
Communication and Trust in the DALI Logic
Programming Agent-Oriented Language⋆

Stefania Costantini Arianna Tocchio Alessia Verticchio

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost,tocchio}@di.univaq.it

Abstract. Interaction is an important aspect of Multi-agent systems: agents ex-
change messages, assertions, queries. This, depending on the context and on the
application, can be either in order to improve their knowledge, or to reach their
goals, or to organize useful cooperation and coordination strategies. In open sys-
tems the agents, though possibly based upon different technologies, must speak a
common language so as to be able to interact.
However, beyond standard forms of communication, the agents shouldbe capa-
ble of filtering and understanding message contents. A well-understood topic is
that of interpreting the content by means of ontologies, that allow different ter-
minologies to be coped with. In a logic language, the use of ontologies can be
usefully integrated with forms of commonsense and case-based reasoning, that
improve the “understanding” capabilities of an agent. A more subtle point isthat
an agent should also be able to enforce constraints on communication. This im-
plies being able to accept or refuse or rate a message, based on various conditions
like for instance the degree of trust in the sender. This also implies to be ableto
follow a communication protocol in “conversations”. Since the degree oftrust,
the protocol, the ontology, and other factors, can vary with the context, orcan be
learned from previous experience, in a logic language agent should and might be
able to perform meta-reasoning on communication, so as to interact flexibly with
the “external world” . This paper presents a novel communication architecture for
the DALI agent-oriented logic programming language and proposes an example
aimed at showing that the communication architecture is general enough as to
model sophisticated concepts such as the level of trust. Trust is a type ofsocial
knowledge and encodes evaluations about which agents can be taken asreliable
sources of information or services. We focus on a practical issues: how the level
of Trust influences communication and choices of the agents. Finally, wecon-
sider approaches that use a similar architecture and we outline the meaningful
differences between the approaches.

1 Introduction

Interaction is an important aspect of Multi-agent systems:agents exchange messages,
assertions, queries. This, depending on the context and on the application, can be ei-

⋆ We acknowledge support by theInformation Society Technologies programme of the European
Commission, Future and Emerging Technologiesunder the IST-2001-37004 WASP project.

ther in order to improve their knowledge, or to reach their goals, or to organize useful
cooperation and coordination strategies.

However, the exchange of information between agents implies a certain degree of
risk. In a global environment, entities meet and need to collaborate with other entities of
which they have little or no information about reliability.In a traditional environment,
decisions are usually delegated to a centralized authority. In the global computing envi-
ronment, each single entity must take the decisions needed to behave autonomously in
the absence of complete knowledge of the operating environment. [16] considers how
the notion of trust has been developed to help the agents to deal with the partial infor-
mation about the world. How can an agent be sure that the received information will not
damage her internal state? Should she be always confident? Isit possible to introduce
a certain level of trust in the communication? This is a relevant problem, coped with
in the literature in different ways. For Josang in [12], trust is a belief that one entity
has about another entity. He states that the reason behind trust is composed of many
elements, like past experience, knowledge about the entity’s nature, recommendations
from other entities or some kind of faith. Yahalom et al. in [10] give an interesting clas-
sification of trust and develop an algorithm that use the concept of recommendation
path. Denning [11] states that the word “trust” is a declaration made by an observer
rather than an inherent property of the person, organization, or object observed and that
we make assessments of trust based on our experiences in the world.

In our approach, we introduce the concept of trust by means ofthe filter level of
DALI communication architecture. This layer by default verifies that a message re-
spects the communication protocol, as well as some domain-independent coherence
properties. Several other properties to be checked can be however additionally speci-
fied, by expanding the definition of the distinguished predicatestell/told. If the message
does not pass the check, it is just deleted. We have experimented the capabilities of
this filter by introducing the trust concept in the told rulesand increasing/decreasing
the trust value. We don’t face deeply the trust problem because our present aim is to
show how the filter can manage sophisticated communication forms, by changing the
behavior of the agents.

We are aware that the approach to trust shown in this paper canbe refined by in-
troducing more specific algorithms like shown for instance in [13], where the authors
introduce a particular trust evolution function that formalizes the dependency of trust
on past experiences. Also Josang and Denning consider trustas a result of the experi-
ence and knowledge of the agent. In this paper, we emphasize the link between trust
and knowledge coming from the direct observation of events in the world by introduc-
ing in the told rules the concept of the trust as a past event (what an agent remembers
on the base of the past life). The past event/trust can be managed by using appropriate
predicates within a DALI logic program. Then, each agent canchange the value of this
predicate estimating the behavior of the other agents. About the tell/told rules, a similar
approach is adopted in a version of JADE: we will explain how our filter is more general
and powerful due to expressivity of the logical structure and to the peculiar featuress of
the DALI language.

Below we briefly recall the main features of DALI. Operationally, following [8] and
the references therein, we provide the semantics of the language (including commu-

2

nication) by defining a formal dialogue game framework that focuses on the rules of
dialogue, regardless of the meaning the agent may place on the locutions uttered. This
means, we reformulate the semantics of FIPA locutions as steps of a dialogue game,
without referring to the mental states of the participants.This because we believe that
in an open environment agents may also be malicious, and falsely represent their men-
tal states. However, the filter layer of the DALI communication architecture allows an
agent to make public expression of its mental states, and other agents to reason both on
this expression and on their own degree of belief.

The paper is organized as follows. We start by shortly describing the main features
of DALI in Section 2 and the communication architecture in Section 3. Then, we show
a small part of the operational semantic of the global DALI interpreter in the Sections 4.
In Section 5 we explain how the filter on the communication works and how the trust
concept can be integrated in this structure. Finally, in section 6 we outline how different
values of trust in a coordination system can change the behavior of the involved agents.
We conclude this paper in Section 7 by outlining future directions of our research.

2 The DALI language

DALI [2] [14] is an Active Logic Programming language designed for executable spec-
ification of logical agents. A DALI agent is a logic program that contains a particular
kind of rules, reactive rules, aimed at interacting with an external environment. The
environment is perceived in the form of external events, that can be exogenous events,
observations, or messages by other agents. In response, a DALI agent can perform ac-
tions, send messages, invoke goals. The reactive and proactive behavior of the DALI
agent is triggered by several kinds of events: external events, internal, present and past
events. It is important to notice that all the events and actions are timestamped, so as to
record when they occurred. The new syntactic entities, i.e., predicates related to events
and proactivities, are indicated with special postfixes (which are coped with by a pre-
processor) so as to be immediately recognized while lookingat a program.

2.1 External Events

The external events are syntactically indicated by the postfix E. When an event comes
into the agent from its “external world”, the agent can perceive it and decide to react.
The reaction is defined by a reactive rule which has in its headthat external event.
The special token:>, used instead of: −, indicates that reactive rules performs forward
reasoning. E. g., the body of the reactive rule below specifies the reaction to the external
eventbell ringsE that is in the head. In this case the agent performs an action,postfix
A, that consists in opening the door.

bell ringsE :> open the doorA.

The agent remembers to have reacted by converting the external event into apast event
(time-stamped).

Operationally, if an incoming external event is recognized, i.e., corresponds to the
head of a reactive rule, it is added into a list called EV and consumed according to the

3

arrival order, unless priorities are specified. Prioritiesare listed in a separate file of di-
rectives, where (as we will see) the user can “tune” the agent’s behaviour under several
respect. The advantage introducing a separate initialization file is that for modifying the
directives there is no need to modify (or even to understand)the code.

2.2 Internal Events

The internal events define a kind of “individuality” of a DALIagent, making her proac-
tive independently of the environment, of the user and of theother agents, and allowing
her to manipulate and revise her knowledge [?]. An internal event is syntactically in-
dicated by the postfixI, and its description is composed of two rules. The first one
contains the conditions (knowledge, past events, procedures, etc.) that must be true so
that the reaction (in the second rule) may happen.

Internal events are automatically attempted with a defaultfrequency customizable
by means of directives in the initialization file. The user’sdirectives can tune several
parameters: at which frequency the agent must attempt the internal events; how many
times an agent must react to the internal event (forever, once, twice,. . .) and when (for-
ever, when triggering conditions occur, . . .); how long the event must be attempted
(until some time, until some terminating conditions, forever).

For instance, consider a situation where an agent prepares asoup that must cook
on the fire for K minutes. The predicates with postfixP are past events, i.e., events or
actions that happened before, and have been recorded. Then,the first rule says that the
soup is ready if the agent previously turned on the fire, and K minutes have elapsed
since when she put the pan on the stove. The goalsoupreadywill be attempted from
time to time, and will finally succeed when the cooking time will have elapsed. At that
point, the agent has to react to this (by second rule) thus removing the pan and switching
off the fire, which are two actions (postfixA).

soup ready : − turn on the fireP, put pan on the stoveP : T,

cooking time(K), time elapsed(T, K).
soup readyI :> take off pan from stoveA, turn off the fireA.

A suitable directive for this internal event can for instance state that it should
be attempted every 60 seconds, starting from whenput the pan on the stove and
turn on the fire have become past events.

Similarly to external events, internal events which are true by first rule are inserted
in a set IV in order to be reacted to (by their second rule). Theinterpreter, interleaving
the different activities, extracts from this set the internal events and triggers the reaction
(again according to priorities). A particular kind of internal event is thegoal, postfixG,
that stop being attempted as soon as it succeeds for the first time.

2.3 Present Events

When an agent perceives an event from the “external world”, itdoesn’t necessarily
react to it immediately: she has the possibility of reasoning about the event, before (or
instead of) triggering a reaction. Reasoning also allows a proactive behavior. In this
situation, the event is called present event and is indicated by the suffixN.

4

2.4 Actions

Actions are the agent’s way of affecting her environment, possibly in reaction to an
external or internal event. In DALI, actions (indicated with postfixA) may have or not
preconditions: in the former case, the actions are defined byactions rules, in the latter
case they are just action atoms. An action rule is just a plainrule, but in order to empha-
size that it is related to an action, we have introduced the new token:<, thus adopting
the syntaxaction :< preconditions. Similarly to external and internal events, actions
are recorded as past actions.

2.5 Past events

Past events represent the agent’s “memory”, that makes her capable to perform its fu-
ture activities while having experience of previous events, and of its own previous con-
clusions. As we have seen in the examples, past event are indicated by the postfixP.
For instance,alarm clock ringsP is an event to which the agent has reacted and which
remains in the agent’s memory. Each past event has a timestamp T indicating when the
recorded event has happened. Memory of course is not unlimited, neither conceptually
nor practically: it is possible to set, for each event, for how long it has to be kept in
memory, or until which expiring condition. In the implementation, past events are kept
for a certain default amount of time, that can be modified by the user through a suitable
directive in the initialization file. Implicitly, if a second version of the same past event
arrives, with a more recent timestamp, the older event is overridden, unless a directive
indicates to keep a number of versions.

3 DALI Communication Architecture

The DALI communication architecture consists of four levels (see Fig.1). The first level
implements the DALI/FIPA communication protocol and a filter on communication, i.e.
a set of rules that decide whether or not to receive or send a message. The second level
includes a meta-reasoning layer, that tries to understand message contents, possibly
based on ontologies and/or on forms of commonsense reasoning. The third level con-
sists of the DALI interpreter. The fourth level implements afilter for the outcoming
messages.The DALI/FIPA protocol consists of the main FIPA primitives, plus few new
primitives which are particular to DALI.

In DALI, an out-coming message has the form:

message(Receiver, primitive(Content, Sender))

that the DALI interpreter converts into an internal form, byautomatically adding the
missing FIPA parameters, and creating the structure:

message(receiver address, receiver name, sender address, sender name,

language, ontology, content)

5

Fig. 1.The communication architecture of a DALI agent

When a message is received, it is examined by a check layer composed of a structure
which is adaptable to the context and modifiable by the user. This filter checks the
content of the message, and verifies if the conditions for thereception are verified. If
the conditions are false, this security level eliminates the supposedly wrong message.
Each DALI agent is also provided with a distinguished procedure calledmeta, which
is automatically invoked by the interpreter in the attempt to understand message
contents. This procedure includes by default a number of rules for coping with
domain-independent standard situations. The user can add other rules, thus possibly
specifying domain-dependent commonsense reasoning strategies for interpreting
messages, or implementing a learning strategy to be appliedwhen all else fails. The
internal interpreter determines the behavior of an agent onthe grounds of the DALI
logic program and the corresponding rules and events contained in it. Therefore, this
level generates the autonomous, reactive, proactive and social abilities of a DALI
software entity.

4 Operational semantic

The operational semantics that we propose in this Section follows the approach of [8]
(see also the references therein). We define a formal dialogue game framework that
focuses on the rules of dialogue, regardless the meaning theagent may place on the
locutions uttered. This means, we reformulate the semantics of FIPA locutions as steps
of a dialogue game, without referring to the mental states ofthe participants. This ap-
proach has its origin in the philosophy of argumentation, while approaches based on
assumptions about the mental states of participants build on speech-act theory. This be-
cause we believe that in an open environment agents may also be malicious, and falsely
represent their mental states. The rules of the operationalsemantic show how the states

6

of an agent change according to execution of the transition rules. We define each rule
as a combination of states and laws. Each law links the rule tointerpreter behavior and
is based on the interpreter architecture.

We have three kinds of laws: those that model basic representing communication
acts; those describing the filter levels; those that modify the internal state of the agent
by adding items to the various sets of events. In order to makeit clear how we express
the formal link between the agent actual activity and the semantic mechanisms, we
adopt some abbreviations:

– Agx to identify the name of the agent involved by the transition;
– SAgx

or NSAgx
to identify the state before and after the application of laws.

– Lx to identify the applied law.

We adopt the pair< Agx, SAgx
> to indicate a link between the name of an agent and

her state defined as a triple. More precisely, this triple is composed of:

– the logic programPAg;
– the internal stateISAg ≡< E,N, I,A,G, T, P >;
– a particular attributeModedescribing what the interpreter is doing.

Therefore, the global state of a DALI agent can be written as:

< Agx, SAgx >≡< Agx, < PAg, ISAg, ModeAg >>

The tuple< E,N, I,A,G, T, P > is composed by the sets of, respectively, ex-
ternal events,present events,internal events, actions,goals, test goals and past events.
Moreover, we denote byNPAg the logic program modified by the application of one or
more laws and byNISAg the internal state modified.

Each transition is described by two pairs and some laws. Starting from the first pair
and by applying the current laws, we obtain the second pair where some parameters
have changed (e.g., name, internal state or modality).

First of all we introduce the general laws that modify the pairs. We start with the
transitions about the incoming messages, by showing the behavior of the communica-
tion filter level. Next we show the semantic of meta-level andfinally the communication
primitives. For lack of space, we just consider few of them.

– L0: Thereceivemessage(.)law:
Locution: receive message(Agx, Agy, Ontology, Language, Primitive)
Preconditions: this law is applied when the agentAgx finds in the Tuple Space a message
with her name.
Meaning: the agentAgx receives a message fromAgy(environment, other agents,...). For
the sake of simplicity we consider the environment as an agent.
Response: the interpreter takes the information about the language and the ontology and
extracts the name of sender agent and the primitive contained in the initial message.

– L1: TheL1 told check true(.) law:
Locution:told check true(Agy, P rimitive)
Preconditions: the constraints of told rule about the name of the agent senderAgy and the
primitive must be true for the primitivetold checktrue.

7

Meaning: the communication primitive is submitted to the check-level represented by the
told rules.
Response: depends on the constraints of told level. If the constraints are true the primitive
can be processed by the next step.

– L2 : TheL2 understood(.) law:
Locution: understood(Primitive)
Preconditions: in order to process the primitive the agent must understand the content of
the message. If the primitive issendmessage, the interpreter will check if the external event
belongs to a set of external events of the agent. If the primitive ispropose, the interpreter
will verify if the requested action is contained in the logic program.
Meaning: this law verifies if the agent understands the message.
Response:the message enters processing phase in order to trigger a reaction, communicate a
fact or propose an action.

– L3 : TheL3 apply ontology(.) law:
Locution: apply ontology(Primitive)
Preconditions: in order to apply the ontology the primitive must belong to set of locutions
that invoke the meta-level(sendmessage,propose,executeproc,queryref,is a fact).
Meaning: this law applies, when it’s necessary, the ontologies to the incoming primitive in
order to understand its content.
Response:the message is understood by using the ontology of the agent and properties of the
terms.

– L4: TheL4 send messagewith tell(.) law:
Locution:send msg with tell(Agx, Agy, P rimitive)
Preconditions: the precondition for L4 is that the primitive belongs to set of locutions sub-
mitted to tell check.
Meaning: the primitive can be submitted to the constraints in the body of tell rules.
Response: the message will be sent to the tell level.

– L5: TheL5 tell check(.)law :
Locution: tell check(Agx, Agy, P rimitive)
Preconditions: the constraints of tell rule about the name of the agent receiverAgx, the
agent senderAgy and the primitive are true for L5.
Meaning: the primitive is submitted to a check using the constraints in the tell rules.
Response: the message will either be sent to addressee agent(L5).

– Lk: Theadd X(.) law:
Locution: add X(.)
whereX ∈ {internal event, external event, action, message, past event}
Preconditions: the agent is processing X.
Meaning: this law updates the state of the DALI agent adding an item to corresponding set
to X.
Response: the agent will reach a new state. The stateSAg of the agent will change in the
following way.
k=6 and X=internalevent:SAg =< PAg, < E, N, I, A, G, T, P >, Mode >

NSAg =< PAg, < E, N, I1, A, G, T, P >, Mode > whereI1 = I ∪ Internal event.
k=7and X=externalevent:SAg =< PAg, < E, N, I, A, G, T, P >, Mode >

NSAg =< PAg, < E1, N, I, A, G, T, P >, Mode > whereE1 = E ∪ external event.
k=8 and X=action:SAg =< PAg, < E, N, I, A, G, T, P >, Mode >

NSAg =< PAg, < E, N, I, A1, G, T, P >, Mode > whereA1 = A ∪ Action or A1 =
A \ Action if the communication primitive iscancel.
k=9 and X=message:SAg =< PAg, < E, N, I, A, G, T, P >, Mode >

NSAg =< PAg, < E, N, I, A1, G, T, P >, Mode > where A1=A∪Message. In fact, a

8

message is an action.
k=10 and X=pastevent:SAg =< PAg, < E, N, I, A, G, T, P >, Mode >

NSAg =< PAg, < E, N, I, A, G, T, P1 >, Mode > whereP1 = P ∪ Past event.
– L11: TheL11 check cond true(.) law:

Locution: check cond true(Cond list)
Preconditions: The conditions of thepropose primitive are true.
Meaning: this law checks the conditions inside thepropose primitive.
Response: the proposed action will either be executed.

– L12: Theupdate program(.) law:
Locution: update program(Update)
Preconditions: No preconditions.
Meaning: this law updates the DALI logic program by adding new knowledge.
Response: the logic program will be updated.

– Lk: TheprocessX law:
Locution: processX(.) whereX ∈ {send message, execute proc, propose,

accept proposal, reject proposal}
Preconditions: The agent calls the primitive X.
Meaning and Response: We must distinguish according to the primitives:
k=13 and X=send message: this law calls the external event contained in the primitive. As
response the agent reacts to external event.
k=14 and X=execute proc:this law allows a procedure to be called within the logic pro-
gram. As response the agent executes the body of the procedure.
k=15 and X=propose: If an agent receives apropose, she can choose to do the action speci-
fied in the primitive if she accepts the conditions contained in the request. Theresponse can
be eitheraccept proposal or reject proposal.
k=16 and X=accept proposal: An agent receives anaccept proposal if the response to a
sent propose is yes. As response the agent asserts as a past eventthe acceptance received.
k=17 and X=rejectproposal: An agent receives areject proposal if the response to a sent
proposal is no. In response, the agent asserts as a past event the refusal.

– L18: TheL18 action rule true(.) law:
Locution: action rule true(Action)
Preconditions: The conditions of the action rule corresponding to the action are true.
Meaning: In a DALI program, an action rule defines the preconditions for an action.This
law checks the conditions inside the action rule in the DALI logic program.
Response: the action will be executed.

We now present the operational semantic of the DALI communication. The
following rules indicate how the laws applied to a pair determine, in a deterministic
way, a new state and the corresponding behavior of the agent.DALI communication is
asynchronous: each agent communicates with another one in such a way that she is not
forced to halt its processes while the other entities produce a response.

An agent inwait mode can receive a message taking it from the Tuple Space by
using the law R0. The global state of the agent changes passing from thewait mode
to receivedmessagemode: the message is entered in the more external layer of the
communication architecture.
R0 : < Ag1, < P, IS, wait >>

L0−→< Ag1, < P, IS, received messagex >>

9

The L1 law determines the transition from thereceivedmessagemode to told
mode because it can be accepted only if the corresponding told rule is true.
R1 : < Ag1, < P, IS, received messagex >>

L1−→< Ag1, < P, IS, toldx >>

If the constraints in the told rule are false, the message cannot be processed. In
this case, the agent returns in the wait mode and the message does not affect the
behavior of the software entity because the message is deleted. The sender agent is
informed on the elimination.
R2 : < Ag1, < P, IS, received messagex >>

not(L1)
→ < Ag1, < P, IS, wait >>

When a message overcomes the told layer, it must be understoodby the agent in
order to trigger, for example, a reaction. If the agent understands the communication
act, the message will continue the way.
R3 : < Ag1, < P, IS, toldx >>

L2→< Ag1, < P, IS, understoodx >>

An unknown message forces the agent to use a meta-reasoning level, if the L3
law is true.
R4 : < Ag1, < P, IS, toldx >>

not(L2),L3

→ < Ag1, < P, IS, apply ontologyx >>

The meta-reasoning level can help the agent to understand the content of a mes-
sage. But only some primitives can use this possibility and apply the ontology. Instead
of going inwait modewe can suppose that the agent will call a learning module but at
this moment we have not implemented this functionality.
R5 : < Ag1, < P, IS, toldx >>

not(L2),not(L3)
→ < Ag1, < P, IS, wait >>

After the application of the ontology, if the agent understands the message, she
goes in theunderstood mode.
R6 : < Ag1, < P, IS, apply ontologyx >>

L2→< Ag1, < P, IS, understoodx >>

If the L2 law is false, the message cannot be understood and the agent goes in
wait mode.
R7 : < Ag1, < P, IS, apply ontologyx >>

not(L2)
→ < Ag1, < P, IS, wait >>

A known message enters in the processing phase of the interpreter and it waits
to be examined.
R8 : < Ag1, < P, IS, understoodx >> → < Ag1, < P, IS, processx >>

When an agent sends a message, the L4 law verifies that it must besubmitted to
tell level. In this rule we suppose that the response is true.
R9 : < Ag1, < P, IS, sendx >>

L4→< Ag1, < P, IS, tellx >>

10

If the response is false, the message is immediately sent andthe queue of the
messages (actions) changes.
R10 : < Ag1, < P, IS, sendx >>

not(L4),L9

→ < Ag1, < P, NIS, sentx >>

If the constraints of tell level are satisfied, the message issent.
R11 : < Ag1, < P, IS, tellx >>

L5,L9→ < Ag1, < P, NIS, sentx >>

A message sent by the agentAg1 is received by the agentAg2 that goes inre-
ceived message mode.
R12 : < Ag1, < P, IS, sentx >> → < Ag2, < P, IS, received messagex >>

If the message does not overcome the tell level because the constraints are false,
the agent returns towait mode.
R13 : < Ag1, < P, IS, tellx >>

not(L5)
→ < Ag1, < P, NIS, wait >>

This last rule shows how, when a message is sent, the corresponding action be-
comes past event.
R14 : < Ag1, < P, IS, sentx >>

L10→< Ag1, < P, IS, wait >>

The DALI primitive send message: by using this locution a DALI agent is able to
send an external event to the receiver.

< Ag1, < P, IS, processsend message >>
∧i=6,7,8,10,12Li

→ < Ag1, < NP, NIS, wait >>

According to the specific reactive rule, several sets of events can change. In fact,
in the body of rule we can find actions and/or goals. Since the external event will
become a past event, the sets of external and past events mustbe updated. After
processing the reactive rule the interpreter goes inwait mode.

< Ag1, < P, IS, processsend message >>
L13,L9→ < Ag1, < P, NIS, sendprimitive >>

In the body of rule there could be some messages that the agentmust send.

The FIPA primitive propose: this primitive represents the action of submitting a
proposal to perform a certain action, given certain preconditions.

< Ag1, < P, IS, processpropose >>
L15,L11,L9→ < Ag1, < P, NIS, sendaccept proposal >

This transition forces an agent receiving thepropose primitive to answer with
accept proposal if the conditions included in the propose act are acceptable.

11

< Ag1, < P, IS, sendaccept proposal >>
L8,L9→ < Ag1, < P, NIS, sendinform >

When an agent accepts the proposal, then she performs the action. In this case
the internal state of agent changes by adding the action. Finally, the agent communi-
cates to the proposer that the action has been done.

< Ag1, < P, IS, sendaccept proposal >>
L9→< Ag1, < P, NIS, sendfailure >

If the action cannot be executed, then the agent sends a failure primitive to the
proposer.

< Ag1, < P, IS, processpropose >>
L15,not(L11),L9

→ < Ag1, < P, NIS, sendreject proposal >>

If the conditions in thepropose are unacceptable, the response can be only a
reject proposal.

5 The filter of the DALI architecture and the trust problem

5.1 The communication filter

In Multiagent Systems, the agents interact by exchanging messages in order to carry
on useful cooperation or competition strategies. Interactions are needed to maintain the
coordination between software entities, resolve conflictsand exchange informations to
reach a goal. Coordination of software entities can be expressed in terms of coordination
models and languages. In other words, a coordination model provides a framework in
which the interaction of individual agents can be expressedand can be embodied in a
(software) coordination architecture. In any real application, the cooperation between
agents raises the problem of security. Real world applications, especially those working
with public networks such as the Internet, must be carefullydesigned and developed,
taking into consideration security issues.

In this context, an agent if not suitably self-defending cansuffer from damages to
its knowledge base or to its behavioral rules. This leads to the inability of the agent
either because it has a wrong or devoid knowledge or because its rationality is affected.
A DALI agent communicates with other software entities by using a single channel,
the external event. Through this channel an agent receives messages and information,
potentially very important for its survival and efficiency.It may happen that an agent
sends to another one a message with a wrong content, intentionally or not, thus poten-
tially bringing a serious damage. How can an agent recognizea correct message? And
a wrong message? The filter adopted in DALI tries to answer, asfar as possible, this
question.

In Section 3 we shortly described the architecture of DALI language. Now our
intention is to show more deeply how this filter works and how it is the practical result

12

of a research work initiated several years ago [15] by Costantini et al. In that paper, the
authors introduced a representation of agents by means of theories and a communication
among agents based on reflection within the metalogic programming paradigm and
suggested a first idea about a communication filter based on predicates referring to
the mental state of the agents. When a message is received, it is examined by a check
level composed of a structure which is adaptable to the context and modifiable by the
user. This filter checks the content of the message, and verifies if the conditions for
the reception are respected. If the conditions are false, this security level eliminates the
supposedly wrong message.

We have constrained the reception of messages by restricting the range of allowed
utterances to the FIPA/DALI primitives, according to additional conditions defined
by the user, or, in perspective, learned by the agent herself. For example, a filtering
condition can be reliability of the sender agent. We specifythe DALI filter by means
of meta-level rules defining the distinguished predicates tell and told. These meta-rules
are contained in a separate file, and can be changed without affecting or even knowing
the DALI code. Then, communication in DALI is elaboration-tolerant with respect
to both the protocol, and the filter. The filter that checks themessage that the agent
receives is specified by providing a definition for the distinguished predicate told.
Whenever a message is received, with content part primitive(Content,Sender)) (that we
have discussed before) the DALI interpreter automaticallylooks for a corresponding
told rule, which is of the form:

told(Sender, primitive(Content)) : −constraint1, . . . , constraintn.

whereconstrainti can be everything expressible either in Prolog or in DALI. If
such a rule is found, the interpreter attempts to provetold(Sender, primitive(Content)).
If this goal succeeds, then the message is accepted, andprimitive(Content)is added to
the set of the external events incoming into the receiver agent. Eventually, the agent will
react to this event, by performing whatever is required by the message. Otherwise, the
message is discarded. Semantically, this can be understoodas implicit reflection up to
the filter layer, followed by a reflection down to whatever activity the agent was doing,
with or without accepting the message. For a detailed and general semantic account of
this kind of reflection, the reader may refer to [?].

Below we propose a number of examples of filtering rules. Notice however that
each agent can have her own set of filtering rules. Since she takes these rules from a
separate file, she can vary her filtering criteria (by importing a different file) according
to the context she is involved in.

The following rule constrain a software entity to accept a send message primitive
if she remembers (presumably from past experience) that thesender is reliable, and
believes that the content is interesting. By using the primitive sendmessage an agent
can invoke a reactive rule of a receiver agent.

told(Sender agent, send message(External event)) : −
not(unreliableP (Sender agent)), interesting(External event).

In the next told rule we use the FIPA primitive confirm. An agent accepts a con-

13

firm if the Sender is reliable and the proposition is consistent with her knowledge
base. The proposition is recorded as a past event and kept, according to the directive
specified in this rule, 200 seconds.

told(Sender agent, confirm(Proposition), 200) : −
not(unreliableP (Sender agent)), consistent with knowledge base(Proposition).

Finally, we can suppose that a proposal to do an action for an agent is accept-
able if she is specialized for that action and the preconditions are acceptable.

told(Sender agent, propose(Action, Preconditions)) : −
specialized for(Action), acceptable(Preconditions).

The flexibility of the filter allows also to check if the communication protocol is
respected from the incoming or outcoming messages. We show an example of this
ability by using the propose and acceptproposal primitives. An agent in fact can
receive an acceptproposal only in response to propose. The agent remembers asa past
event (for 200 seconds) that she has accepted the proposal toperform an action. This
information can be used by an internal event for further inferences.

told(Sender agent, accept proposal(Action, Conditions),
in response to(Message), 200) : −
not(unreliableP (Sender agent)), functor(Message, F,), F = propose.

Symmetrically totold rules, the messages that an agent sends are subjected to a
check viatell rules. There is, however, an important difference: the usercan choose
which messages must be checked and which not. The choice is made by setting
some parameters in the initialization file. The FIPA/DALI communication protocol is
implemented by means a piece of DALI code including suitabletell/told rules. This
code is contained in a separate file that each DALI agent imports as a library, so that
the communication protocol can be seen an “input parameter ”of the agent. The syntax
of a tell rule is:

tell(Receiver, Sender, primitive(Content)) : −constraint1, . . . , constraintn

For every message that is being sent, the interpreter automatically checks whether
an applicable tell rule exists. If so, the message is actually sent only if the goal
tell(Receiver,Sender,,primitive(Content))succeeds. For example, this tell rule autho-
rizes the agent to send the message with the primitive informif the receiver is active in
the environment and is presumably interested to the information. Via rules like this one
we can considerably reduce useless exchange of messages.

tell(Agent To, Agent From, refuse(Something, Motivation)) : −
arg(1, Something, Primitive), functor(Primitive, F),
(F = is a fact; F = query ref).

14

The problem of a secure interaction between the agents is also treated in [17, 19].
However, [17] defines a system (Moses) with a global law for a group of agents, instead
of a set of local laws for every single agent as in DALI. Moreover, in Moses there
is a special agent, calledcontroller, for every agent, while in DALI it is necessary to
define a filter for each agent, defining constraints on the communication primitives. Our
definition of tell/told rules is structurally different from the Moses approach: each law in
Moses is defined as a prolog-like rule having in the body both the conditions that match
with a control state of the object and some fixed actions that determine the behavior of
the law. In DALI, the told/tell rules are the constraints on the communication and do not
contain actions. The behavior (and in particular the actions) performed by an agent are
determined by the logic program of the agent. Another difference is that the DALI filter
rules can contain past events, thus creating a link between the present communication
acts and the experience of the agent. A particularity of the Minsky law-governed system
is that is possible to update on-line the laws [18]. In DALI, presently it is possible to
change the rules locally by varying the name of the file that contains the tell/told rules
but in the future we will improve our language by allowing an agent to modify even
filter rules.

Santoro in [19] defines a framework for expressing agent interaction laws by means
of a set of rules applied to each ACL message exchanged. Each rule has a prefixed
structure composed by precondition, assignment and constraint where the precondition
is a predicate on one or more fields of the message which triggers the execution of the
assignment or the checking of the constraint. The constraint is a predicate which speci-
fies how the message meeting the precondition has to be formed, and it is used to model
the filtering function. The rules consider some specific fields of a message like the name
of agents, the performative name, language, ontology, delivery mode and content. We
think that the approach followed in DALI is only apparently similar. The Agent Com-
munication Context (ACC) in JADE is applied only to outcoming messages, while in
DALI we submit to the filter both the received messages and thesent messages. The
structure of a DALI filter rule is different and more flexible:in ACC the rule specifies
that if the preconditions are true, some fields of the messagemust be defined by the
assignments in the body; in DALI, the body of a filter rule specifies only the constraints
for the acceptance/sending of a message. Moreover, the constraints in DALI do not refer
to specific fields. They can be procedures, past events, beliefs and whatever is express-
ible either in DALI or in Prolog. Therefore, even though boththe approaches use the
concept of communication filter, we think that there are notable differences also due to
ability of Prolog to draw inferences and to reason in DALI with respect to java.

5.2 Introducing trust in the communication filter

As we have seen, the filter layer of the DALI communication architecture allows an
agent to make public expression of its mental states, and other agents to reason both
on this expression and on their own degree of belief, trust, etc. about it. We will now
explain how the filter level works by means of an example, thatdemonstrates how this
filter is powerful enough to express sophisticated conceptssuch as updating the level of
trust. Trust is a type of social knowledge and encodes evaluations about which agents

15

can be taken as reliable sources of information or services.We focus on a practical
issue: how the level of Trust influences communication and choices of the agents. We
defined a trust as a DALI past event that the agent remembers forever. This event has a
following structure:

trustP (Agentx, Agenty, T rust value)

and it means that theAgentx trust in theAgenty with the value Trustvalue. But, why
did we choose to get together trust and past events? We thought that the trust of an
agent toward another could depend on behavior of the second agent as time passed. A
correct behavior will augment the trust value. In order to link the experience to the trust
concept we used two kinds of DALI events: a past event to definethe trust predicate
and an internal event to combine the behavior of an agent to trust. We will show this
concept by means of a simple example: we suppose that anagentx is composed by the
following DALI logic program.

askE(Y, Q) :> clause(agent(A),), messageA(Y, agree(Q, A)).

trust true(Y) : −askP (Y, Q), informP (agree(Q),
values(yes), Y), clause(know(Q),).
trust true(Y) : −askP (Y, Q), informP (agree(Q),
values(no), Y), not(clause(know(Q),)).
trust trueI(Y) : −increment trustA(Y).

trust false(Y) : −askP (Y, Q), informP (agree(Q), values(no), Y),
clause(know(Q),).
trust false(Y) : −askP (Y, Q), informP (agree(Q), values(yes), Y),
not(clause(know(Q),)).
trust falseI(Y) : −decrement trustA(Y).

trust(, Y,) : −decrement trustP (Y); increment trustP (Y).
trustI(A, Y, V) : −choose(A, Y, V).
choose(A, Y, V) :> trustP (A, Y, V 1), increment trustP (Y), KisV 1 + 1, V = K...

choose(A, Y, V) :> trustP (A, Y, V 1), decrement trustP (Y),
V 1 > 0, KisV 1 − 1, V = K...

When this agent receives the external eventask(agenty, information), asks
theagenty for the information. If theagentx knows the response (know(information)),
she can check if theagenty has been honest. The first internal eventtrust true triggers
the reaction and augments the trust of theagentx towards theagenty if the first agent
remembers that she asked an information, she had the response and she verified
the correctness of the response. The internal eventstrust false decrements, using
the opposite policy, the trust. The last internal eventtrust(Agx, Agy, T rust value)
increments/decrements the trust and becoming a past event after the reaction creating
both the link with the experience of theagentx and the predicate see above that the
agent can use in order to take decisions in the future. A this point, we introduced this
trust past event in the body of tell/told rules specifying that a message can be sent or

16

received only if the trust value is greater that a fixed threshold:

told(Sender, send message()) : − clause(agent(Ag),),
trustP (Ag, Sender, N), N > threshold.

tell(Receiver, Ag, send message()) : −trustP (Ag, Receiver, N1), N1 > threshold1.

In this way, we have created a correlation between the communication and the
experience that can protect an agent from intentional o reiterated damages. These rules
contain the primitivesend message, but we can adopt similar rules for all others FIPA
primitives. In order to improve our approach to trust, in thefuture we could introduce
in the body of tell/told rule more sophisticated algorithms. Finally, the DALI language
provides particular actions that manage the past events andincrement/decrement the
value of trust on the grounds of the expected behavior of the other agents involved
in the coordination system. These actions are:drop past, add past and set past:
drop past/add past deletes/adds a past event whileset past sets the time of the
memorization of a past event. Now we will show by means of an example how trust
can influence the behavior of our agents.

6 An example

We consider a cooperation context where an ill agent asks herfriends in order to find a
competent specialist. When the agent has some particular symptoms, she calls a family
doctor that recommends her to find a lung doctor. The patient,through a yellow pages
agent, knows the names and the distance from her city of two specialists and asks the
friends about them. The patient has a different degree of trust on her friends and each
friend has a different degree of competence about the specialists. Moreover, the patient
knows the ability of the friends about medical matters: a clerk will be less reliable than
a nurse. In order to introduce this concept within the agent patient, we adopt some past
event with the suffix skill:

skillP (friend nurse, S1) andskillP (friend clerk, S2)

whereS1 > S2. We suppose that the ill agent receives a message only if she has on theagent
sender a trust value greater than a threshold 4:

told(Ag, send message()) : −trustP (, Ag, N), N > 4.

We can adopt a similar rule also for the outcoming messages. Now we face the trust
problem and show more interesting DALI rules of the agents involved in this example.
The cooperation activity begins when the agentAg becomes ill, and communicates
her symptoms to doctor. If those symptoms are serious, the doctor advises the patient
to find out a competent lung doctorM . If the agent knows a specialistSp and has a
positive trust valueV1 on her, she goes to lung doctor, else asks a yellow page agent.

17

consult lung doctorE(M) :> clause(agent(Ag),), choose if trust(M, Ag).

choose trust(, Ag) : − clause(i know lung doctor(Sp),) ,

trustP (Ag, Sp, V1), V1 > 0, go to lung doctorP (Sp).
choose trust(M, Ag) : − messageA(yellow page, send message(search(M, Ag), Ag)).

The yellow pages agent returns to patient, by using theinform primitive, a list of
the lung doctors. Now the patient must decide which lung doctor is more competent and
reliable. How can she choose? She asks her friends for help.

take information about(Sp) : −clause(lung doctor(Sp),).
take information aboutI(Sp) :> clause(agent(Ag),),

messageA(friend1, send message(what about competency(Sp, Ag), Ag)),
messageA(friend2, send message(what about competency(Sp, Ag), Ag)).

Each friend, having the informationcompetent(lung doctorx, V alue) about the
ability of the specialists, sends aninform containing the evaluation of the competence.

what about competencyE(Sp, Ag) :> choose competency(Sp, Ag).

choose competency(Sp, Ag) : −clause(competent(Sp, V),),
messageA(Ag, inform(lung doctor competency(Sp, V), friendx)).

choose competency(Sp, Ag) : −
messageA(Ag, inform(dont know competency(Sp), friendx)).

The patient is now aware of the specialist and friend’s competency and has a
value of trust trustP (Agx, F riendy, T rust value) and a value of competence
skillP (Friendy, Skill value) in the medical matter on the friends consolidated
through the time. Moreover, she knows the distance of the specialists from her house.
By using a simple rule that joins those parameters, she assigns a value to each advice:
specialist evaluation(lung doctorx, friendy, V alue).

The ill agent will choice the lung doctor in the advice havingthe greaterV alue and
will go to the specialist:follow adviceA(Friend), go to lung doctorA(Sp).

Will she be cured? After some time, the patient will do an examof her health. If
she does not have any symptom (temperature,thorax pain, cough, out of breath), she
increases the trust on the friend that has recommended the lung doctor and sets the trust
on that specialist to a higher value:

cured (Sp, Friend) : −go to lung doctorP (Sp), follow adviceP (Friend),
not(temperatureP), not(thorax painP), not(coughP), not(out of breathP).

curedI (Sp, Friend) :> clause(agent(Ag),), trustP (Ag, Friend, V), V1 is V + 1,

drop pastA(trust(Ag, Friend, V)), add pastA(trust(Ag, Friend, V 1)),
assert(i know lung doctor(Sp)), set pastA(trust(Ag, Friend, V), 100),
add pastA(trust(Ag, Sp, 1)), drop pastA(go to lung doctor()).

If she is still ill, she decreases the trust value on the friend that has recommended
the lung doctor:

18

no cured(Sp) : −go to lung doctorP (Sp), temperatureP.

no cured(Sp) : −go to lung doctorP (Sp), thorax painP.

no cured(Sp) : −go to lung doctorP (Sp), coughP.

no cured(Sp) : −go to lung doctorP (Sp), out of breathP.

no curedI() :> clause(agent(Ag),), follow adviceP (Am),
trustP (Ag, Am, V), V >= 1, V1 is V − 1,

drop pastA(trust(Ag, Am, V)), set pastA(trust(Ag, Am, V 1), 1000),
add pastA(trust(Ag, Am, V 1)), drop pastA(go to lung doctor()).

The decrement of the trust value of a friend can affect the check level of communi-
cation preventing the sending/receiving of a message to/from that friend. This happens
if the trust on the agent is less than the trust’s threshold specified in the body of a
told/tell rule. In this case the patient communicates to friend that the incoming message
has been eliminated, by using an inform primitive:

send message to(friend,

inform(send message(what about competency(lung doctor, patient), patient),
motivation(refused message), patient), italian, [])

wheresend message(what about competency(lung doctor, patient), patient)
is the eliminated message with the motivationmotivation(refused message).
In our system, trust can change dynamically, so that it’s possible that an agent, excluded
from the communication because she has a too low value of trust, increases this value
by making some actions or by asking other agents to plead her case.

7 Conclusion

In this paper we have faced the trust problem with a simple approach, using cooperating
DALI agents and some parameters such as trust and competencewhich change dynam-
ically. We have also shown how the filter level can work, eliminating the messages that
could damage the agents. In the future, we intend to study andimplement more real-
istic algorithms: in particular, we mean to take advantage of some related results of
game theory. We also mean to improve the DALI filter level, by introducing forms of
meta-reasoning also in the body of tell/told rules.

References

1. J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzarone,Reflection Principles in
Computational Logic, Journal of Logic and Computation, Vol. 10, N. 6, December 2000,
Oxford University Press, UK.

2. S. Costantini. Towards active logic programming. In A. Brogi and P.Hill, editors,Proc. of
2nd International Workshop on component-based Software Development in Computational
Logic (COCL’99), PLI’99, (held in Paris, France, September 1999), Available on-line,URL
http://www.di.unipi.it/ brogi/ResearchActivity/COCL99/proceedings/index.html.

3. S. Costantini. Many references about DALI and PowerPoint presentations
can be found at the URLs: http://costantini.di.univaq.it/pubblsstefi.htm and
http://costantini.di.univaq.it/AI2.htm.

19

4. S. Costantini and A. Tocchio,A Logic Programming Language for Multi-agent Systems,
In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.),Logics in Artificial Intelligence, Proc. of
the 8th Europ. Conf., JELIA 2002, (held in Cosenza, Italy, September 2002), LNAI 2424,
Springer-Verlag, Berlin, 2002.

5. S. Costantini, A. Tocchio and A. Verticchio,Semantic of the DALI Logic Programming
Agent-Oriented Language, submitted toLogics in Artificial Intelligence, Proc. of the 9th
Europ. Conf., JELIA 2004.

6. FIPA. Communicative Act Library Specification, Technical Report XC00037H, Foundation
for Intelligent Physical Agents, 10 August 2001.

7. R. A. Kowalski,How to be Artificially Intelligent - the Logical Way, Draft, revised February
2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

8. P. Mc Burney, R. M. Van Eijk, S. Parsons, L. Amgoud,A Dialogue Game Protocol for
Agent Purchase Negotiations, J. Autonomous Agents and Multi-Agent Systems Vol. 7 No.
3, November 2003.

9. Yuh-Jong Hu,Some thoughts on agent trust and delegation, Proceedings of the fifth inter-
national conference on Autonomous agents,2001.

10. Yahalom, R. Klein, B. Beth, T. Sch. of Bus,Trust relationships in secure systems-a dis-
tributed authentication perspectiveAdmin., Hebrew Univ., Jerusalem; This paper appears
in: Research in Security and Privacy, 1993. Proceedings., 1993 IEEE Computer Society Sym-
posium on.

11. Dorothy E. Denning,A new paradigm for trusted systems, Proceedings on the 1992-1993
workshop on New security paradigms, Little Compton, Rhode Island, United States.

12. Audun Josang,The right type of trust for distributed systems, Proceedings of the 1996
workshop on New security paradigms,1996,Lake Arrowhead, California, United States.

13. Catholijn M. Jonker and Jan Treur,Formal Analysis of Models for the Dynamics of Trust
Based on Experiences, Proceedings of the 9th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World,1999,Springer-Verlag.

14. S. Costantini and A. Tocchio,A Logic Programming Language for Multi-agent Systems,
In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.),Logics in Artificial Intelligence, Proc. of
the 8th Europ. Conf., JELIA 2002, (held in Cosenza, Italy, September 2002), LNAI 2424,
Springer-Verlag, Berlin, 2002.

15. S. Costantini, P. Dell’Acqua and G. A. Lanzarone,Reflective Agents in Metalogic Program-
ming, Meta-Programming in Logic (Meta92), A. Pettorossi (ed.), LNCS 649, pp. 135-147,
1992.

16. Colin English, Sotirios Terzis, and Waleed Wagealla,Engineering Trust Based Collabora-
tions in a Global Computing Environment, Trust Management: Second International Con-
ference, iTrust 2004, Oxford, UK, March 29 - April 1, 2004. Proceedings, Springer-Verlag
Heidelberg.

17. Naftaly H. Minsky and Victoria Ungureanu,Law-governed interaction: a coordination
and control mechanism for heterogeneous distributed systems, ACM Trans. Softw. Eng.
Methodol.,2000,ACM Press.

18. Naftaly H. MinskyThe Imposition of Protocols Over Open Distributed Systems, IEEE Trans.
Softw. Eng.,1991,IEEE Press.

19. A. Di Stefano and C. SantoroIntegrating Agent Communication Contexts in JADE, Telecom
Italia Journal EXP, Sept. 2003.

20

