministic way, a new
state and the corresponding behavior of the agent.

DALI communication is asynchronous: each agent
communicates with other’s one in such a way that she is not
forced to halt its processes while the other entities produce
a response. An agent inwait mode can receive a message
taking it from the Tuple Space by using the law R0. The
global state of the agent changes passing from thewait mode
to receivedmessagemode: the message is entered in the
more external layer of the communication architecture.

R0 : < Ag1, < P, IS, wait >>
L0−→

< Ag1, < P, IS, received messagex >>

The L1 law determines the transition from the
receivedmessagemode to told mode because it can be
accepted only if the corresponding told rule is true.

R1 : < Ag1, < P, IS, received messagex >>
L1−→

< Ag1, < P, IS, toldx >>

If the constraints in the told rule are false, the message cannot
be processed. In this case, the agent returns in the wait mode
and the message do not affect the behavior of the software
entity because the message is deleted. The sender agent is
informed about the elimination.

R2 : < Ag1, < P, IS, received messagex >>
not(L1)→

< Ag1, < P, IS, wait >>

When a message overcomes the told layer, it must be
understood by the agent in order to trigger, for example, a
reaction. If the agent understands the communication act, the
message will continue the way.

R3 : < Ag1, < P, IS, toldx >>
L2→

< Ag1, < P, IS, understoodx >>

An unknown message forces the agent to use a meta-
reasoning level, if the L3 law is true.

R4 : < Ag1, < P, IS, toldx >>
not(L2),L3→

< Ag1, < P, IS, apply ontologyx >>

The meta-reasoning level can help the agent to understand
the content of a message. But only some primitives can use
this possibility and apply the ontology. Instead going inwait
mode we can suppose that the agent will call a learning
module but up to now we do not have implemented this
functionality.

R5 : < Ag1, < P, IS, toldx >>
not(L2),not(L3)→

< Ag1, < P, IS, wait >>

After the application of the ontology, if the agent
understands the message, she goes in theunderstood mode.

R6 : < Ag1, < P, IS, apply ontologyx >>
L2→

< Ag1, < P, IS, understoodx >>

If the L2 law is false, the message cannot be understood
and the agent goes inwait mode.

R7 : < Ag1, < P, IS, apply ontologyx >>
not(L2)→

< Ag1, < P, IS, wait >>

A known message enters in the processing phase and the
internal state of the agent changes because an item can be
added to internal queues of events and actions. The logic
program can change because we can add some facts using
the confirm primitive.

R8 : < Ag1, < P, IS, understoodx >>
L6,L7,L8,L9→

< Ag1, < NP, NIS, processx >>

When an agent sends a message, the L4 law verifies that it
must be submitted to tell level. In this rule we suppose that
the response is true.

R9 : < Ag1, < P, IS, sendx >>
L4→

< Ag1, < P, IS, tellx >>

If the response is false, the message is immediately sent and
the queue of the messages(actions) changes.

R10 : < Ag1, < P, IS, sendx >>
not(L4),L9→

< Ag1, < P, NIS, sentx >>

If the constraints of tell level are satisfied, the message is
sent.

R11 : < Ag1, < P, IS, tellx >>
L5,L9→

< Ag1, < P, NIS, sentx >>

A message sent by the agentAg1 is received by the agent
Ag2 that goes inreceived message mode.

R12 : < Ag1, < P, IS, tellx >>
L5→

< Ag2, < P, IS, received messagex >>

6

If the message do not overcome the tell level because the
constraints are false, the agent returns inwait mode.

R13 : < Ag1, < P, IS, tellx >>
not(L5)→

< Ag1, < P, NIS, wait >>

This last rule shows how, when a message is sent, the
corresponding action becomes past event.

R14 : < Ag1, < P, IS, sentx >>
L10→

< Ag1, < P, IS, wait >>

The DALI primitive send message: by using this locution a
DALI agent is able to send an external event to the receiver.

< Ag1, < P, IS, processsend message >>
∧i=6,7,8,10,12Li→

< Ag1, < NP, NIS, wait >>
According to the specific reactive rule, several sets of events
can change. In fact, in the body of rule we can find actions
and/or goals. Since the external event will become a past event,
the sets of external and past events must be updated. After
processing the reactive rule the interpreter goes inwait mode.
< Ag1, < P, IS, processsend message >>

L13,L9→
< Ag1, < P, NIS, sendprimitive >>

In the body of rule there could be some messages that the
agent must send.

The FIPA primitive propose: this primitive represents the
action of submitting a proposal to perform a certain action,
given certain preconditions.
< Ag1, < P, IS, processpropose >>

L15,L11,L9→
< Ag1, < P, NIS, sendaccept proposal >

This transition forces an agent receiving thepropose
primitive to answer with accept proposal if the
conditions included in the propose act are acceptable.
< Ag1, < P, IS, sendaccept proposal >>

L8,L9→
< Ag1, < P, NIS, sendinform >

When an agent accepts the proposal, then she performs
the action. In this case the internal state of agent
changes by adding the action. Finally, the agent
communicates to the proposer that the action has been

done. < Ag1, < P, IS, sendaccept proposal >>
L9→

< Ag1, < P, NIS, sendfailure >

If the action cannot be executed, then the
agent sends a failure primitive to the proposer.
< Ag1, < P, IS, processpropose >>

L15,not(L11),L9→
< Ag1, < P, NIS, sendreject proposal >>

If the conditions in the propose are unacceptable, the
response can be only areject proposal.

V. A N EXAMPLE OF APPLICATION OF THEDALI
COMMUNICATION FILTER

We will now demonstrate how the filter level works by
means of an example, that demonstrates how this filter is
powerful enough to express sophisticated concepts such as
updating the level of trust. Trust is a kind of social knowledge
and encodes evaluations about which agents can be taken as

reliable sources of information or services. We focus on a prac-
tical issues: how the level of Trust influences communication
and choices of the agents.

We consider as a case-study a cooperation context where
an ill agent asks her friends to find out a competent specialist.
When the agent has some particular symptoms, she calls a
family doctor that recommends her to consult a lung doctor.
The patient, through a yellow pages agent, becomes aware
of the names and of the distance from her city of the two
specialists, and asks her friends about them. The patient has a
different degree of trust on her friends and each friend has a
different degree of competence on the specialists. Moreover,
the patient is aware of the ability of the friends about medical
matters: a clerk will be less reliable than a nurse. In this
context we experiment the communication check level joining
the potentiality of tell/told rules and the trust concept. We
suppose that the ill agent receives a message only if she has a
level of trust on the sender agent greater than a fixed threshold:

told(Ag, send message()) : −
trustP (, Ag, N), N > threshold.

We can adopt a similar rule also for the out-coming mes-
sages. Now we discuss the trust problem by showing the more
interesting DALI rules defining the agents involved in this
example. The cooperation activity begins when the agentAg
becomes ill and communicates her symptoms to doctor. If
these symptoms are serious, the doctor advises the patient to
find out a competent lung doctorM . If the agent knows a
specialistSp and has a positive trust valueV1 on her, she
goes to lung doctor, else asks a yellow page agent.

consult lung doctorE(M) :>
clause(agent(Ag),),
choose if trust(M, Ag).

choose trust(, Ag) : −
clause(i know lung doctor(Sp),) ,
trustP (Ag, Sp, V1), V1 > 0,
go to lung doctorP (Sp).

choose trust(M, Ag) : −
messageA(yellow page,
send message(search(M, Ag), Ag)).

The yellow page agent returns to patient, by means of the
inform primitive, a list of the lung doctors. Now the patient
must decide which lung doctor is more competent and reliable.
How can she choose? She asks her friends for help.

take information about(Sp) : −
clause(lung doctor(Sp),).

take information aboutI(Sp) :>
clause(agent(Ag),),
messageA(friend1,
send message(what about competency(Sp, Ag), Ag)),
messageA(friend2,
send message(what about competency(Sp, Ag), Ag)).

Each friend, having the information
competent(lung doctorx, V alue) about the ability of
the specialists, sends an inform containing the evaluation of
the competency.

what about competencyE(Sp, Ag) :>
choose competency(Sp, Ag).

7

choose competency(Sp, Ag) : −
clause(competent(Sp, V),),

messageA(Ag,
inform(lung doctor competency(Sp, V), friendx)).

choose competency(Sp, Ag) : −
messageA(Ag,
inform(dont know competency(Sp), friendx)).

The patient is now aware of the specialist and friend’s
competency and has a value of trust on the friends consolidated
through the time. Moreover she knows the distance of the
specialists from her house. Using a simple rule that joins
those parameters, she assigns a value to each advice:
specialist evaluation(lung doctorx, friendy, V alue).

The ill agent will choice the lung doctor in the advice
having the greaterV alue and will go to the specialist:
follow adviceA(Friend), go to lung doctorA(Sp).

Will he be cured? After some time the patient will re-
consider her health. If she does not have any symptom
(temperature, thorax pain, cough, out of breath), she increases
the trust on the friend that has recommended the lung doctor
and sets the trust on that specialist a smallest value:

cured(Sp, Friend) : −
go to lung doctorP (Sp),
follow adviceP (Friend),
not(temperatureP),
not(thorax painP),
not(coughP),
not(out of breathP).

curedI(Sp, Friend) :>
clause(agent(Ag),),
trustP (Ag, Friend, V), V1 is V + 1,
drop pastA(trust(Ag, Friend, V)),
add pastA(trust(Ag, Friend, V 1)),
assert(i know lung doctor(Sp)),
set pastA(trust(Ag, Friend, V), 100),
add pastA(trust(Ag, Sp, 1)),
drop pastA(go to lung doctor()).

The actionsdrop past, add past and set past are typical
commands of DALI language useful to manage the past events:
drop past/add past deletes/adds a past event whileset past
sets the time of the memorization of a past event. If she is
still ill, she decreases the trust value on the friend that has
recommended the lung doctor:

no cured(Sp) : −
go to lung doctorP (Sp), temperatureP.

no cured(Sp) : −
go to lung doctorP (Sp),
thorax painP.

no cured(Sp) : −
go to lung doctorP (Sp), coughP.

no cured(Sp) : −
go to lung doctorP (Sp),
out of breathP.

no curedI() :>
clause(agent(Ag),),
follow adviceP (Am),
trustP (Ag, Am, V), V >= 1, V1 is V − 1,
drop pastA(trust(Ag, Am, V)),
set pastA(trust(Ag, Am, V 1), 1000),
add pastA(trust(Ag, Am, V 1)),
drop pastA(go to lung doctor()).

The decrement of the trust value of a friend can affect
the check level of communication, thus preventing the send-
ing/receiving of a message to/from that friend. This happens
if the trust on the agent is less than the trust’s threshold
specified in the body of a told/tell rule. In this case, the patient
communicates to the friend that the incoming message has
been eliminated by using an inform primitive:

send message to(friend,
inform(send message
(what about competency(
lung doctor, patient), patient),
motivation(refused message), patient), italian, [])

wheresend message(what about competency(
lung doctor, patient), patient) is the

eliminated message, with the motivation
motivation(refused message).
In our system, the level of trust can change dynamically. In
this way it is possible that an agent is excluded from the
communication because of a too low value of trust, and she
is readmitted later since the value increases, due either to her
subsequent actions or to other agents pleading her case.

We face the problem of trust with a simple approach,
where cooperating DALI agent adopt some parameters such
as trust and competency, and update then dynamically. In the
future, we intend to explore this area by adopting more formal
approaches to model these concepts.

VI. CONCLUDING REMARKS

In this paper we have described an operational semantics of
communication for the DALI language which is not based
on assumptions on mental states of agents, which in real
interaction can be in general uncertain or unknown. Instead,
we consider each locution as a move of a game, to which
the other agents may respond with other moves, according
to a protocol. Each locution of course provided information,
and thus influences the state of the receiving agent. This
kind of formalization is made possible as the DALI language
provides a communication architecture (of course coped with
in the semantics) that provides a filter layer where an agent
can explicitly describe her own mental attitudes and the
assumptions she mades about the other agents. We have shown
the usability of the architecture by means of an example. A
future direction of this research is that of experimenting formal
models of cooperation and trust.

REFERENCES

[1] J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzarone,Reflection
Principles in Computational Logic, Journal of Logic and Computation,
Vol. 10, N. 6, December 2000, Oxford University Press, UK.

[2] S. Costantini. Towards active logic programming. In A. Brogi and
P. Hill, editors, Proc. of 2nd International Workshop on component-
based Software Development in Computational Logic (COCL’99),
PLI’99, (held in Paris, France, September 1999), Available on-line,
URL
http://www.di.unipi.it/
brogi/ResearchActivity/COCL99/proceedings/index.html.

8

[3] S. Costantini. Many references about DALI and
PowerPoint presentations can be found at the
URLs: http://costantini.di.univaq.it/pubblsstefi.htm and
http://costantini.di.univaq.it/AI2.htm.

[4] S. Costantini and A. Tocchio,A Logic Programming Language for Multi-
agent Systems, In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.),Logics
in Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002,
(held in Cosenza, Italy, September 2002), LNAI 2424, Springer-Verlag,
Berlin, 2002.

[5] A. Di Stefano and C. Santoro Integrating Agent Communication
Contexts in JADE, Telecom Italia Journal EXP, Sept. 2003.

[6] FIPA. Communicative Act Library Specification, Technical Report
XC00037H, Foundation for Intelligent Physical Agents, 10 August 2001.

[7] R. A. Kowalski, How to be Artificially Intelligent - the Logical Way,
Draft, revised February 2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

[8] P. Mc Burney, R. M. Van Eijk, S. Parsons, L. Amgoud,A Dialogue Game
Protocol for Agent Purchase Negotiations, J. Autonomous Agents and
Multi-Agent Systems Vol. 7 No. 3, November 2003.

[9] N. H. Minsky and V. Ungureanu,Law-governed interaction: a coor-
dination and control mechanism for heterogeneous distributed systems,
ACM Trans. Softw. Eng. Methodol.,2000,ACM Press.

[10] N. H. Minsky The Imposition of Protocols Over Open Distributed
Systems, IEEE Trans. Softw. Eng.,1991,IEEE Press.

[11] J. M. Serrano, S. Ossowski.An Organisational Approach to the Design
of Interaction Protocols, In: Lecture Notes in Computer Science, Com-
munications in Multiagent Systems: Agent Communication Languages
and Conversation Policies, LNCS 2650, Springer-Verlag, Berlin, 2003.

[12] E.C. Van der Hoeve, M. Dastani, F. Dignum, J.-J. Meyer,3APL
Platform, In: Proc. of the The 15th Belgian-Dutch Conference on
Artificial Intelligence(BNAIC2003), held in Nijmegen, The Netherlands,
2003.

9

