
COMUNICAZIONE E LIVELLO DI FIDUCIA IN DALI, UN
LINGUAGGIO LOGICO ORIENTATO AGLI AGENTI

COMMUNICATION AND TRUST IN DALI, AN
AGENT-ORIENTED LOGIC PROGRAMMING LANGUAGE1

Stefania Costantini Arianna Tocchio Alessia Verticchio



SOMMARIO/ ABSTRACT

L’interazione rappresenta un aspetto importante nei sistemi
multi-agente: gli agenti si scambiano messaggi, asserzioni,
query, ecc. A seconda del contesto applicativo, gli agenti si
scambiano informazioni per allargare le loro conoscenze,
per raggiungere i loro obiettivi o per organizzare strate-
gie di cooperazione e di coordinamento. Realisticamente,
la comunicazione deve basarsi su una quanche forma di
valutazione dell’interlocutore come ad esempio la fiducia,
intesa come forma di conoscenza sociale basata su vari fat-
tori, fra cui le interazioni avvenute nel passato. In questo
lavoro mostriamo come sia possibile modellare il concetto
di “livello di fiducia” ed i cambiamenti che esso subisce
nel tempo mediante l’architettura di comunicazione del lin-
guaggio logico orientato agli agenti DALI, e proponiamo
un esempio volto a mostrare l’efficacia dell’approccio.

Interaction is an important aspect of Multi-agent systems:
agents exchange messages, assertions, queries, etc. This,
depending on the application context, can be either in or-
der to improve their knowledge or to reach their goals
or to organize useful cooperation and coordination strate-
gies. In real-world applications, communication should
be based on some form of evaluation of the other party
such as for instance trust, understood as a form of so-
cial knowledge based on various factors, among which
past interactions. In this paper we demonstrate how to
model the “level of trust” and its possible evolution in time
by means of the communication architecture of the DALI
agent-oriented logic programming language. We also pro-
pose an example aimed at showing the effectiveness of the
approach.

∗We acknowledge support by theInformation Society Tech-
nologies programme of the European Commission, Future
and Emerging Technologiesunder the IST-2001-37004 WASP
project.

1 Introduction

Interaction is an important aspect of Multi-agent systems:
agents exchange messages, assertions, queries. This, de-
pending on the context and on the application, can be ei-
ther in order to improve their knowledge, or to reach their
goals, or to organize useful cooperation and coordination
strategies. However, the exchange of information implies
a certain degree of risk. In a global environment, entities
meet and need to interact with other entities of which they
have little or no information about reliability. In the global
computing environment, each single entity must take the
decisions needed to behave autonomously in the absence
of complete knowledge of the operating environment. The
reader may refer to [10] for a discussion about trust as a
notion that has been developed to help agents to deal with
the partial information about the world. How can an agent
be sure that the incoming information will not damage its
internal state? Should it be always confident? Is it possible
to introduce a certain level of reliability in communication?
This is a relevant problem, coped with in the literature in
different ways. For Josang in [14], trust is a belief that one
entity has about another entity. He states that the motiva-
tion of trust is composed of many elements, like past expe-
rience, knowledge about the entity’s nature, recommenda-
tions from other entities or some kind of faith. Yahalom et
al. in [2] give an interesting classification of trust and de-
velop an algorithm based on a concept of recommendation
path. Denning [8] argues that the word “trust” is a declara-
tion made by an observer rather than an inherent property
of the person, organization or object observed and that we
make assessments of trust based on our experiences in the
world.

In this paper we will not cope with the definition of trust,
or with algorithms to compute trust. Rather, we focus on
how to introduce the concept of “level of trust” in inter-
agent communication in a flexible way. We mean that an
agent must be able to set and update the level of trust ac-
cording to its beliefs and experiences, and that the level



of trust should affect communication acts up to prevent-
ing them. In our approach, we introduce the concept of
trust by means of the filter level of the DALI communi-
cation architecture. This layer by default verifies that a
message respects the communication protocol, as well as
some domain-independent coherence properties. Several
other properties to be checked can be however addition-
ally specified, by expanding the default definition. Basi-
cally, the same agent program becomes a different agent
(when activated) if equipped with a different communica-
tion filter. We have experimented the capabilities of this
filter by introducing the trust concept, and the possibility
of dynamically increasing/decreasing the trust level. We
demonstrate (also by means of a case-study) that the filter
can manage sophisticated communication forms, and that
changes in relevant parameters such as the level of trust
actually affect the behavior of agents.

A real-world application of the approach outlined in this
paper might use specific algorithms to compute the level of
trust as defined for instance in [13], where the authors in-
troduce a particular trust evolution function that formalizes
the dependency of trust on past experiences. Also Josang
and Denning consider trust as a result of the experience
and knowledge of an agent. In this paper, we emphasize
how trust can be affected by new knowledge coming from
the direct observation of events in the world.

The paper is organized as follows. We start by shortly
describing the main features of DALI in Section 2. Then
we introduce the communication architecture and the fil-
ter in Section 3 where we also comment about related ap-
proaches. In Section 4 we show how the level of trust can
be defined by means of the communication filter. Finally,
in Section 5 we outline how different values of trust in
a coordination system can change the behavior of the in-
volved agents. We conclude this paper in Section 6 by dis-
cussing future directions of this research.

2 The DALI language

DALI [4] [6] [5] is an Active Logic Programming language
designed for executable specification of logical agents
[15]. A DALI program is a logic program, and in par-
ticular it is a Horn-clause program, both syntactically and
procedurally (where it is based on an extended resolution).
When activated however, a DALI program results in an
agent which is capable of reactive and proactive behav-
ior, triggered by several kinds of events, which are syn-
tactically characterized explicitly: external events, inter-
nal, present and past events. A DALI program may con-
tain a particular new kind of rules, reactive rules, aimed at
coping with events. All the events and actions are time-
stamped, so as to record when they occurred. Several as-
pects of the agent behavior can be tuned by suitable direc-
tives. These are aspects (e.g., how often to check for in-
coming messages) that do not affect the logical semantics
[6] of the agent, but affect in a relevant way its run-time

behavior. Directives are specified in a separate module,
which is added to the agent program when the agent is ini-
tialized. Then, on the one hand directives can be modified
without even knowing the agent program. On the other
hand, the same agent program with different directives re-
sults in a different agent (e.g., apparently more quick, more
lazy, eager to remember of ready to forget things, etc.). Di-
rectives are coped with in the operational semantics of the
language [7]. DALI is implemented in prolog, and thus the
implementation inherits prolog features.

2.1 External Events

External events are syntactically indicated by the postfixE.
When an event coming from the “external world” reaches a
DALI agent, the agent can perceive it and decide to react.
The reaction is specified by a reactive rule which has in
its head that external event. The special token:>, used
instead of: −, indicates that reactive rules perform forward
reasoning. For instance, the body of the reactive rule below
specifies the reaction to the external eventbell ringsE that
is in the head. In this case the agent performs an action,
postfixA, that consists in opening the door.

bell ringsE :> open the doorA.

The agent remembers to have reacted by converting the ex-
ternal event into apast event(time-stamped). When an in-
coming external event is recognized, i.e., corresponds to
the head of a reactive rule, it is added into a list called EV
and consumed according to the arrival order, unless prior-
ities are specified. Priorities are listed in the file of direc-
tives.

2.2 Internal Events

Internal events define a kind of “individuality” of a DALI
agent, making it proactive independently of the environ-
ment, of the user and of the other agents, and allowing it
to manipulate and revise its knowledge. An internal event
is syntactically indicated by the postfixI, and its descrip-
tion is composed of two rules. The first one contains the
conditions (knowledge, past events, procedures, etc.) that
must be true so that the reaction (in the second rule) may
happen.

Internal events are automatically attempted with a de-
fault frequency customizable by means of directives in the
initialization file. The user’s directives can tune several
parameters: at which frequency an agent must attempt the
internal events; how many times an agent must react to the
internal event (forever, once, twice,. . . ) and when (forever,
when triggering conditions occur, . . . ); how long the event
must be attempted (until some time, until some terminating
conditions, forever).

For instance, consider a situation where an agent pre-
pares a soup that must cook on the fire for K minutes. The
predicates with postfixP are past events, i.e., events or ac-
tions that happened before, and have been recorded. Then,



the first rule says that the soup is ready if the agent previ-
ously turned on the fire, and K minutes have elapsed since
when it put the pan on the stove. The goalsoupreadywill
be attempted from time to time, and will finally succeed
when the cooking time will have elapsed. At that point,
the agent has to react to this (by second rule) thus remov-
ing the pan and switching off the fire, which are two actions
(postfixA).

soup ready : − turn on the fireP,

put pan on the stoveP : T,

cooking time(K), time elapsed(T, K).
soup readyI :> take off pan from stoveA,

turn off the fireA.

A suitable directive for this internal event can for in-
stance state that it should be attempted every 60 sec-
onds, starting from whenput the pan on the stove and
turn on the fire have become past events.

Similarly to external events, internal events which are
true by first rule are inserted in a set IV in order to be re-
acted to (by their second rule). The interpreter, interleaving
the different activities, extracts from this set the internal
events and triggers the reaction (again according to priori-
ties). A particular kind of internal event is thegoal, postfix
G, that stop being attempted as soon as it succeeds for the
first time.

2.3 Present Events

When an agent perceives an event from the “external
world”, it doesn’t necessarily react to it immediately: it
has the possibility of reasoning about the event, before (or
instead of) triggering a reaction. Reasoning also allows
a proactive behavior. In this situation, the event is called
present event and is indicated by the suffixN.

2.4 Actions

Actions are the agent’s way of affecting its environment,
possibly in reaction to an external or internal event. In
DALI, actions (indicated with postfixA) may have or not
preconditions: in the former case, the actions are de-
fined by actions rules, in the latter case they are just ac-
tion atoms. An action rule is just a plain rule, but in or-
der to emphasize that it is related to an action, we have
introduced the new token:<, thus adopting the syntax
action :< preconditions. Similarly to external and in-
ternal events, actions are recorded as past actions.

2.5 Past events

Past events represent the agent’s “memory”, that makes it
capable to perform its future activities while having expe-
rience of previous events, and of its own previous conclu-
sions. As we have seen in the examples, past event are
indicated by the postfixP. Past events are kept in the mem-
ory of an agent for a certain default amount of time, that
can be modified by the user through a suitable directive in

the initialization file. Implicitly, if a second version of the
same past event arrives, with a more recent time-stamp,
the older event is overridden, unless a directive indicates
to maintain a number of versions. Past events record new
information and pieces of knowledge that have been ei-
ther acquired (as external events) or deduced (as internal
events) by the agent during its “life”. Then, in many appli-
cation domains they can be understood asbeliefs, and the
set of past events can be understood as the current state of
the world form the agent’s point of view. Since however
DALI is a general-purpose language, we do not explicitly
commit to this view and terminology.

3 The Communication Architecture

3.1 Basic Architecture

The DALI communication architecture consists of the fol-
lowing levels. The first level consists of the DALI inter-
preter. The second level implements the DALI/FIPA com-
munication protocol and a filter on communication, i.e. a
set of rules that decide whether or not to receive or send a
message. The third level includes a meta-reasoning layer,
that tries to understand message contents, possibly based
on ontologies and/or on forms of commonsense reasoning.
The DALI/FIPA protocol adopted in DALI consists of the
main FIPA primitives, plus few new primitives which are
peculiar of DALI. In DALI, an out-coming message is un-
derstood as a special kind of action, and has the form:

messageA(Receiver, Primitive(Content, Sender))

that the DALI interpreter converts into an internal form,
by automatically adding the missing FIPA parameters, and
creating the structure:

message(receiver address, receiver name,

sender address, sender name,

language, ontology, content)

3.2 The communication filter

In any concrete application, cooperation between agents
raises the problem of security. Real world applications,
especially those working with public networks such as the
Internet, must be carefully designed and developed, taking
into consideration security issues.

In DALI, when a message is received it is examined by
the filter layer, composed of a structure which is adapt-
able to the context and modifiable by the user. This filter
checks the content of the message, and verifies if the con-
ditions for the reception are verified. If the conditions are
false, this security level eliminates the supposedly wrong
or dangerous message. Otherwise, it is passed to the meta-
reasoning layer that consists of a proceduremeta, which
is automatically invoked by the interpreter in the attempt
to understand message contents. This procedure includes



by default a number of rules for coping with domain-
independent standard situations. The user can add other
rules, thus possibly specifying domain-dependent com-
monsense reasoning strategies for interpreting messages,
or implementing a learning strategy to be applied when all
else fails.

The DALI communication filter is defined by means of
meta-level rules defining the distinguished predicatestell
andtold. Actually, the FIPA/DALI communication proto-
col itself is implemented by means of a piece of DALI code
consisting of defaulttell/told rules. This code is contained
in a separate file that each DALI agent imports as an ex-
ternal module, so that the communication protocol can be
seen an “input parameter” of an agent. The filter can be ex-
tended simply by adding newtell/told rules, so as to cope
to the application domain at hand. The new rules can be
added without affecting or even looking at the agent pro-
gram. Therefore, communication in DALI is elaboration-
tolerant with respect to both the protocol, and the filter.
The same agent program, if equipped with a different fil-
ter, actually results in a different agent with different com-
munication behavior, and different management of security
and trust.

Whenever a message is received, with content partprim-
itive(Content,Sender))the DALI interpreter automatically
looks for a corresponding told rule, which is of the form:

told(Sender, Primitive(Content)) : −
constraint1, . . . , constraintn.

whereconstrainti can be any condition. If such a rule is
found, the interpreter attempts to provetold(Sender, Prim-
itive(Content)). If this goal succeeds, then the message is
accepted, andPrimitive(Content)is added to the set of the
external events incoming into the receiver agent. Other-
wise, the message is discarded.

Symmetrically, the messages that an agent means to
send are subjected to a check viatell rules. There is, how-
ever, an important difference: the user can choose which
messages must be checked and which ones not. The choice
is made by setting some parameters in the agent initializa-
tion file. The syntax of a tell rule is:

tell(Receiver, Sender, Primitive(Content)) : −
constraint1, . . . , constraintn.

For every message that is being sent, the interpreter au-
tomatically checks whether an applicable tell rule ex-
ists. If so, the message is actually sent only if the goal
tell(Receiver,Sender,Primitive(Content))succeeds.

The declarative semantics of the filter and meta-
reasoning layers is based on the concepts introduced in [3]
and [1]. Namely, invoking eithertold/tell or metais under-
stood as implicitupward reflectionto the corresponding
layer, followed by adownward reflectionto whatever ac-
tivity the agent was doing. For the operational semantics
of the approach, the reader may refer to [7].

3.3 Related Work

The problem of reliable interaction among agents is treated
for instance in [17] and [9]. The Moses system, defined in
[17], provides a global filtering rule, or “law”, for a group
of agents, instead of local conditions for every single agent
as in DALI. Moreover, in Moses there is a special agent,
calledcontroller, that monitors all the other agents. Each
law in Moses is defined as a prolog-like rule whose body
specifies: the conditions that match with a control state of
the object and some fixed actions that determine the behav-
ior of the law. In DALI, thetold/tell rules are constraints
on the communication and not actions. The behavior (and
in particular the actions) performed by an agent are deter-
mined by the logic program of the agent. Another differ-
ence is that the DALI filter rules can contain past events,
thus creating a link between the present communication
acts and the experience of an agent. A particularity of the
Moses law-governed system is that is possible to update
on-line the laws [18]. In DALI, presently it is possible to
change the rules only statically, though a possible future
improvement is to allow an agent to “tune” dynamically its
own filter rules.

The Agent Communication Context (ACC), defined in
[9] for the JADE multi-agent platform, allows agent in-
teraction laws to be expressed by means of a set of rules
applied to each message exchanged. Each rule has a pre-
fixed structure composed by precondition, assignment and
constraint where the precondition is a predicate on one or
more fields of the message which triggers the execution
of the assignment or the checking of the constraint. The
constraint is a predicate which specifies how the message
meeting the precondition has to be formed, and it is used to
model the filtering function. The rules consider some spe-
cific fields of a message like the name of agents, the perfor-
mative name, language, ontology, delivery mode and con-
tent. This approach is only apparently similar to the one
adopted in DALI. In fact, it is applied only to out-coming
messages, while in DALI we submit to the filter both the
received messages and the sent messages. Also, the struc-
ture of a DALI filter rule is different and more flexible: an
ACC rule specifies that if the preconditions are true, some
fields of the message must be defined by the assignments in
the body; in DALI, the body of a filter rule specifies only
the constraints for the acceptance/sending of a message.
Moreover, the constraints in DALI do not refer to specific
fields. They can be procedures, past events, beliefs and
whatever is expressible in DALI. Then, even though both
approaches use the concept of communication filter, we be-
lieve that there are notable differences also due to abilityof
DALI to draw inferences and to reason, that can be hardly
simulated in a java-based approach like JADE.



4 Trust in the communication filter

As we have seen, the filter layer of the DALI communica-
tion architecture allows an agent to reason explicitly about
communication, and to decide whether to send or receive
a message on the basis of several possible parameters, in-
cluding its “mental state”, its own definition of reliability
and security and its own degree of belief, trust, etc. about
the “external world”, including the other agents. We will
now we demonstrate the capabilities of the filter by propos-
ing an approach aimed at modeling the “level of trust” and
its possible evolution in time. Trust is intended here as
a kind of social knowledge that encodes evaluations on
whether other agents can be taken as reliable sources of in-
formation or services. We focus on a practical issue: how
thelevel of trustmay influence communication and choices
of the agents. We define trust by means of a special pred-
icate represented as a DALI past event, with the following
form:

trustP (agentx, agenty, trust value)

It means thatagentx trustsagenty with the degree in-
dicated bytrust value. The first argument (the agent
agentx who trusts the others) is added for the sake of gen-
erality, so that agents may for instance exchange their own
beliefs about trust. But, why model trust by using past
events? Because trust of an agent towards another one may
depend on their interactions and on the evolution of both
agents in time. For instance, the repeated perception of a
“desirable” behavior may presumably increase trust in the
other agent. In order to link trust to past experience we use
an internal event that updates the level of trust. This can be
done by means of any kind of reasoning, and in particular
by examining previous communication acts (that, as seen
before, are themselves recorded as past events).

Below we demonstrate the approach by means of a sim-
ple example. Assume thatagentx has received the infor-
mation Q by another agentY . agentx checks whether
the information is correct or not, and modifies the trust
level accordingly. Notice that the predicatetrust update

is an internal event which is automatically attempted, thus
checking available information, where success (informa-
tion received and check performed) triggers the execution
of the second (reactive) rule, thus determining the execu-
tion of an action that will result in the modification of the
level of trust.

trust update(Y ) : −receivedP (Y, Q), check(Q, R).
trust updateI(Y, R) :> modify trustA(Y, R).
modify trustA(Y, ok) : −increment trustA(Y ).
modify trustA(Y, ko) : −decrement trustA(Y ).

The internal event trust(Agx, Agy, T rust value)
makes the updates of the trust level effective. The meaning
of the rules is that if an increment/decrement action has
been done (the past eventdecrement trustP (Y ) or
increment trustP respectively is in the knowledge base)
then the present trust valuetrustP (A, Y, V ) of the agent

(who identifies itself bymyself(A)) in the other agent
Y is updated by a constantk. The reaction does nothing,
but causes the new past eventtrustP (A, Y,New V ) to
recorded, thus recording the updated level of trust.

trust(A, Y, New V ) : −myself(A), trustP (A, Y, V ),
decrement trustP (Y ),
decrement(V, k, New V ).

trust(A, Y, New V ) : −myself(A), trustP (A, Y, V ),
increment trustP (Y ),
increment(V, k, New V ).

trustI(A, Y, New V ) :> myself(A).

This creates the link between the experience ofagentx
and its trust in the other agents, thatagentx will be able to
exploit in future decisions.

At this point, we are able to introduce the trust past event
in the body oftell/told rules. For instance, the rules below
specify that a message can be sent/received only if the trust
value in the other agent is greater that a fixed threshold:

told(Sender, Primitive(Content)) : −
myself(Ag),
trustP (Ag, Sender, N),
N > threshold.

tell(Receiver, Ag, Primitive(Content)) : −
trustP (Ag, Receiver, N1),
N1 > threshold1.

In this way, we have stated a correlation between com-
munication and experience that can protect an agent from
communication acts that might result in a risk of damage.
We can adapt the above rules so as to apply them either to
some or to all communication primitives.

The DALI language provides distinguished actions
to manage past events, that can be used to incre-
ment/decrement the value of trust on the grounds of the
expected behavior of the other agents involved in the coor-
dination system. These actions are:drop past, add past

and set past: drop past/add past deletes/adds a past
event whileset past sets the time of the memorization of
a past event. In the next section we will show by means of
an example how trust can influence the behavior of agents.

5 An example

Consider a cooperation context where an ill agent asks its
friends in order to identify a competent specialist. Initially,
the agent has some particular symptoms and asks a family
doctor, that recommends it to consult a lung doctor. The
patient, through a yellow pages agent, becomes aware of
the names and of the distance from its city of two special-
ists and asks some friends about them. The patient has
a different degree of trust in its friends and each friend
has a different degree of competence about the specialists.
Moreover, the patient has its beliefs about the ability of the
friends about medical matters: a clerk will be presumably
less reliable than a nurse. In order to introduce this con-
cept within the agent patient, we use a past event related to
a predicateskill:



skillP (friend nurse, S1). and
skillP (friend clerk, S2).

whereS1 > S2. We set the filter so that the ill agent re-
ceives a message only if the trust in the sender agent has a
value greater than a threshold (e.g.,4):

told(Ag, send message( )) : −trustP ( , Ag, N), N > 4.

We can adopt a similar rule also for the out-coming mes-
sages. The cooperation activity begins when agentAg be-
comes ill, and communicates its symptoms to a doctor. If
those symptoms are serious, the doctor advises the patient
to find a competent lung doctor. If the agent knows a spe-
cialist Sp and has a positive trust valueV1 on it, it goes to
this lung doctor, else it asks a yellow page agent.

choose trust(Sp, Ag) : −
myself(Ag),
i know lung doctor(Sp),
trustP (Ag, Sp, V ),
V > 0, go to lung doctorP (Sp).

choose trust(Sp, Ag) : −
myself(Ag),
messageA(yellow page,

send message(search(Sp, Ag), Ag)).

The yellow pages agent returns to the patient, by using
the inform primitive, a list of lung doctors. Now the pa-
tient must decide which lung doctor is more competent and
reliable. How can it choose? It asks its friends for help.

take information about(Sp) : −
lung doctor(Sp).

take information aboutI(Sp) :>
myself(Ag),
messageA(friend1, send message(

what about competency(Sp, Ag), Ag)),
messageA(friend2, send message(

what about competency(Sp, Ag), Ag)).

Each friend will receive from Ag the message.
If the message passes their communication fil-
ter, its content will result in the external event
what about competencyE(Sp,Ag). If the friend
has the informationcompetent(lung doctorx, V alue)
about the ability of the specialists, it will send back an
inform containing the evaluation of the competence.

what about competencyE(Sp, Ag) :>
choose competency(Sp, Ag).

choose competency(Sp, Ag) : −
myself(Friendx),
competent(Sp, V ),
messageA(Ag, inform(

lung doctor competency(Sp, V ), F riendx)).
choose competency(Sp, Ag) : −

myself(Friendx),
messageA(Ag, inform(

dont know competency(Sp), F riendx)).

The patient is now aware of the specialist and
friend’s competency and has a value of trust
trustP (Agx, F riendy, T rust value) and a value of

competenceskillP (Friendy, Skill value) in the med-
ical matter on the friends, consolidated in time. Moreover,
it knows the distance of the specialists from its house. By
using a simple rule that joins those parameters, it assigns
an esteem to each advice:

specialist evaluation(lung doctorx, friendy, V alue).

The ill agent will choose the lung doctor by accepting
the advice having the greaterV alue and will go to that spe-
cialist. Will it be cured? After some time, the patient will
revise the state of its health. If it shows no symptom (tem-
perature,thorax pain, cough, out of breath), it increases the
trust for the friend that has recommended the lung doctor
and sets the trust on that specialist to a high valuev:

cured(Sp, Friend) : −
go to lung doctorP (Sp),
follow adviceP (Friend), not symptoms.

symptoms : −temperatureP.

symptoms : −thorax painP ).
symptoms : −coughP, out of breathP.

curedI(Sp, Friend) :>
myself(Ag), increment trustA(Friend),
assert(i know lung doctor(Sp)),
add pastA(trust(Ag, Sp, v)),
drop pastA(go to lung doctor( )).

If it is still ill, it decreases the trust value of the friend
that has recommended that lung doctor:

not cured(Sp, Am) : −
go to lung doctorP (Sp),
follow adviceP (Am), symptoms.

not curedI( , Am) :>
decrement trustA(Am),
drop pastA(go to lung doctor( )).

The decrement of the trust value of a friend can affect the
check level of communication, thus preventing the send-
ing/receiving of a message to/from that friend. This hap-
pens if trust in that agent is less than the threshold specified
in the body of atold/tell rule. In this case, the patient com-
municates to the friend that the incoming message has been
eliminated, by using an inform primitive:

send message to(friend,

inform(send message(what about competency(
lung doctor, patient), patient),
motivation(refused message),
patient), italian, [])

where

send message(what about competency(
lung doctor, patient), patient)

is the eliminated message, with motivation
motivation(refused message).

As in our approach trust can change dynamically, it is
however possible that an agent, excluded from the com-
munication because it has a low value of trust, increases
this value by making some “desirable” actions or by ask-
ing other agents to plead its case.



6 Conclusion

In this paper we have presented a simple approach for
modeling trust-based cooperation in communicating DALI
agents. This by introducing parameters such as trust and
competence which change dynamically. We have also
shown how the filter layer of DALI agents works, and
makes an agent able to eliminate presumably useless or
potentially dangerous messages. In the future, we intend
to study and implement more realistic algorithms: in par-
ticular, we mean to take advantage of some related results
of game theory. We also mean to improve the DALI com-
munication filter, by introducing forms of meta-reasoning
also in the body of tell/told rules.

REFERENCES

[1] J. Barklund, S. Costantini, P. Dell’Acqua e
G. A. Lanzarone. Reflection Principles in Compu-
tational Logic,J. of Logic and Computation, Vol. 10,
N. 6, December 2000, Oxford University Press, UK.

[2] T. Beth, B. Klein and R. Yahalom.Trust relation-
ships in secure systems-a distributed authentication
perspective Proceedings on the IEEE Computer Soci-
ety Symposium on Research in Security and Privacy,
1993.

[3] S. Costantini, P. Dell’Acqua and G. A. Lanzarone,
Reflective Agents in Metalogic Programming, A.
Pettorossi (ed.), Meta-Programming in Logic
(Meta92), LNCS 649, Springer-Verlag, Berlin, pp.
135-147, 1992.

[4] S. Costantini. Towards active logic programming.
In A. Brogi and P. Hill, editors,Proc. of 2nd In-
ternational Workshop on component-based Software
Development in Computational Logic (COCL’99),
PLI’99, (held in Paris, France, September 1999),
Available on-line, URL
http://www.di.unipi.it/ brogi/
ResearchActivity/COCL99/proceedings/index.html.

[5] Many references about DALI
and PowerPoint presentations can be found at the
URLs: http://costantini.di.univaq.it/pubblsstefi.htm
and http://costantini.di.univaq.it/AI2.htm.

[6] S. Costantini and A. Tocchio. A Logic Programming
Language for Multi-agent Systems, In S. Flesca,
S. Greco, N. Leone, G. Ianni (eds.),Logics in Artifi-
cial Intelligence, Proc. of the 8th Europ. Conf., JELIA
2002, (held in Cosenza, Italy, September 2002),
LNAI 2424, Springer-Verlag, Berlin, 2002.

[7] S. Costantini, A. Tocchio and A. Verticchio. A
Game-Theoretic Operational Semantics for the DALI
Communication Architecture, In:Proceedings of

WOA’04, held in Turin, November 29 – December 1,
2004.

[8] D. E. Denning, A new paradigm for trusted sys-
tems, Proceedings on the 1992-1993 workshop on
New security paradigms, Little Compton, Rhode Is-
land, United States, 1993.

[9] A. Di Stefano and C. Santoro. Integrating Agent
Communication Contexts in JADE,Telecom Italia
Journal EXP, September 2003.

[10] C. English, S. Terzis and W. Wagealla. Engineering
Trust Based Collaborations in a Global Computing
Environment, Trust Management: Second Interna-
tional Conference, iTrust 2004, held in Oxford, UK,
March 29 - April 1, Springer-verlag, Berlin, 2004.

[11] FIPA. Communicative Act Library Specification,
Technical Report XC00037H, Foundation for Intel-
ligent Physical Agents, August 10, 2001.

[12] H. Yuh-Jong Hu. Some thoughts on agent trust and
delegation,Proceedings of the fifth international con-
ference on Autonomous agents, 2001.

[13] C. M. Jonker and J. Treur, Formal Analysis of Mod-
els for the Dynamics of Trust Based on Experiences,
Proceedings of the 9th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World,
Springer-Verlag, Berlin 1999.

[14] A. Josang, The right type of trust for distributed sys-
tems,Proceedings of the 1996 workshop on New se-
curity paradigms, held in Lake Arrowhead, Califor-
nia, 1996.

[15] R. A. Kowalski, How to be Artificially Intelligent
- the Logical Way, Draft, revised February 2004,
Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

[16] P. Mc Burney, R. M. Van Eijk, S. Parsons, L. Am-
goud. A Dialogue Game Protocol for Agent Purchase
Negotiations, J. of Autonomous Agents and Multi-
Agent Systems, Vol. 7 No. 3, November 2003.

[17] N. H. Minsky and V. Ungureanu. Law-governed in-
teraction: a coordination and control mechanism for
heterogeneous distributed systems,ACM Trans. on
Software Engineering Methodologies, ACM Press,
2000.

[18] N. H. Minsky. The Imposition of Protocols Over
Open Distributed Systems,IEEE Trans. on Software
Engineering, IEEE Press, 1991.


