Communication and Trust in the DALI Logic
Programming Agent-Oriented Language

Stefania Costantini Arianna Tocchio Alessia Verticchio

Universi@a degli Studi di L'Aquila
Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L'Aquila - Italy
{stefcost, tocchio}@li . univaq.it

Abstract. Interaction is an important aspect of Multi-agent systems: agents ex-
change messages, assertions, queries. This, depending on the¢ aadten the
application, can be either in order to improve their knowledge, or to reagh th
goals, or to organize useful cooperation and coordination strategiepeh sys-
tems the agents, though possibly based upon different technologissspeak a
common language so as to be able to interact.

However, beyond standard forms of communication, the agents sheudpa-
ble of filtering and understanding message contents. A well-understpadiso
that of interpreting the content by means of ontologies, that allow diffészn
minologies to be coped with. In a logic language, the use of ontologies can be
usefully integrated with forms of commonsense and case-basechnegsthat
improve the “understanding” capabilities of an agent. A more subtle pain&ts

an agent should also be able to enforce constraints on communicatisriniFh
plies being able to accept or refuse or rate a message, based ors canalitions
like for instance the degree of trust in the sender. This also implies to becable
follow a communication protocol in “conversations”. Since the degreteust,

the protocol, the ontology, and other factors, can vary with the conteggrobe
learned from previous experience, in a logic language agent shodilchigit be
able to perform meta-reasoning on communication, so as to interactylexth

the “external world” . This paper presents a novel communicatioritaathre for

the DALI agent-oriented logic programming language and proposegaampe
aimed at showing that the communication architecture is general encugh a
model sophisticated concepts such as the level of trust. Trust is a tygueiaf
knowledge and encodes evaluations about which agents can be taladialze
sources of information or services. We focus on a practical issoestte level

of Trust influences communication and choices of the agents. Finallgone
sider approaches that use a similar architecture and we outline the nfe&ning
differences between the approaches.

1 Introduction
Interaction is an important aspect of Multi-agent systeagents exchange messages,
assertions, queries. This, depending on the context anteoapplication, can be ei-

* We acknowledge support by thgformation Society Technologies programme of the European
Commission, Future and Emerging Technologieder the IST-2001-37004 WASP project.

ther in order to improve their knowledge, or to reach themlgpor to organize useful
cooperation and coordination strategies.

However, the exchange of information between agents imglieertain degree of
risk. In a global environment, entities meet and need t@boltate with other entities of
which they have little or no information about reliability a traditional environment,
decisions are usually delegated to a centralized authdaritiie global computing envi-
ronment, each single entity must take the decisions needeehave autonomously in
the absence of complete knowledge of the operating envieotrfil6] considers how
the notion of trust has been developed to help the agentsatondttn the partial infor-
mation about the world. How can an agent be sure that thevest&iformation will not
damage her internal state? Should she be always confidemolssible to introduce
a certain level of trust in the communication? This is a rah\problem, coped with
in the literature in different ways. For Josang in [12], trissa belief that one entity
has about another entity. He states that the reason behisidisrcomposed of many
elements, like past experience, knowledge about the &ntiture, recommendations
from other entities or some kind of faith. Yahalom et al. i@ §jive an interesting clas-
sification of trust and develop an algorithm that use the ephof recommendation
path. Denning [11] states that the word “trust” is a declaramade by an observer
rather than an inherent property of the person, organizatioobject observed and that
we make assessments of trust based on our experiences iotide w

In our approach, we introduce the concept of trust by mearbkeofilter level of
DALI communication architecture. This layer by default ifies that a message re-
spects the communication protocol, as well as some domdiependent coherence
properties. Several other properties to be checked canwevieo additionally speci-
fied, by expanding the definition of the distinguished pratiistell/told. If the message
does not pass the check, it is just deleted. We have expehdéne capabilities of
this filter by introducing the trust concept in the told rubssd increasing/decreasing
the trust value. We don't face deeply the trust problem bseawr present aim is to
show how the filter can manage sophisticated communicationd, by changing the
behavior of the agents.

We are aware that the approach to trust shown in this papebeaeafined by in-
troducing more specific algorithms like shown for instant¢li3], where the authors
introduce a particular trust evolution function that folines the dependency of trust
on past experiences. Also Josang and Denning consideaBustesult of the experi-
ence and knowledge of the agent. In this paper, we emphdsziink between trust
and knowledge coming from the direct observation of eventheé world by introduc-
ing in the told rules the concept of the trust as a past evelnat('an agent remembers
on the base of the past life). The past event/trust can begedray using appropriate
predicates within a DALI logic program. Then, each agentazange the value of this
predicate estimating the behavior of the other agents. fhettell/told rules, a similar
approach is adopted in a version of JADE: we will explain hawfdter is more general
and powerful due to expressivity of the logical structurd tmthe peculiar featuress of
the DALI language.

Below we briefly recall the main features of DALI. Operatitp&gollowing [8] and
the references therein, we provide the semantics of theudgey(including commu-

nication) by defining a formal dialogue game framework tloaiukes on the rules of
dialogue, regardless of the meaning the agent may placeedndhtions uttered. This

means, we reformulate the semantics of FIPA locutions gsssiea dialogue game,

without referring to the mental states of the participaifitis because we believe that
in an open environment agents may also be malicious, arelfakspresent their men-

tal states. However, the filter layer of the DALI communioatarchitecture allows an

agent to make public expression of its mental states, arat atfents to reason both on
this expression and on their own degree of belief.

The paper is organized as follows. We start by shortly desgithe main features
of DALLI in Section 2 and the communication architecture itt8 3. Then, we show
a small part of the operational semantic of the global DAltéipreter in the Sections 4.
In Section 5 we explain how the filter on the communicationksand how the trust
concept can be integrated in this structure. Finally, inisac6 we outline how different
values of trust in a coordination system can change the li@hafthe involved agents.
We conclude this paper in Section 7 by outlining future dimets of our research.

2 The DALI language

DALI [2] [14] is an Active Logic Programming language desaghfor executable spec-
ification of logical agents. A DALI agent is a logic programattcontains a particular
kind of rules, reactive rules, aimed at interacting with atemal environment. The
environment is perceived in the form of external eventd, tha be exogenous events,
observations, or messages by other agents. In response, laeaDént can perform ac-
tions, send messages, invoke goals. The reactive and weaethavior of the DALI
agent is triggered by several kinds of events: externaltey@rternal, present and past
events. It is important to notice that all the events andbastare timestamped, so as to
record when they occurred. The new syntactic entities,jredicates related to events
and proactivities, are indicated with special postfixesi¢ilare coped with by a pre-
processor) so as to be immediately recognized while loo&iragprogram.

2.1 External Events

The external events are syntactically indicated by thefpolst When an event comes
into the agent from its “external world”, the agent can paed& and decide to react.
The reaction is defined by a reactive rule which has in its hbad external event.
The special toker>, used instead of —, indicates that reactive rules performs forward
reasoning. E. g., the body of the reactive rule below spadifie reaction to the external
eventbell_ringsE that is in the head. In this case the agent performs an agastfix

A, that consists in opening the door.

bell_ringsE :> open_the_doorA.
The agent remembers to have reacted by converting the ek&arent into gast event
(time-stamped).

Operationally, if an incoming external event is recognjzesl, corresponds to the
head of a reactive rule, it is added into a list called EV anascmned according to the

arrival order, unless priorities are specified. Priories listed in a separate file of di-
rectives, where (as we will see) the user can “tune” the &ybahaviour under several
respect. The advantage introducing a separate initiadizéite is that for modifying the
directives there is no need to modify (or even to understtrelrode.

2.2 Internal Events

The internal events define a kind of “individuality” of a DAkRbent, making her proac-
tive independently of the environment, of the user and obther agents, and allowing
her to manipulate and revise her knowled@g Rn internal event is syntactically in-
dicated by the postfix, and its description is composed of two rules. The first one
contains the conditions (knowledge, past events, proesdetc.) that must be true so
that the reaction (in the second rule) may happen.

Internal events are automatically attempted with a defaetjuency customizable
by means of directives in the initialization file. The usatigectives can tune several
parameters: at which frequency the agent must attempt temal events; how many
times an agent must react to the internal event (foreveg,dmndce,. . .) and when (for-
ever, when triggering conditions occur, ...); how long tlverg must be attempted
(until some time, until some terminating conditions, fagv

For instance, consider a situation where an agent prepaseapathat must cook
on the fire for K minutes. The predicates with pos#iare past events, i.e., events or
actions that happened before, and have been recorded. thedirst rule says that the
soup is ready if the agent previously turned on the fire, andikutas have elapsed
since when she put the pan on the stove. The goapreadywill be attempted from
time to time, and will finally succeed when the cooking timd Wave elapsed. At that
point, the agent has to react to this (by second rule) thusvang the pan and switching
off the fire, which are two actions (post#).

soup_ready : — turn_on_the_fireP, put_pan_on_the_stoveP : T,
cooking_time(K), time_elapsed(T, K).
soup_readyl :> take_of f_pan_from_stoveA,turn_of f the_fireA.
A suitable directive for this internal event can for instarstate that it should
be attempted every 60 seconds, starting from wpehthe pan.on_the stove and
turn_on_the fire have become past events.

Similarly to external events, internal events which are toy first rule are inserted
in a set IV in order to be reacted to (by their second rule). ifiterpreter, interleaving
the different activities, extracts from this set the intdrevents and triggers the reaction
(again according to priorities). A particular kind of intat event is thgoal, postfixG,
that stop being attempted as soon as it succeeds for therfiest t

2.3 Present Events

When an agent perceives an event from the “external worldtloésn’t necessarily

react to it immediately: she has the possibility of reasgrahout the event, before (or
instead of) triggering a reaction. Reasoning also allowscagiive behavior. In this

situation, the event is called present event and is indidayethe suffixN.

2.4 Actions

Actions are the agent’s way of affecting her environmengsialy in reaction to an
external or internal event. In DALLI, actions (indicated lwgostfixA) may have or not
preconditions: in the former case, the actions are defineatbgns rules, in the latter
case they are just action atoms. An action rule is just a pldé but in order to empha-
size that it is related to an action, we have introduced thetoken: <, thus adopting
the syntaxaction :< preconditions. Similarly to external and internal events, actions
are recorded as past actions.

2.5 Pastevents

Past events represent the agent’'s “memory”, that makesalpabte to perform its fu-
ture activities while having experience of previous eveaisl of its own previous con-
clusions. As we have seen in the examples, past event aaiadiby the postfie.
For instancealarm_clock ringsPis an event to which the agent has reacted and which
remains in the agent’s memory. Each past event has a timg&tandicating when the
recorded event has happened. Memory of course is not uaetimmieither conceptually
nor practically: it is possible to set, for each event, fowHong it has to be kept in
memory, or until which expiring condition. In the implematibn, past events are kept
for a certain default amount of time, that can be modified lewtber through a suitable
directive in the initialization file. Implicitly, if a secahversion of the same past event
arrives, with a more recent timestamp, the older event isrimlgeen, unless a directive
indicates to keep a number of versions.

3 DALI Communication Architecture

The DALI communication architecture consists of four ley@ee Fig.1). The first level
implements the DALI/FIPA communication protocol and a filbe communication, i.e.
a set of rules that decide whether or not to receive or sendssage. The second level
includes a meta-reasoning layer, that tries to understaegbage contents, possibly
based on ontologies and/or on forms of commonsense regsdre third level con-
sists of the DALI interpreter. The fourth level implementdilger for the outcoming
messages.The DALI/FIPA protocol consists of the main FIBAjives, plus few new
primitives which are particular to DALI.

In DALLI, an out-coming message has the form:

message(Receiver, primitive(Content, Sender))

that the DALLI interpreter converts into an internal form, &ytomatically adding the
missing FIPA parameters, and creating the structure:

message(receiver_address, receiver_name, sender_address, sender_name,
language, ontology, content)

Incoming message

DALI INTERNAL
INTERPRETER

.
TELL CHECK ’
11

Qutcoming message

Fig. 1. The communication architecture of a DALI agent

When a message is received, it is examined by a check layerasmdmf a structure
which is adaptable to the context and modifiable by the udeis filter checks the
content of the message, and verifies if the conditions fordéseption are verified. If
the conditions are false, this security level eliminates shpposedly wrong message.
Each DALI agent is also provided with a distinguished praredcalledmeta which

is automatically invoked by the interpreter in the attemptunderstand message
contents. This procedure includes by default a number dasrdibr coping with
domain-independent standard situations. The user can théd les, thus possibly
specifying domain-dependent commonsense reasoningegitrat for interpreting
messages, or implementing a learning strategy to be applexh all else fails. The
internal interpreter determines the behavior of an agerthergrounds of the DALI
logic program and the corresponding rules and events ¢mddn it. Therefore, this

level generates the autonomous, reactive, proactive acidlsabilities of a DALI
software entity.

4 Operational semantic

The operational semantics that we propose in this Sectitowfe the approach of [8]
(see also the references therein). We define a formal dialggme framework that
focuses on the rules of dialogue, regardless the meaninggéet may place on the
locutions uttered. This means, we reformulate the senmofiEIPA locutions as steps
of a dialogue game, without referring to the mental stateb@fparticipants. This ap-
proach has its origin in the philosophy of argumentationilevlpproaches based on
assumptions about the mental states of participants bnikpeech-act theory. This be-
cause we believe that in an open environment agents mayealsalicious, and falsely
represent their mental states. The rules of the operatsmmahntic show how the states

of an agent change according to execution of the transititesr We define each rule
as a combination of states and laws. Each law links the rulgéopreter behavior and
is based on the interpreter architecture.

We have three kinds of laws: those that model basic repriegecdmmunication
acts; those describing the filter levels; those that modiéyinternal state of the agent
by adding items to the various sets of events. In order to ritaitear how we express
the formal link between the agent actual activity and the a#i mechanisms, we
adopt some abbreviations:

— Ag, to identify the name of the agent involved by the transition;
— Sag, Or NS4, to identify the state before and after the application ofdaw
— L, to identify the applied law.

We adopt the paik Ag,, Sa4, > to indicate a link between the name of an agent and
her state defined as a triple. More precisely, this tripl@impgosed of:

— the logic programP,;
— the internal statéS,, =< E,N,1,A,G,T, P >;
— a particular attributélodedescribing what the interpreter is doing.

Therefore, the global state of a DALI agent can be written as:

< AGe,Sag, >=< Agx, < Pag, IS4y, Modeag >>

The tuple< E,N,I,A,G,T,P > is composed by the sets of, respectively, ex-
ternal events,present events,internal events, actiogls,gtest goals and past events.
Moreover, we denote bV P4, the logic program modified by the application of one or
more laws and by 1S 4, the internal state modified.

Each transition is described by two pairs and some lawstiggerom the first pair
and by applying the current laws, we obtain the second pagrgvBome parameters
have changed (e.g., name, internal state or modality).

First of all we introduce the general laws that modify therpaWe start with the
transitions about the incoming messages, by showing thaviomhof the communica-
tion filter level. Next we show the semantic of meta-level findlly the communication
primitives. For lack of space, we just consider few of them.

— LO: Thereceivemessage(.Jaw:
Locution: receive_message(Ag., Agy, Ontology, Language, Primitive)
Preconditions: this law is applied when the ageAl,. finds in the Tuple Space a message
with her name.
Meaning: the agentdg, receives a message frory,(environment, other agents,...). For
the sake of simplicity we consider the environment as an agent.
Response: the interpreter takes the information about the language and the ontoldgy an
extracts the name of sender agent and the primitive contained in the inisabige

— L1: Thel1l told checktrue(.) law:
Locution:told_check_true(Agy, Primitive)
Preconditions: the constraints of told rule about the name of the agent sefiggand the
primitive must be true for the primitiviold_checktrue.

Meaning: the communication primitive is submitted to the check-level representedeby th
told rules.

Response: depends on the constraints of told level. If the constraints are true the pamiti
can be processed by the next step.

L2 : ThelL2 understood(.) law:

Locution: understood(Primitive)

Preconditions: in order to process the primitive the agent must understand the corftent o
the message. If the primitive sendmessaggthe interpreter will check if the external event
belongs to a set of external events of the agent. If the primitiygdpose the interpreter
will verify if the requested action is contained in the logic program.

Meaning: this law verifies if the agent understands the message.

Response:the message enters processing phase in order to trigger a reactionynmate a
fact or propose an action.

L3 : Thel3 apply_ontology(.) law:

Locution: apply_ontology(Primitive)

Preconditions: in order to apply the ontology the primitive must belong to set of locutions
that invoke the meta-level(semdessage,propose,execyi®c,queryref,is.a fact).

Meaning: this law applies, when it's necessary, the ontologies to the incoming primitive in
order to understand its content.

Response:the message is understood by using the ontology of the agent andtgspéthe
terms.

L4: ThelL4 send.messagewith _tell(.) law:

Locution: send-msg-with_tell(Ags, Agy, Primitive)

Preconditions: the precondition for L4 is that the primitive belongs to set of locutions sub-
mitted to tell check.

Meaning: the primitive can be submitted to the constraints in the body of tell rules.
Response: the message will be sent to the tell level.

L5: Thel5 tell check(.)law :

Locution: tell_check(Agz, Agy, Primitive)

Preconditions: the constraints of tell rule about the name of the agent recelygr the
agent sendedg, and the primitive are true for L5.

Meaning: the primitive is submitted to a check using the constraints in the tell rules.
Response: the message will either be sent to addressee agent(L5).

Lk: Theadd_X(.) law:

Locution: add_X (.)

whereX € {internal_event, external_event, action, message, past_event}

Preconditions: the agent is processing X.

Meaning: this law updates the state of the DALI agent adding an item to corresporeting s
to X.

Response: the agent will reach a new state. The st&tg, of the agent will change in the
following way.

k=6 and X=internakevent:Say =< Pag, < E,N,I,A,G,T, P >, Mode >

NSag =< Pag,< E,N,I,,A,G,T, P >, Mode > wherel; = I U Internal_event.
k=7and X=externakbvent:Say =< Pag, < E,N,I,A,G,T, P >, Mode >

NSag =< Pag,< E1,N,I,A,G,T,P >, Mode > whereE; = E U external_event.

k=8 and X=actionSay =< Pag,< E,N,I,A,G,T,P >, Mode >

NSag =< Pag,< E,N,I,A,G,T,P >, Mode > whereA; = AU Action or Ay =

A\ Action if the communication primitive isancel.

k=9 and X=messag&iy =< Pagy,< E,N,I,A,G,T,P >, Mode >

NSag =< Pag,< E,N,I,A,G,T,P >, Mode > where A=AUMessage. In fact, a

message is an action.
k=10 and X=pasevent:Say =< Pay,< E,N,I1,A,G,T,P >, Mode >
NSag =< Pag,< E,N,I,A,G,T, P\ >, Mode > whereP, = P U Past_event.

— L11: TheL11 checkcond.true(.) law:
Locution: check_cond_true(Cond_list)
Preconditions: The conditions of theropose primitive are true.
Meaning: this law checks the conditions inside theopose primitive.
Response: the proposed action will either be executed.

— L12: Theupdate program(.) law:
Locution: update_program(Update)
Preconditions: No preconditions.
Meaning: this law updates the DALI logic program by adding new knowledge.
Response: the logic program will be updated.

— Lk: Theprocess; law:
Locution: processx (.) whereX € {send_message, execute_proc, propose,
accept_proposal, reject_proposal}
Preconditions: The agent calls the primitive X.
Meaning and Response: We must distinguish according to the primitives:
k=13 and X=send_message: this law calls the external event contained in the primitive. As
response the agent reacts to external event.
k=14 and X=xecute_proc:this law allows a procedure to be called within the logic pro-
gram. As response the agent executes the body of the procedure.
k=15 and X=propose: If an agent receivesrapose, she can choose to do the action speci-
fied in the primitive if she accepts the conditions contained in the requeste$hense can
be eitheraccept_proposal or reject_proposal.
k=16 and X=uccept_proposal: An agent receives aticcept_proposal if the response to a
sent propose is yes. As response the agent asserts as a pati@eaeceptance received.
k=17 and X=rejecproposal: An agent receives-aject_proposal if the response to a sent
proposal is no. In response, the agent asserts as a past everftita. r

— L18: ThelL18 action_rule _true(.) law:
Locution: action_rule_true(Action)
Preconditions: The conditions of the action rule corresponding to the action are true.
Meaning: In a DALI program, an action rule defines the preconditions for an adthis
law checks the conditions inside the action rule in the DALI logic program.
Response: the action will be executed.

We now present the operational semantic of the DALl commatiwa. The
following rules indicate how the laws applied to a pair detere, in a deterministic
way, a new state and the corresponding behavior of the agéhi. communication is
asynchronous: each agent communicates with another onehiresway that she is not
forced to halt its processes while the other entities preduesponse.

An agent inwait mode can receive a message taking it from the Tuple Space by
using the law RO. The global state of the agent changes gafsim thewait mode

to receivedmessagenode: the message is entered in the more external layer of the
communication architecture.

RO: < Ag1,< P, IS, wait >>20 < Ag1,< P, 1S, received_message, >>

The L1 law determines the transition from theceivedmessagemode to told
mode because it can be accepted only if the correspondidguta is true.

R1: < Ag1,< P, IS, received_message, >>i>< Ag1,< P, 1S, told, >>

If the constraints in the told rule are false, the messagenatabe processed. In
this case, the agent returns in the wait mode and the messmgendt affect the
behavior of the software entity because the message isedel€he sender agent is
informed on the elimination.

R2: < Ag1,< P,IS,received_messages >>miL1)

< Agq1,< P, 1S, wait >>

When a message overcomes the told layer, it must be underbtodide agent in
order to trigger, for example, a reaction. If the agent usidgrds the communication
act, the message will continue the way.

R3: < Agi,< P, IS,told, >>h2c Ag1, < P, IS, understood, >>

An unknown message forces the agent to use a meta-reasavia if the L3
law is true.

R4: < Ag1,< P,IS,toldy >>

HOt(E)’L3< Agr, < P, 1S, apply_ontology, >>

The meta-reasoning level can help the agent to understand¢dhtent of a mes-
sage. But only some primitives can use this possibility grulyathe ontology. Instead

of going inwait modewe can suppose that the agent will call a learning moduletout a
this moment we have not implemented this functionality.

R5: < Agi, < P, IS, told, >>""""2207") - 4o < P IS, wait >>

After the application of the ontology, if the agent undemnsi® the message, she
goes in thainderstood mode
R6: < Ag1,< P, IS, apply_ontology, >>5c Agi1,< P, 1S, understood, >>

If the L2 law is false, the message cannot be understood amdagent goes in
wait mode
ot(L2)

R7: < Agi, < P, IS, apply_ontology, >>""—*' < Ag, < P, IS, wait >>

A known message enters in the processing phase of the ieterpand it waits
to be examined.
R8: < Agi,< P,IS,understood, >> — < Ag1,< P,IS,process; >>

When an agent sends a message, the L4 law verifies that it mustilmitted to
tell level. In this rule we suppose that the response is true.

R9: < Ag1,< P, IS, send, S>> Agr,< P, 1S, telly >>

10

If the response is false, the message is immediately sentttadjueue of the
messages (actions) changes.

R10: < Ag1,< P, 1S, send, >>

not(Ly),Lg
—

< Ag1,< P,NIS, sent, >>

If the constraints of tell level are satisfied, the messagetis.

5,L9

R11: < Agy, < P,IS,tell, >>"33°< Agy, < P,NIS, sent, >>

A message sent by the agedy, is received by the agentig, that goes inre-
ceived message made
R12: < Ag1,< P, 1S, senty >> — < Aga, < P, IS, received_message, >>

If the message does not overcome the tell level because th&ramts are false,
the agent returns teait mode

R13: < Agq1,< P, 1S, telly >>

"ot o Agy, < P,NIS, wait >>

This last rule shows how, when a message is sent, the condisigoaction be-
comes past event.
R14: < Ag1,< P, 1S, sent, S>>0 Agi,< P, 1S, wait >>

The DALI primitive send _messageby using this locution a DALI agent is able to
send an external event to the receiver.

Ni=6,7,8,10,12L;
—

< Agl, < P, 157 ProcCeSSsend_message >> 7’< Agl, < NP, NIS, wait >>

According to the specific reactive rule, several sets of svean change. In fact,
in the body of rule we can find actions and/or goals. Since #tereal event will

become a past event, the sets of external and past eventsbeugidated. After
processing the reactive rule the interpreter goeséit mode.

13,L
=

L
< Agi1,< P,IS,processsend_message >> °< Agi,< P,NIS, sendprimitive >>

In the body of rule there could be some messages that the angshsend.

The FIPA primitive propose: this primitive represents the action of submitting a
proposal to perform a certain action, given certain preimn.

Lis,L11,
—

L
< Agi1,< P, IS, processpropose >> °< Ag1,< P,NIS, sendaccept_proposal >

This transition forces an agent receiving tpeopose primitive to answer with
accept_proposal if the conditions included in the propose act are acceptable

11

Lg,Lg
< Agl, < P, IS, Sendaccept_proposal >> 8_) ()< Agla < P7 NIS? sendi"’LfOTm >

When an agent accepts the proposal, then she performs thon.abii this case
the internal state of agent changes by adding the actiomallfithe agent communi-
cates to the proposer that the action has been done.

L
< Agi1,< P, IS, sendgccept_proposal >>B< Ag1,< P,NIS, sendfaiture >

If the action cannot be executed, then the agent sends aefgiimitive to the
proposer.

Lis,not(L11),Lg
—

< Agi1,< P, IS, processpropose >> < Agi,< P,NIS, sendyeject_proposal >>

If the conditions in thepropose are unacceptable, the response can be only a
reject_proposal.

5 The filter of the DALI architecture and the trust problem

5.1 The communication filter

In Multiagent Systems, the agents interact by exchangingsages in order to carry
on useful cooperation or competition strategies. Intévastare needed to maintain the
coordination between software entities, resolve conflois exchange informations to
reach a goal. Coordination of software entities can be aggitin terms of coordination
models and languages. In other words, a coordination madgldes a framework in
which the interaction of individual agents can be expressetican be embodied in a
(software) coordination architecture. In any real appitg the cooperation between
agents raises the problem of security. Real world apptinatiespecially those working
with public networks such as the Internet, must be carefidlgigned and developed,
taking into consideration security issues.

In this context, an agent if not suitably self-defending saffer from damages to
its knowledge base or to its behavioral rules. This leadféoinability of the agent
either because it has a wrong or devoid knowledge or bectussipnality is affected.
A DALI agent communicates with other software entities bingsa single channel,
the external event. Through this channel an agent receiessages and information,
potentially very important for its survival and efficiendymay happen that an agent
sends to another one a message with a wrong content, imeahgior not, thus poten-
tially bringing a serious damage. How can an agent recognizarect message? And
a wrong message? The filter adopted in DALI tries to answefaraas possible, this
question.

In Section 3 we shortly described the architecture of DAlrgaage. Now our
intention is to show more deeply how this filter works and hbis the practical result

12

of a research work initiated several years ago [15] by Caisiieat al. In that paper, the
authors introduced a representation of agents by meansaidls and a communication
among agents based on reflection within the metalogic pnegiag paradigm and

suggested a first idea about a communication filter based edigates referring to

the mental state of the agents. When a message is receive@xaimined by a check
level composed of a structure which is adaptable to the gbated modifiable by the

user. This filter checks the content of the message, andeiffithe conditions for

the reception are respected. If the conditions are falgesé#turity level eliminates the
supposedly wrong message.

We have constrained the reception of messages by regfrittinrange of allowed
utterances to the FIPA/DALI primitives, according to adfitl conditions defined
by the user, or, in perspective, learned by the agent heisaifexample, a filtering
condition can be reliability of the sender agent. We speitiey DALI filter by means
of meta-level rules defining the distinguished predicad#@hd told. These meta-rules
are contained in a separate file, and can be changed witHeatiaf) or even knowing
the DALI code. Then, communication in DALI is elaboratiasidrant with respect
to both the protocol, and the filter. The filter that checks rtiessage that the agent
receives is specified by providing a definition for the digtirshed predicate told.
Whenever a message is received, with content part prim@veient, Sender)) (that we
have discussed before) the DALI interpreter automatidaibks for a corresponding
told rule, which is of the form:

told(Sender, primitive(Content)) : —constrainti, . .., constrainty,.

whereconstraint; can be everything expressible either in Prolog or in DALI. If
such a rule is found, the interpreter attempts to ptold(Sender, primitive(Content))
If this goal succeeds, then the message is accepteqyramiive(Content)s added to
the set of the external events incoming into the receiventag&entually, the agent will
react to this event, by performing whatever is required lyrttessage. Otherwise, the
message is discarded. Semantically, this can be underatomaplicit reflection up to
the filter layer, followed by a reflection down to whateverntt the agent was doing,
with or without accepting the message. For a detailed andrgésemantic account of
this kind of reflection, the reader may refer @.[

Below we propose a humber of examples of filtering rules. ¢¢otiowever that
each agent can have her own set of filtering rules. Since &es these rules from a
separate file, she can vary her filtering criteria (by impagrta different file) according
to the context she is involved in.

The following rule constrain a software entity to accept adsmessage primitive
if she remembers (presumably from past experience) thasdhder is reliable, and
believes that the content is interesting. By using the piisendmessage an agent
can invoke a reactive rule of a receiver agent.

told(Sender_agent, send_message(External _event)) : —
not(unreliable P(Sender_agent)), interesting(External_event).

In the next told rule we use the FIPA primitive confirm. An ageacepts a con-

13

firm if the Sender is reliable and the proposition is consisteith her knowledge
base. The proposition is recorded as a past event and keptdaty to the directive
specified in this rule, 200 seconds.

told(Sender_agent, con firm(Proposition),200) : —
not(unreliable P(Sender_agent)), consistent_with_knowledge_base(Proposition).

Finally, we can suppose that a proposal to do an action for gemtais accept-
able if she is specialized for that action and the precomulitiare acceptable.

told(Sender_agent, propose(Action, Preconditions)) : —
specialized-for(Action), acceptable(Preconditions).

The flexibility of the filter allows also to check if the commiaation protocol is
respected from the incoming or outcoming messages. We shoexample of this
ability by using the propose and accgpbposal primitives. An agent in fact can
receive an accegdroposal only in response to propose. The agent remembarpast
event (for 200 seconds) that she has accepted the propgsatftom an action. This
information can be used by an internal event for furtherrigriees.

told(Sender_agent, accept_proposal(Action, Conditions),
in_response_to(Message), 200) : —
not(unreliable P(Sender_agent)), functor(Message, F, _), F = propose.

Symmetrically totold rules, the messages that an agent sends are subjected to a
check viatell rules. There is, however, an important difference: the gaerchoose
which messages must be checked and which not. The choice ds tma setting
some parameters in the initialization file. The FIPA/DALInemunication protocol is
implemented by means a piece of DALI code including suitabl&/told rules. This
code is contained in a separate file that each DALI agent itafas a library, so that
the communication protocol can be seen an “input paramefdéh& agent. The syntax
of atell ruleis:

tell(Receiver, Sender, primitive(Content)) : —constrainti, . .., constrainty

For every message that is being sent, the interpreter atitaiyachecks whether
an applicable tell rule exists. If so, the message is agtuseht only if the goal
tell(Receiver,Sender,,primitive(Contens))cceeds. For example, this tell rule autho-
rizes the agent to send the message with the primitive infbtine receiver is active in
the environment and is presumably interested to the infoomaVia rules like this one
we can considerably reduce useless exchange of messages.

tell(Agent_To, Agent_From,refuse(Something, Motivation)) : —

arg(1l, Something, Primitive), functor(Primitive, F),
(F =is_a_fact; F = query_ref).

14

The problem of a secure interaction between the agentsadraiated in [17, 19].
However, [17] defines a system (Moses) with a global law farcaug of agents, instead
of a set of local laws for every single agent as in DALI. Moregvin Moses there
is a special agent, calletbntroller, for every agent, while in DALLI it is necessary to
define a filter for each agent, defining constraints on the conication primitives. Our
definition of tell/told rules is structurally different frothe Moses approach: each law in
Moses is defined as a prolog-like rule having in the body bwttrcbnditions that match
with a control state of the object and some fixed actions thtdrchine the behavior of
the law. In DALLI, the told/tell rules are the constraints be tommunication and do not
contain actions. The behavior (and in particular the as)igerformed by an agent are
determined by the logic program of the agent. Another diffiee is that the DALI filter
rules can contain past events, thus creating a link betweepresent communication
acts and the experience of the agent. A particularity of tieskd/ law-governed system
is that is possible to update on-line the laws [18]. In DAllegently it is possible to
change the rules locally by varying the name of the file thataios the tell/told rules
but in the future we will improve our language by allowing ageat to modify even
filter rules.

Santoro in [19] defines a framework for expressing agentanteon laws by means
of a set of rules applied to each ACL message exchanged. Eéelnas a prefixed
structure composed by precondition, assignment and @onstvhere the precondition
is a predicate on one or more fields of the message which tedbe execution of the
assignment or the checking of the constraint. The constisainpredicate which speci-
fies how the message meeting the precondition has to be foemdadt is used to model
the filtering function. The rules consider some specific fieifla message like the name
of agents, the performative name, language, ontologwetglimode and content. We
think that the approach followed in DALI is only apparentlyngar. The Agent Com-
munication Context (ACC) in JADE is applied only to outcogimessages, while in
DALI we submit to the filter both the received messages andsém messages. The
structure of a DALI filter rule is different and more flexiblie: ACC the rule specifies
that if the preconditions are true, some fields of the messagst be defined by the
assignments in the body; in DALLI, the body of a filter rule sfies only the constraints
for the acceptance/sending of a message. Moreover, theaionsin DALI do not refer
to specific fields. They can be procedures, past eventsfbahe whatever is express-
ible either in DALLI or in Prolog. Therefore, even though bdtitle approaches use the
concept of communication filter, we think that there are bigtalifferences also due to
ability of Prolog to draw inferences and to reason in DALIwiespect to java.

5.2 Introducing trust in the communication filter

As we have seen, the filter layer of the DALI communicatiorh#@ecture allows an
agent to make public expression of its mental states, aref atpents to reason both
on this expression and on their own degree of belief, trust,about it. We will now
explain how the filter level works by means of an example, tleshonstrates how this
filter is powerful enough to express sophisticated concgyath as updating the level of
trust. Trust is a type of social knowledge and encodes etrahsaabout which agents

15

can be taken as reliable sources of information or servMesfocus on a practical
issue: how the level of Trust influences communication aralogs of the agents. We
defined a trust as a DALI past event that the agent remembengefo This event has a
following structure:

trustP(Agent,, Agent,, Trust_value)

and it means that thégent, trust in theAgent, with the value Truswalue. But, why
did we choose to get together trust and past events? We ththeghthe trust of an
agent toward another could depend on behavior of the seqmmd as time passed. A
correct behavior will augment the trust value. In order id ihe experience to the trust
concept we used two kinds of DALI events: a past event to défiadrust predicate
and an internal event to combine the behavior of an agenuss. tvWe will show this
concept by means of a simple example: we suppose thajeatt, is composed by the
following DALLI logic program.

askE(Y,Q) :> clause(agent(A),_), messageA(Y, agree(Q, A)).

trust_true(Y) : —askP(Y,Q),informP(agree(Q),
values(yes),Y), clause(know(Q), -).
trust_true(Y) : —askP(Y,Q),informP(agree(Q),
values(no),Y), not(clause(know(Q),-)).
trust_truel(Y) : —increment_trustA(Y).

trust_false(Y) : —askP(Y,Q),informP(agree(Q),values(no),Y),
clause(know(Q), -).

trust_false(Y) : —askP(Y,Q),informP(agree(Q), values(yes),Y),
not(clause(know(Q), -)).

trust_falsel(Y) : —decrement_trustA(Y).

trust(.,Y,_) : —decrement_trustP(Y);increment_trustP(Y).

trustI(A,Y,V) : —choose(A,Y,V).

choose(A,Y,V) :> trustP(A,Y,V1),increment_trustP(Y), KisV1+ 1,V = K...
choose(A,Y, V) :> trustP(A,Y, V1), decrement_trustP(Y),
V1>0,KisVl—1,V = K...

When this agent receives the external evet:(agent,,information), asks
theagent, for the information. If thexgent, knows the response (know(information)),
she can check if thegent, has been honest. The firstinternal eventst_true triggers
the reaction and augments the trust of dlgent,, towards thexgent, if the first agent
remembers that she asked an information, she had the respmuk she verified
the correctness of the response. The internal evienist_false decrements, using
the opposite policy, the trust. The last internal eventst(Ag,, Ag,, Trust_value)
increments/decrements the trust and becoming a past etenthe reaction creating
both the link with the experience of thgent, and the predicate see above that the
agent can use in order to take decisions in the future. A thiistpwe introduced this
trust past event in the body of tell/told rules specifyingtth message can be sent or

16

received only if the trust value is greater that a fixed thoégsh

told(Sender, send_-message(.)) : — clause(agent(Ag), -),
trustP(Ag, Sender, N), N > threshold.

tell(Receiver, Ag, send-message(.)) : —trustP(Ag, Receiver, N1), N1 > threshold,.

In this way, we have created a correlation between the corivation and the
experience that can protect an agent from intentional ensitd damages. These rules
contain the primitivesend_message, but we can adopt similar rules for all others FIPA
primitives. In order to improve our approach to trust, in theire we could introduce
in the body of tell/told rule more sophisticated algorithiimally, the DALI language
provides particular actions that manage the past eventsnanement/decrement the
value of trust on the grounds of the expected behavior of thercagents involved
in the coordination system. These actions atevp_past,add_past and set_past:
drop_pastladd_past deletes/adds a past event whiet_past sets the time of the
memorization of a past event. Now we will show by means of amge how trust
can influence the behavior of our agents.

6 Anexample

We consider a cooperation context where an ill agent askgikads in order to find a
competent specialist. When the agent has some particulgrteyms, she calls a family
doctor that recommends her to find a lung doctor. The patierdugh a yellow pages
agent, knows the names and the distance from her city of twoigists and asks the
friends about them. The patient has a different degree of tm her friends and each
friend has a different degree of competence about the distsidMoreover, the patient
knows the ability of the friends about medical matters: akchell be less reliable than
a nurse. In order to introduce this concept within the agatiept, we adopt some past
event with the suffix skill:

skill P(friend-nurse, S1) andskill P(friend_clerk, S2)

whereS; > Ss. We suppose that the ill agent receives a message only if she has agethie
sender a trust value greater than a threshold 4:

told(Ag, send_-message(.)) : —trustP(_, Ag, N), N > 4.

We can adopt a similar rule also for the outcoming messagews. We face the trust
problem and show more interesting DALI rules of the agentslired in this example.
The cooperation activity begins when the agent becomes ill, and communicates
her symptoms to doctor. If those symptoms are serious, thedadvises the patient
to find out a competent lung doctdd. If the agent knows a specialisip and has a
positive trust valud/; on her, she goes to lung doctor, else asks a yellow page agent.

17

consult_lung_-doctor E(M) :> clause(agent(Ag), -), choose_if trust(M, Ag).
choose_trust(-, Ag) : — clause(i_know_lung_doctor(Sp),) ,

trustP(Ag, Sp, V1), Vi > 0, go_tolung_-doctor P(Sp).
choose_trust(M, Ag) : — messageA(yellow_page, send_message(search(M, Ag), Ag)).

The yellow pages agent returns to patient, by usingthf@rm primitive, a list of
the lung doctors. Now the patient must decide which lungaldstmore competent and
reliable. How can she choose? She asks her friends for help.

take_ information_about(Sp) : —clause(lung_-doctor(Sp), -).

take_ in formation_aboutI(Sp) :> clause(agent(Ag), -),
messageA(friendl, send_message(what_about_competency(Sp, Ag), Ag)),
messageA(friend2, send-message(what_about_competency(Sp, Ag), Ag)).

Each friend, having the informatiotvmpetent(lung-doctor,,Value) about the
ability of the specialists, sends anform containing the evaluation of the competence.

what_about_competency E(Sp, Ag) :> choose_competency(Sp, Ag).
choose_ competency(Sp, Ag) : —clause(competent(Sp, V),),
messageA(Ag, inform(lung_doctor_competency(Sp, V), friendy)).
choose_ competency(Sp, Ag) : —
messageA(Ag, inform(dont_know_competency(Sp), friends)).

The patient is now aware of the specialist and friend’s cdemy and has a
value of trusttrustP(Ag,, Friend,, Trust_value) and a value of competence
skillP(Friend,, Skill_value) in the medical matter on the friends consolidated
through the time. Moreover, she knows the distance of theisligts from her house.
By using a simple rule that joins those parameters, sherassigalue to each advice:
specialist_evaluation(lung_doctory, friend,, Value).

The ill agent will choice the lung doctor in the advice havihg greatel’ alue and
will go to the specialistfollow_advice A(Friend), go_to_lung_-doctor A(Sp).

Will she be cured? After some time, the patient will do an exarher health. If
she does not have any symptom (temperature,thorax paighcout of breath), she
increases the trust on the friend that has recommendednpeltactor and sets the trust
on that specialist to a higher value:

cured (Sp, Friend) : —go_tolung-doctorP(Sp), follow_adviceP(Friend),
not(temperatureP), not(thorax_painP), not(coughP),not(out_of _breathP).

curedl (Sp, Friend) :> clause(agent(Ag), -), trustP(Ag, Friend, V), Vi is V 4+ 1,
drop_pastA(trust(Ag, Friend,V)), add_past A(trust(Ag, Friend, V1)),
assert(i_know_lung_doctor(Sp)), set_pastA(trust(Ag, Friend, V'), 100),
add_pastA(trust(Ag, Sp, 1)), drop_past A(go_to_lung_doctor(_)).

If she is still ill, she decreases the trust value on the &igrat has recommended
the lung doctor:

18

no- cured(Sp) : —go_tolung_doctor P(Sp), temperatureP.
no_ cured(Sp) : —go_to_lung_doctor P(Sp), thoraz_painP.
no- cured(Sp) : —go_to_lung_doctor P(Sp), coughP.

no- cured(Sp) : —go-tolung_doctor P(Sp), out_of _breathP.

no_ curedI(_) :> clause(agent(Ag), -), follow_adviceP(Am),
trustP(Ag, Am, V),V >=1,V1is V — 1,
drop_pastA(trust(Ag, Am,V)), set_past A(trust(Ag, Am,V1),1000),
add_pastA(trust(Ag, Am, V1)), drop_pastA(go-to_lung_doctor(_)).

The decrement of the trust value of a friend can affect thelctevel of communi-
cation preventing the sending/receiving of a messageoto/that friend. This happens
if the trust on the agent is less than the trust’s threshoé&tifipd in the body of a
told/tell rule. In this case the patient communicates terfd that the incoming message
has been eliminated, by using an inform primitive:

send_ message_to(friend,
inform(send-message(what_about_competency(lung_doctor, patient), patient),
motivation(refused_-message), patient), italian, [])

wheresend_-message(what_about_competency(lung_doctor, patient), patient)
is the eliminated message with the motivationtivation(re fused_message).
In our system, trust can change dynamically, so that it'siides that an agent, excluded
from the communication because she has a too low value df ingseases this value
by making some actions or by asking other agents to pleaddser. c

7 Conclusion

In this paper we have faced the trust problem with a simplecsgmh, using cooperating
DALI agents and some parameters such as trust and competbietechange dynam-
ically. We have also shown how the filter level can work, efiating the messages that
could damage the agents. In the future, we intend to studyirapment more real-
istic algorithms: in particular, we mean to take advantafysoone related results of
game theory. We also mean to improve the DALI filter level, biyaducing forms of
meta-reasoning also in the body of tell/told rules.

References

1. J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzaromeflection Principles in
Computational Logic Journal of Logic and Computation, Vol. 10, N. 6, December 2000,
Oxford University Press, UK.

2. S. Costantini. Towards active logic programming. In A. Brogi andiP. editors, Proc. of
2nd International Workshop on component-based Software Devefbmgm€omputational
Logic (COCL'99) PLI'99, (held in Paris, France, September 1999), Available on-lif,
http://www.di.unipi.it/ brogi/ResearchActivity/COCL99/proceedings/intéaxl.

3. S. Costantini. Many references about DALI and PowerPoint ptagens
can be found at the URLs: http://costantini.di.univag.it/pulstiéfi.ntm and
http://costantini.di.univag.it/Al2.htm.

19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. S. Costantini and A. TocchioA Logic Programming Language for Multi-agent Systems
In S. Flesca, S. Greco, N. Leone, G. lanni (edsogics in Atrtificial Intelligence, Proc. of
the 8th Europ. Conf., JELIA 200Zheld in Cosenza, Italy, September 2002), LNAI 2424,
Springer-Verlag, Berlin, 2002.

. S. Costantini, A. Tocchio and A. VerticchioSemantic of the DALI Logic Programming
Agent-Oriented Languagesubmitted toLogics in Artificial Intelligence, Proc. of the 9th
Europ. Conf., JELIA 2004

. FIPA. Communicative Act Library Specificatiofechnical Report XC00037H, Foundation
for Intelligent Physical Agents, 10 August 2001.

. R. A. Kowalski,How to be Artificially Intelligent - the Logical WaDraft, revised February
2004, Available on line, URL
http://www-Ip.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

. P. Mc Burney, R. M. Van Eijk, S. Parsons, L. Amgoud, Dialogue Game Protocol for
Agent Purchase Negotiations. Autonomous Agents and Multi-Agent Systems Vol. 7 No.
3, November 2003.

. Yuh-Jong Hu,Some thoughts on agent trust and delegatiBnoceedings of the fifth inter-

national conference on Autonomous agents,2001.

Yahalom, R. Klein, B. Beth, T. Sch. of Busrust relationships in secure systems-a dis-

tributed authentication perspectivAdmin., Hebrew Univ., Jerusalem; This paper appears

in: Research in Security and Privacy, 1993. Proceedings., 1¥B Gomputer Society Sym-
posium on.

Dorothy E. Denning A new paradigm for trusted systemBroceedings on the 1992-1993

workshop on New security paradigms, Little Compton, Rhode Island, t&itates.

Audun Josang,The right type of trust for distributed system®roceedings of the 1996

workshop on New security paradigms,1996,Lake Arrowhead, GaldpUnited States.

Catholijn M. Jonker and Jan Treufprmal Analysis of Models for the Dynamics of Trust

Based on ExperiencesProceedings of the 9th European Workshop on Modelling Au-

tonomous Agents in a Multi-Agent World,1999,Springer-Verlag.

S. Costantini and A. TocchioA Logic Programming Language for Multi-agent Systems

In S. Flesca, S. Greco, N. Leone, G. lanni (edsogics in Atrtificial Intelligence, Proc. of

the 8th Europ. Conf., JELIA 2002held in Cosenza, ltaly, September 2002), LNAI 2424,

Springer-Verlag, Berlin, 2002.

S. Costantini, P. Dell’Acqua and G. A. LanzaroReflective Agents in Metalogic Program-

ming Meta-Programming in Logic (Meta92), A. Pettorossi (ed.), LNCS, 40 135-147,

1992.

Colin English, Sotirios Terzis, and Waleed Wagealtagineering Trust Based Collabora-

tions in a Global Computing EnvironmenTrust Management: Second International Con-

ference, iTrust 2004, Oxford, UK, March 29 - April 1, 2004. Rredings, Springer-Verlag

Heidelberg.

Naftaly H. Minsky and Victoria Ungureanulaw-governed interaction: a coordination

and control mechanism for heterogeneous distributed systeh@M Trans. Softw. Eng.

Methodol.,2000,ACM Press.

Naftaly H. MinskyThe Imposition of Protocols Over Open Distributed SystdEISE Trans.

Softw. Eng.,1991,IEEE Press.

A. Di Stefano and C. Santotntegrating Agent Communication Contexts in JAOElecom

Italia Journal EXP, Sept. 2003.

20

