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Abstract

Many interesting architectures for defining intelligent agents
have been proposed in the last years. Logic-based archi-
tectures have proved effective for reproducing “intelligent”
behavior while staying within a rigorous formal setting. In
this paper, we present the DALI multi-agent architecture, a
logic framework for defining intelligent agents and multi-
agent systems.

Introduction

An architecture can be seen as a unifying and coherent form
or structure whose instances exhibit certain behaviors and/or
certain properties. According to the most recent studies in
neuropsychology and cognitive sciences, our brain can be
considered a sharp architecture where 100 billions of neu-
rons work together, each one belonging to a specialized area,
for generating the human intelligence.

In conformity with recent studies in neuropsychology and
medical cognitive sciences, the frontal lobe of the cortex
is responsible of high-level brain function such as thought
and action; the cerebellum is the region that plays an impor-
tant role in the integration of sensory perception and motor
output; the limbic system produces the “emotional brain”;
the hippocampus is involved in transferring memories from
short term to long term. The deep temporal lobes are very
important in the storage of past events, while the frontal ones
are related to speech production. Finally, according to recent
studies, a particular brain area, called the “MrD”, is implied
in learning activities.

Researchers in Artificial Intelligence and Intelligent
Agents since long have tried to understand what intelligence
is, and to reproduce the mechanisms of human intelligence.
BDI (Belief, Desires, and Intentions) [(Rao & Georgeff
1991), (Novdk & Dix 2006)], Layered [(Muller 1997),
(Lisetti & Marpaung 2005)], Cognitive [(Laird, Newell, &
Rosenbloom 1987), (Byrne 2001)] and Logical [(Hindriks
et al. 1999), (Jo Alferes, & Pereira 2002), (Kakas et al.
2004)] architectures have been some of the results of this
long-lasting effort (we apologize with the proposers of the
many interesting approaches that we cannot mention for
lack of space: the reader may refer to (Tocchio 2005) for
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a more comprehensive survey). Generally these architec-
tures describe autonomous, reactive, proactive and socially
able entities, capable of reaching their goals by means of
specific reasoning processes. BDI architectures adopt con-
cepts as beliefs, desires and intentions for simulating the in-
telligence, while layered architectures interconnect different
specialized layers for determining the global intelligent be-
havior. The cognitive approach explores the fundamental
interaction of implicit and explicit cognition as well as cog-
nitive social simulation. Finally logical architectures try to
reproduce intelligence through a symbolic representation of
the world manipulated by means of inferential processes.

Surprisingly enough, many of these architectures actually
reproduce (parts of) of the architecture of the human brain
as it is understood at present by specialists. In fact, Figure 1
shows a cognitive model of natural intelligence presented in
the paper (Wang et al. 2003) and considered to be a synthe-
sis of the brain mechanisms. Sometimes, agent architectures
are even more detailed in their description of the functions
that contribute to producing “intelligence”. Clearly how-
ever, the structural properties and the highly parallel func-
tioning of the brain areas constituting the “modules” of the
brain architecture are far from being reproduced, as they are
not even fully understood.

The similarities however suggest that, to some (for now
necessarily limited) extent, functionalities of the cortex, the
cerebellum, the hippocampus, the lobes and the MrD can be
reproduced in computational architectures, and in particu-
lar in architectures based on computational logic. Starting
from this consideration, in this paper we describe in a non-
standard way a logic-based agent architecture: in particu-
lar, we organize the description by pointing out the analo-
gies with the brain architecture. Clearly, we are conscious
of our limits and we only mean to make the description
more appealing to a reader. In particular, we describe the
fully-implemented architecture based on the logic language
DALI ((Costantini & Tocchio 2002), (Costantini & Tocchio
2004a)).

Can a logical agent which is an instance of the DALI ar-
chitecture “think”? Maybe this is at present a fairly too
ambitious objective. However, to a more limited extent
DALI agents can reason, are in principle able to survive
in partially-known environments and to perform complex
tasks.
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Figure 1: Layered brain architecture

The DALI language has been introduced and discussed
under various aspects in (Costantini & Tocchio 2002; 2004a;
2006b; 2005; 2004b). DALI has a full declarative seman-
tics for the single-agent case (Costantini & Tocchio 2006a)
where however more work is needed for an effective exten-
sion to the multi-agent case. The interpreter underlying the
architecture is fully implemented, according to the opera-
tional semantics described in (Tocchio 2005).

The DALI architecture

Similarly to the human brain, which is a collection of sev-
eral specialized areas interconnected among them, agents ar-
chitectures in general embody different functionalities man-
aged by a global life cycle. Functionalities correspond to ei-
ther basic or advanced abilities that agents, according to the
particular application domain, have to exhibit. It is widely
acknowledged that some of these abilities, namely reactivity,
proactivity, social ability and learning, are essential com-
ponents of intelligence. The global life cycle interleaves
the agent activities, so as to properly balance reactivity and
proactivity, as emphasized in (Kowalski 2006). The brain
abstract architecture in Figure 1 includes reasoning, learn-
ing, induction, deduction, problem solving and synthesis as
higher cognitive processes useful for describing the human
intelligence. Reasoning layer infers possible causal outputs
from given inputs based on known causal relations between
a pair of cause and effect proven true. In other words, it
manages the human reactive capabilities. Problem solving
is a brain cognitive process that searches a solution for a
given problem while synthesis combines objects or concepts
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Figure 2: DALI architecture

(Wang et al. 2003). Their activity can be considered as a
source of the human proactivity. Perceptions coming from
the environment trigger several activities, from the reasoning
stage where the input is recognized to the learning, induction
or deduction stages where the capabilities for interpreting
new perceptions are exploited and combined.

The components of the DALI architecture are shown in
Figure 2. The perception Layer is the direct interface be-
tween an agent and its environment. When a stimulus has
been captured by this layer, the TOLD/Meta layer has a
role of “filter”. TOLD rules perform a selection accord-
ing to some constraints whose purpose is to discard those
perceptions coming from untrusted or unwelcome or irrel-
evant sources. Perceptions that pass the TOLD check but
that the agent is unable to “understand” are processed by the
Meta layer. Meta rules employ ontologies for trying to make
perceptions understandable. Stimuli which are recognized
by the agent proceed to the Reactive Layer, where reaction
takes place: some actions or goals are to be undertaken and
thus the corresponding layers, Action and Planning, are ac-
tivated. Past perceptions, goals and actions are recorded by
the agent and become past events. Past events are useful for
triggering the reasoning activity of the Proactive Layer.

There is a general agreement upon the assumption that
intelligence derives from exploiting a combination of differ-
ent kinds of sources: knowledge, experience, instinct, emo-
tions and so on. The proactive Layer exploits this princi-
ple by means of proactive rules whose body may contain
in conjunction: facts coming from the Knowledge Layer,
past events and the results of logical inference. The agent
keeps trace of proactive conclusions by means of past events.
The Learning Layer supports the acquisition of new facts
and rules, where an agent can either learn from experience
or from being told by others (Costantini & Tocchio 2005).
Finally, the Tell Layer filters the out-coming messages by
means of constraints rules similar to Told ones. In the next
sections we explain in some detail reactivity, proactivity and
learning features of DALI agents architecture.



Reacting via external events

Reaction is a primary and essential function, strictly related
to survival and however to the interaction with the environ-
ment. In our brain, sensory information is perceived and
interpreted, and then the stimulus elicits a certain learned or
reflexive emotional response. As shown in Figure 1, percep-
tions coming from the environment are interpreted by the
higher cognitive functions of the brain. If there is no prede-
fined reaction, our brain presumably tries to find through de-
duction, induction or learning the most plausible reaction. In
logic approaches, observation of the world and action in the
world are mediated by a reasoning process that prevents be-
haviors form being extremely instinctive: a perception com-
ing from the environment is interpreted according to a set of
rules and contexts and the correspondingly selected action is
the one that will be performed.

Formalizing the environment as the set E = {e;
t1,...,en : tn} of possible environmental states, where t; is
the time in which the perception e; has been received, we can
consider agents as entities capable of perceiving a subset of
E, since omniscience is not realistic. In the DALI language
the environmental states that an agent perceives are called
external events. Rules belonging to the Reactive Layer that
specify the reaction in response to external events are called
reactive rules. A reactive rule has the syntax:

e;E :> Body

where postfix F indicates the external event and Body is a
sequence of actions, goals or atoms. Each external event
in the rule head is associated to a context. In this way,
reaction happens only if the particular rule defining the
context authorizes it. This rule has the syntax: e; :<
Context_Decription where Context_Description is a se-
quence of atoms describing the agent experience and knowl-
edge.

Consider a shipwrecked agent being in a desert island. It

has to spy the sea searching a ship for going home and, if
a ship appears on the horizon, it has to move the arms for
capturing the attention. This can be synthesized by the rule:
see_shipE :> move_armsA, shoutA.
where the postfix A indicates that move_arms and shout
are actions. Instead, an agent which is on holiday with the
family and sees a ship on the horizon will not adopt the same
behavior. This is the purpose of the following context rule:
see_ship :< i_am_shipwrecked, in_island.
Only if the agent is in the condition of shipwrecked in an
island, the reaction is allowed. After the reaction, the exter-
nal event is transformed into a past one. This means that the
agent is capable of remembering that a reaction has taken
place and can use the information for further proactive or
planning activities.

“Thinking” via internal events

Like humans, agents need not only to react but also to rea-
son about their own internal state. This is a complex activity
depending on several factors such as knowledge, experience
and reasoning. The Proactive Layer is composed of internal
events rules. In particular, the inferential capability of this
layer is based on pairs of rules that work together. The body

of the first one contains invocations to the Past Events Layer,
the Knowledge Layer etc. The body of the second one ex-
presses the reaction to the internal conclusion reached by
the first one. Body can contain actions, goals and what is
expressible in prolog. More precisely, the syntax is:

i; + —p1 P, kba, 3P, .., kb,.

i;1 > Body

where n > 0, ¢; is the internal event, p; P are past events
and kb; are knowledge base facts or atoms. After reaction,
each internal event becomes a past event and may occur in
the body of the first rule of other internal events. This de-
vice supports complex reasoning processes where an inter-
nal conclusion can fire another one and so on. The first rule
of each internal event is attempted from time to time accord-
ing to specific directives. Whenever conditions in the body
are satisfied, the reaction happens.

Consider again the shipwrecked agent in the island.
Reactivity allows it to try to be rescued if a ship is near the
island. While waiting for rescue however, it risks to starve.
So, it has to search for food and it can eat at most every k
hours for sparing the available food. To these aims, internal
events can be useful:
find_food(X) : —in_island, not(see_shipP),

have_fish_hookP, X = fish.
find_food(X) : —in_island, not(see_shipP),

see_coco_palm, X = coconut.
find_foodl(X) :> take_foodA(X).
i_am_hungry(X) : —i_am_hungryP(T1), now(T),

T—-T1>k, find_foodP(X).
i-am_hungryl(X) > eatA(X).

We suppose that if our agent has a fish hook then it can
go fishing or else, if there is a palm, it can take a coconut.
see_ship and have_a_fish_hook have been expressed as
past events (denoted by postfix P) because we suppose they
record past perceptions. If the agent found some food, the
first internal event becomes a past one and is used by the
second internal event for drawing the conclusion. In fact, if
the agent has food and % hours have elapsed from the last
meal, it can eat again. This example shows how different
internal events can be related.

Affecting the environment via actions

Human beings not only think but also act. Actions are deter-
mined both by reactive and proactive activities and, in gen-
eral, intelligence can be identified as the process bringing
to choice the best action to do. How can the best action be
determined? Not only according to the reasoning but also
to the context. In fact, if the shipwrecked agent decides to
cook a fish, it must be sure to have the possibility of making
a fire. Or, the action of swimming is advisable only if no
shark is nearby. Preconditions to actions, typical of the hu-
man reasoning, can be translated into a logical formalism by
means of specific rules. In the DALI language, these rules
are called action rules and have the following syntax:

a; :< Body

where a; is an action and Body is a sequence of past events,
atoms or beliefs. Actions rules are included in the Action
Layer. In Figure 2 it can be seen that this layer exploits



information coming from the Knowledge and Past Events
Layers. Also, it updates the Past Events Layer because each
action, when performed, becomes a past event. Consider a
scenario where our agent observes in the sea a fish. A fish
can possibly be dangerous: e.g., a Blue-Ringed Octopus in-
jects a neuromuscular paralyzing venom. Our agent must
avoid to get this kind of fish.

see_fish(X) :> get_fishA(X).

get_fishA(X) :< not(dangerous(X)).
dangerous(blue_ringed_octopus).

Actions can also be messages. Messages are managed by the
Message Layer and can be associated to actions rules that
specify the preconditions for sending that. Out-coming mes-
sages can be subjected to the TELL Layer that filters them
according to some constraints involving the addressee and/or
the content. A particular kind of internal events is used
in the DALI language for coping with easy planning prob-
lems. These rules are contained in the Planning Layer and
are based on particular kind of events called goals. Features
of DALI planning mechanisms are explained in (Costantini
& Tocchio 2004b).

Remembering via Past Events

Our brain is capable of remembering facts and sensations,
successes and errors. In particular, the brain architecture
in Figure 1 considers the “memory layer” and the “mem-
orization” process. Memory layer comprises Short Term
and Long Term memory. Short Term memory(STM) allows
us to record temporary data like a telephone number that
we have to use only once, while Long Term memory(LTM)
maintains information (reactions, internal conclusions, ex-
periences) that the brain considers relevant. Relevance can
be either pre-set by a biological predisposition or established
by past repeated experiences. Memorization is a meta cog-
nitive process that retrieves, encodes and stores information
in LTM.

As emphasized in previous Sections, the DALI architec-
ture contains a particular Layer dedicated to remember the
more relevant activities of the agent life. Reactions, internal
conclusions, actions, goals, facts are transformed into past
events and stored in the Past Events Layer. Past events are
managed in different ways according to their role and their
expected validity. In fact, not all past events are remem-
bered forever: particular directives determine how long or
until when conditions they have to be kept. Moreover, past
events are divided into two sets: P and PNV. The former one
contains current “valid” past events that describe the present
state of the world as perceived by the agent, while the latter
one contains old instances. Past events in PNV may have
however a relevant role for the entity decisional process. In
fact, an agent could be interested in knowing how often an
action has been performed or a particular stimuli has been
received by the environment. For instance, consider again
the life of our shipwrecked agent. It might for instance infer
if a sea area is dangerous according to how often it observed
a shark there.

Repetition of past events in PNV can be also exploited for
reinforcing the confidence in some facts. If the agent for in-
stance observes for a long period that each king crab is big,

it can conclude with a certain degree of confidence that all
king crabs are big. Past events are also useful for checking
the correctness of the agent behavior via constraints. We can
find a certain similarity between the meta cognitive Memo-
rization process and the management of past events in P and
PNV. More information about this DALI language feature
can be found in (Costantini & Tocchio 2006b).

Acquiring new knowledge

What does it happen if a perception is not recognized? Both
humans as agents have to “overcome” their limits by adopt-
ing suitable strategies capable of guaranteeing their survival.
In our brain, learning is a cognitive process that gains knowl-
edge of something or acquires skills in some action or prac-
tice by updating the cognitive model in LTM. In general,
humans apply two strategies for improving their knowledge:
individual learning and social learning. In individual learn-
ing, humans try to overcome the information lack problem
by exploiting their internal capabilities. In social learning,
one or more external individuals are involved. Individual
learning can involve deduction or induction. Induction, from
available inputs examples, tries to elicit a general rule; de-
duction applies general principles to reach specific conclu-
sions. The learned rules resulting from these processes are
provisionally saved in the long-term memory and experi-
mented. Rule whose experimentation has been positive are
permanently stored in the long-term memory.

A social learning process is more complex: it involves
concepts such as trust, competence, roles and so on. In gen-
eral, this kind of learning in humans is based on imitation
processes. In 1796, for the first time Dawkins introduced
the concept of meme as a way of propagating knowledge.
According to the Oxford Dictionary, meme is an element of
behavior or culture passed on either by imitation or by other
non-genetic means. Meme could be a melody, an idea, a
phrase, a method for, e.g., modeling pots or building arches.
Imitation in the social learning is the key factor of many
variations in the evolutionary process. In fact, an individual
transmitting a meme could be in bad faith or the individual
receiving the meme could interpret it in a different way. This
potentially harmful behaviors sometimes can generate new
abilities and advantageous strategies.

What about agents? Agents usually live in open environ-
ments where social learning strategies are possible but also
risky. Agents come from different technologies, have dif-
ferent roles and competence. Learning by imitation must
be a long process where each meme has to be considered
under many points of view: its origin, its initial context
and its potential role. I.e., the acquired information must
be experimented before being incorporated into the agent’s
knowledge base. Some of the complex mechanisms of so-
cial learning have been reproduced in the DALI architec-
ture (Costantini & Tocchio 2005). In DALI, agents are able
to exchange rules for improving their abilities. While re-
trieving and acquiring rules comparatively easy, the relevant
problem to learn a correct information remains. Intelligent
agents can have different specializations for different con-
texts and a learning rules process cannot ignore this. Even
agents having the same specializations can adopt behavioral



rules that can be mutually inconsistent.

We introduced in each DALI MAS a particular entity,
the yellow_rules_agent, keeping track of the agents spe-
cialization and reliability. When an entity needs to learn
something, it asks the yellow_rules_agent for knowing the
names of agents having the required specialization and being
reliable. When an agent will decide whether to incorporate
the learned rules into its knowledge base, it will notify the
yellow_rules_agent about its degree of satisfaction. Thus,
the reliability rate of the provider agent will be accordingly
affected. In a first stage, the learned rules will be added to
the agent knowledge base as past events and will be sub-
ject to evaluation. This preliminary check will verify some
properties as, for example, the syntactic correctness or con-
sistency. Moreover, it avoids that conflicting rules are learnt.
Selected rules survived will be used by the agent during its
life and their utility and efficiency will be established. Ac-
cording to the evaluation, the acquired rules will be finally
either learned or eliminated.

DALI Declarative Semantics in a nutshell

The evolutionary semantics proposed in (Costantini & Toc-
chio 2006a) has the objective of providing a unifying frame-
work for various approaches to reactive and proactive logic-
based agents. This semantics is based upon declaratively
modeling the changes inside an agent which are determined
by changes in the environment as well as agent’s own self-
modifications. The key idea is to understand these changes
as the result of the application of program-transformation
functions. In this view, a program-transformation function is
applied upon reception of an event, internal or external to the
agent. In fact, the perception of an event affects the program
defining the agent: for instance, an event can be stored as a
new fact in the program. Similarly, actions which are per-
formed can be recorded as new facts. All the “past” events
and actions will constitute the “experience” of the agent.

Recording each event or action or any other change that
occurs inside an agent can be semantically interpreted as
transforming the agent program into a new program, that
may procedurally behave differently than before: e.g., by
possibly reacting to the event, or drawing conclusions from
past experience. Furthermore, the internal event correspond-
ing to the decision of the agent to undertake an activity trig-
gers a more complex program transformation, resulting in
version of the program where the corresponding intention is
somewhat “loaded” so as to become executable.

Then, every agent will be equipped with an initial pro-
gram P, which, according to these program-transformation
steps (each one transforming P; into P; 1), gives rise to a
Program Evolution Sequence PE = [Py, ..., P,]. The pro-
gram evolution sequence will have a corresponding Seman-
tic Evolution Sequence M E = [My, ..., M,,] where M; is
the semantic account of P; according to the specific lan-
guage and the chosen semantics. The couple (PE; M E)
is called the Evolutionary Semantics of the agent program
Pyg4, corresponding to the particular sequence of changes
that has happened. The evolutionary semantics represents
the history of an agent without having to introduce the con-
cept of “state”.

Various agent languages and formalisms will affect the
following key points:

1. When a transition from P; to P;; takes place, i.e., which
are the external and/or internal factors that determine a
change in the agent.

2. Which kind of transformations are performed.

3. Which semantic approach is adopted, i.e., how M is ob-

tained from P;. M, can be for instance a model or an
initial algebra. In general, given a semantics S we will
have M; = S(P;).

A transition from P; to P;; can reasonably take place, for
instance: when an event happens; when an action is per-
formed; when a new goal is set; upon reception of new
knowledge from other agents; in consequence to the deci-
sion to accept/reject the new knowledge; in consequence to
the agent decision to revise its own knowledge. We say that
at stage P11 of the evolution the agent has perceived event
ev meaning that the transition from P; to P;;; has taken
place in consequence of the reception of ev. It is reasonable
to assume that at the stage P, the agent will cope with the
event by executing a selected reaction.

In our approach, we assume to perform an Initialization
step by which the program P4, written by the programmer,
is transformed into a corresponding initial program Py via
some sort of knowledge compilation. This compilation can
on one extreme do nothing, while on the other extreme it
can perform complex transformations by producing “code”
that implements language features in the underlying logical
formalism. Py can be simply a program (logical theory) or
can have additional information associated to it.

The evolutionary semantics allows properties of an agent
behavior to be formally proved (e.g., by induction) and po-
tentially enable model-checking techniques to be employed
for verifying that certain states are finally reached. However,
the extension to the multi-agent case is not trivial and is still
work in progress, as coping in a general way with possible
interactions is far from easy.

DALI practical applications: a case-study

The DALI architecture has been fully implemented and has
been experimented in real-world applications. In this sec-
tion, we report about a recent application that has been de-
veloped in the context of the CUSPIS European Project!. An
Ambient Intelligence scenario has been built, where DALI
agents have been put at work at Villa Adriana in Tivoli, a
fascinating and enormous archaeological area.

The multi-agent system that we have designed and imple-
mented in this project is called DALICA. The main goal of
the DALICA MAS system is that of supporting visitors of

"The work reported in this section has been partially supported
by the project CUSPIS (GJU/05/2412/CTR/CUSPIS) “A Cultural
Heritage Space Identification System”. The CUSPIS project has
been co-funded by Galileo Join Undertaking User Segment call 1A.
Since Galileo satellites will be operative in 2008, experimentations
of the CUSPIS project have been performed by means of EGNOS,
European Geostationary Navigation Overlay Service, a precursor
of Galileo.



either museums or archeological areas. In particular, visi-
tors receive on their mobile devices appropriate and person-
alized items of information regarding the cultural assets they
are visiting. Each user is assisted by an agent that acts as a
guide during a visit, suggests routes and proposes suitable
pieces of information. This by starting from a standard user
profile which the agent later on tries to improve by eliciting
the user’s cultural awareness, habits and preferences. The
enhanced profile will lead the agent to update the route and
to propose customized information, including suggestions
for future possible visits either to the same or to other lo-
cations. The Galileo satellite signal allows agents to follow
the users during their visit and to capture their habits and
preferences.

Reactivity allows the agents to adopt a specific behavior
in response to what the user does and where she/he goes.
Pro-activity has a main role because the reasoning process
that leads to the interests deduction is based on the corre-
lation of several data coming from the environment, from
the ontology and from some basic inferential processes. In
particular, the deduction process has been based on several
observations such as the visitor route, the visited cultural
assets, the time spent in visiting a specific cultural asset or
explicit questions proposed directly to the visitor. More in-
formation about Users Profile Deduction via DALI agents in
the CUSPIS project can be found in (Costantini er al. 2007).

Conclusions

We have presented the DALI agent architecture, that in our
view includes all aspects that are commonly consider nec-
essary in order to produce “intelligent” behavior. We have
in fact emphasized the similarity between this architecture
and a plausible functional model of the human brain. DALI
is fully implemented, has a logical semantics and has been
experimented. In the future, as a better understanding of the
human brain will hopefully be reached, agent architectures
in general will presumably evolve, and agents will become
a more intelligent and useful support for the human life.
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