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Abstract. In this paper, we deal with detecting behavioral anomalies in agents.
In particular we consider agents defined via logic languages, and we take as a
case-study the DALI language previously defined by the authors. We start propos-
ing a formalization of aspects of agent memory and experience and we emphasize
how the construction of memories can be a concrete aid for verification of future
activities. The anomalies detection process is based on a set of constraints that
use the agent past experience to identify behavioral traces different from those
expected. Anomalies verification can be performed without stopping agent life
and new constraints can be dynamically added thus allowing to check what the
agent learns during its activity.

1 Introduction

Like human communities, agents can count only upon their capabilities for facing com-
plex tasks and maintaining a high performance in dynamic environments where they
are put at work. In order to cope with the unknown stimuli of the world, an agent needs
to observe its past behavior and to deduce the best actions to do, trying to avoid the
errors performed in previous situations. This motivates the importance of recording the
most relevant facts which happened in the past and of recovering error and behavioral
anomalies by means of appropriate strategies.

By providing agents with the capability of maintaining a track of past behavior and
with a mechanism to elicit performed errors and a wrong behavior recovery strategies,
it is possible to make these entities more powerful and reliable. The definition of frame-
works for checking agent behavior during its life based on experience has not been
really treated up to now. In fact, correspondingly to the agent framework complexity,
there has been an increasing need for agent platforms whose entities would be capable
of exhibiting a correct and rigorous behavior with respect to the expectations, but typ-
ically developers have applied model-checking techniques to system abstract models
thus neglecting the verification of behavioral anomalies during the agent life.

The Model-checking paradigm allows to model a system S in terms of automata
by building an implementationPs of the system by means of a model-checker friendly
language and then verifying some formal specifications. These are commonly expressed
either as formulae of the branching time temporal logic CTL [4,23] or as formulae of



Linear Temporal Logic [14,30]. Model-checking techniques have been adopted in order
to check systems implemented in AgentSpeak(L) [3]. In order to apply model-checking
techniques, the authors have defined a variation of the language aimed at allowing its
algorithmic verification. This variation is then submitted to model checkers. Penczek
and Lomuscio have defined bounded semantics of CTLK [22], a combined logic of
knowledge and time. The approach is to translate the system model and a formulaφ,
indicating the property to be verified, to sets of propositional formulae then submitted
to a SAT-solver.

Methods for checking behavior are generally applied at the initial phase of the agent
life. But, as it is well known, agents live in open environment where they can learn new
knowledge or rules: then there are implicit difficulties for checking from time to time
the behavior correctness by means of either model-checking or traditional approaches,
that are generally static. Moreover, as mentioned before, model-checking techniques
are applied by rewriting the interpreter in another language and this operation cannot
be re-executed whenever the agent learns a new fact or rule.

In contrast to model checking, the deductive approach to verification uses a logical
formula to describe all possible executions of the agent system and then attempts to
prove the required property from this logical formula. The required properties are often
captured by using modal and temporal logics. Deductive approaches have been adopted
by Shapiro, Lesperance and Levesque that defined CASLve [28], a verification environ-
ment for the Cognitive Agent Specification Language. A limit of the theorem proving
approach is the problems complexity, and thus a human interaction is often required.

Another possible approach to agent validation requires to observe the agent’s be-
havior as it performs its task in a series of test scenarios before putting it at work. But
this approach, as observed by Wallace in [31], by its very nature is incomplete, since
all possible scenarios cannot be examined. Nor the future agent knowledge is knowable
in advance. So, it is necessary to individuate a new mechanism capable of verifying the
agent behavior correctness without stopping its life.

In this paper, we propose a method for checking the agent behavior correctness dur-
ing the agent activity, based on maintaining information on its past behavior. This in-
formation is useful in that it records what has happened in the past to the agent (events
perceived, conclusions reached and actions performed) and thus encodes relevant as-
pects of an agent’sexperience. If augmented by time-stamps, these records (that we
call past events) constitute in a way thehistory of the agent activity. The set of past
events evolves in time, and can be managed for instance by distinguishing the most
recent versions of each past event, that contribute to the agent present perception of
the state of the world. Past events can moreover be exploited for the purpose of self-
checking agent activities: we propose in fact the introduction of specific constraints,
aimed at checking if the entity has performed actions that it should not have done or has
not performed actions that it should have done in a certain time and/or under some con-
ditions. Alberti et al. in [1] have adopted a similar approach based on social constraints
in order to model the interactions among (possibly heterogeneous) agents that form an
open society. The main advantages of their approach are in the design of societies of
agents, and in the possibility to detect undesirable behavior.
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Our checking behavior proposal is not aimed at verifying the agents behaviors cor-
rectness in the context of communication acts exchange but to evaluate the reliability
of a single agent by means of constraints. The constraints that we introduce are purpos-
edly of a quite simple form so as to be easily and efficiently checked. As in this context
we assume that our agent are not malicious, whenever the self-check should reveal an
anomaly, the agent might for instance try a self-correction or report the anomaly to a
supervisor agent. However, details of possible error-recovery strategies are outside the
scope of this paper.

Another interesting class of techniques for agent behavior verification is based on
variations of Kowalski and Sergots Event Calculus, used in conjunction with abduction.
We intend in the future to perform a comparison between our behavioral constraints and
these techniques. We mention here the interesting approaches in [27] and [2] that ana-
lyze safety properties and formalize Policy Specification. In [2], the abduction process
is applied to a specification that models both the systems behavior and the policy speci-
fication, allowing to detect conflicts when the applicability of the policies is constrained
on the runtime state of the system.

This paper is organized as follows. In Section 2 we discuss some kind of anomalies
that agent behavior can reveal. In Section 3 we introduce concepts related to agent
memory and experience, that we define more formally in Section 4. In Sections 5 and
6 we propose a set of constraints useful to detect behavioral anomalies. In Section 7
briefly discuss the semantics of our approach and, in Section 8, as a case-study, we
show in detail the application of constraints in the DALI language [6] [7]. Finally, we
conclude in Section 9.

2 Behavioral Anomalies Detection

Any mechanism for checking and possibly recovering agent behavioral anomalies relies
on the ability to identify a model describing the expected agent behavior. This descrip-
tion can be provided at various levels of detail and under different points of view. How-
ever, any description should in general state what the agent has to do and what it must
not do. In this context, we do not assume either a deep knowledge of the agent inner
structure or the possibility of making all its state explicit. Rather, we assume to have a
meta-description including a component specification of the expected observable agent
behavior.

In order to define a framework for verifying the agent behavior correctness, we con-
centrate on six possible behavioral anomalies partially inspired by the work of Wallace
in [31]:

– Incorrect time execution:An action or goal is accomplished at the incorrect time.
This anomaly happens when we expect an agent to do an action or pursue a goal at
a certain time but the action takes place before or after the established threshold.

– Incorrect duration: It is possible that an an action or goal lasts beyond a reason-
able time or a specific related condition. In this case its duration is incorrect and
determines an anomaly.
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– Omission:The agent fails to perform the required action or to pursue its goal. This
anomaly happens when an action/goal is not executed within a certain amount of
time and cannot be executed later.

– Intrusion: The agent performs a goal or action that is not proper. This anomaly
takes place when the expected behavior contains some actions/goals that the agent
must not perform.

– Duplication: An action or a goal is repeated inappropriately. This happens when
an agent performs more than once the same action/goal.

– Incoherency:An action or goal is executed a number of times greater than an ex-
pected threshold. The agent program can require that an action or a goal is executed
a certain number of times but the agent performs that action beyond the prefixed
threshold.

These behavioral anomalies can be very dangerous in critical contexts. Then, their
capture not only improves the entities performance but prevents irreversible damages to
the system. In order to identify similar anomalies, Wallace’s approach [31] proposes a
Behavior Comparison System based on traces. It can be viewed as a machine that takes
two specifications of behavior as input and produces a summary of how these behaviors
differ. We start from Wallace theoretical work, and develop a constraints-based system
capable to detect the anomalies described above while the agent is active. This system,
integrated in an agent framework, works for detection without stopping the agent life.

In the approach proposed in this paper, an agent is able to detect these anomalies
via a self-check based on special constraint (clearly, in this context we assume that our
agent are not malicious). What can be done if an anomaly is actually detected? Although
details of possible error-recovery strategies are outside the scope of this paper, we can
suggest that the agent might for instance try a self-correction or report the anomaly to a
supervisor agent.

3 About agent experience

A rule-based agent consists of a knowledge base and of rules aimed at providing the en-
tity with rational, reactive, pro-active and communication capabilities. The knowledge
base constitutes the agent “memory” while rules define the agent behavior. We sup-
pose that agents repeatedly execute aobserve-think-act cycleas suggested by Kowalski
in [16] in order to sense the environment, to decide the better action to perform and,
finally, to modify the world by means of the action execution.

Imagine an agent that is capable of remembering the received external stimuli, the
reasoning process adopted and the performed actions. Through “memory”, the agent
is potentially able to learn from experiences and ground what it knows through these
experiences [18]. The interaction between the agent and the environment can play an
important role in constructing its “memory” and may affect its future behavior. Most
methods to design agent memorization mechanisms have been inspired by models of
human memory as ([24],[21]).

In 1968, Atkinson and Shiffrin proposed a model of human memory which posited
two distinct memory stores: short-term memory and long-term memory. This model
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has been suggested by Gero and Liew for constructive memory whose implementation
has been presented in [19]. Memory construction [in this model] occurs whenever a
design agent uses past experiences in the current environment in a situated manner. In a
constructive memory system, any information about the current design environment, the
internal state of the agent and the interactions between the agent and the environment
is used as cues in its memory construction process.

Gero and Liew introduce the notion of working memory, a workspace for reflec-
tive and reactive processes where explicit design-based reasoning occurs. Items of in-
formation within the working memory are combined with the stored knowledge and
experiences, manipulated, interpreted and recombined to develop new knowledge, as-
sist learning, form goals, and support interaction with the external environment. At this
point it is clear that memory, experience and knowledge are strongly related. Correlation
between these elements can be obtained via neural networks as in [19], via mathemati-
cal models as in [20] or via logical deduction.

The authors of this paper have proposed in [5], [6],[7] a method of correlating agent
experience and knowledge by using a particular construct, the internal events, that has
been introduced in the DALI language (though it can be in principle adopted in any
computational logic setting). We have defined the “static” agent memory in a very sim-
ple way as composed of the original knowledge based augmented withpast eventsthat
record the external stimuli perceived, the internal conclusions reached and the actions
performed.

Past events can play a role in reaching internal conclusions. These conclusions, that
are proactively pursued, take the role of “dynamic” memory that supports decision-
making and actions: in fact, the agent can inspect its own state and its view of the present
state of the world, so as to identify the better behavioral strategy in that moment. The
agent re-elaboration of its experiences creates a particular view of the external world. By
“particular” we mean that each agent, on the basis of its knowledge and experience, can
interpret what has changed in the world in its peculiar manner. In our view therefore, an
agent must record not only perceived external stimuli but also the internal conclusions
reached by the entity and the actions performed. This allows in principle all aspects of
agent behavior to be related, thus potentially improving its performance.

More specifically,Past eventsin our view, have at least two relevant roles:

– To describe the agent experience: for example, if an agent, after putting an apple
on the table, takes it from the table and places it in the fruit-dish, all these actions
must be recorded in the set of past events with the annotation of when they were
performed, so that their sequence ca be reconstructed.

– To keep track of the state of the world and of its changes, possibly due to the
agent intervention. In the above example, the agent should have a record (as past
event) of the apple being on the table. Then, due to its own action (if successful),
there will be a new record of the apple being in the fruit dish. The former item of
information will be kept, but it will be no more “actual”, while the latter one will
now be “actual”. Then, the most recent past events may be seen as representing the
current “state of affairs”.
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With time, on the one hand past events can be overridden by more recent ones of
the same kind (take for example temperature measurement: the last one is the “current”
one) and on the other hand can also be overridden also by more recent ones of different
kinds, which are somehow related.

In our approach, we introduce a set P of current “valid” past events that describe
the state of the world as perceived by the agent. We also introduce a set PNV where we
store all previous ones. The content of set PNV can be seen as the agent “memory” in
a broader sense (we do not cope here with practical efficiency reasons that might force
the agent to “purge” PNV in some way so as to regain store).

Then, we need a mechanism for keepingP up-to-date. The mechanism that we
propose consists in defining in the agent program a set of constraints that express what
and when to remove a past event fromP .

4 Defining agent experience

We abstractly formalize an agent as the tuple< Ag, Prg, E, I, A > whereAg is the
agent name,Prg describes the agent behavioral rules,E is the external events set (events
that the agent is capable to perceive and recognize),I is the internal events set (distin-
guished internal conclusions) and, finally,A is the actions set (actions that the agent can
possibly perform). We emphasize that, while external events allow agents to react to the
environmental stimuli, internal events generate the agent proactive capabilities. Finally,
by using actions the agent influences the external world.

We suppose that each action performed and each external or internal stimulus re-
ceived will be recorded by the agent in order to keep track of its past behavior. The
events that happen are kept in a setH = E ∪ I ∪ A where however each event inH is
annotated (time-stamped) with the time when the event has happened. In practice, the
setH is dynamically augmented with new events that happen, and is totally ordered
w.r.t. the event time-stamps. Each event inH is then actually in the formX : Ti where
X is the event andTi is its time-stamp; by abuse of notation for the sake of coincise-
ness we will occasionally indicateX : Ti asXi or simplyX. We introduce a function
ΠT

Y (X) that takes in input anX ∈ H and transforms it in the corresponding past
form XT

P where:T is the time-stamp ofX; P is a postfix that syntactically indicates
past events andY is a label indicating what isX, i.e., if it belongs toE, I or A. I.e.,
ΠT

Y (X) = XT
P

We can indicate the generation process of past events as the agenthistory h. The
history is related to the order of setH, that reflects which events (non deterministically)
happen. In fact, we assume to build the history according to this order. Several histories
are thus in principle possible depending on both the interaction of the agent with the
external environment and its internal choices.

h : init
X0∈H−→ XT0

P0

X1∈H−→ XT1
P ....

Xn∈H−→ XTn

P

while the set of past eventsPh related to this specific history is:

6



Ph = {XT0
0P , XT1

1P , ..., XTn

nP }.

In the rest of this paper, we sayP instead ofPh referring to the set of past events
resulting from a generic agent history. Moreover, a generic element ofP will be indi-
cated byXT

P or evenXP if the time-stamp is irrelevant.P synthesizes the whole agent
life maintaining track of its actions, reactions and internal thoughts and its relevance
is based on the possibility, for the agent, of knowing what it did and of deciding new
strategies according to the old ones.

P is not static: it grows while the agent accomplishes its activities but it also loses
those items that don’t contribute any longer to the agent experience description. In the
rest of this section, we introduce a set of constraints useful to determine which past
events concur in the current agent life description and which don’t. As mentioned be-
fore, past events no longer valid are eliminated fromP and put in another setPNV,
from which the agent can deduce some conclusions useful for performing its tasks.

Past Constraintsdefine which past events must be eliminated and under which con-
ditions. They are verified from time to time to maintain the agent memory consistent
with the external world. More formally, we define aPast Constraintas follows:

Definition 1 (Past Constraint).A Past Constraint has the syntax:

XkP : Tk, ..., XmP : Tm
.= XsP : Ts, ..., XzP : Tz, {C1, ..., Cn}.

whereXkP : Tk, ..., XmP : Tm are the past events to be eliminated whenever past
eventsXsP : Ts, ..., XzP : Tz are inP and conditionsC1, ..., Cn are true.

Each conditionCi can express either time or knowledge constraints. Con-
sider the apple example introduced above. A corresponding constraint could be:
put apple in the tableP : T1

.= put apple in the fruit dishP : T2, {T2 > T1}.

The directive that it expresses is: if inP there is the past event
put apple in the fruit dishP with a time greater than that of the past event
put apple in the tableP , then delete fromP the latter one (occurring in the head of
the rule) because it is no longer valid and put it in the PNV set.

Formally, we can define a particular function,Φ(X) that determines the transmi-
gration of the eventX from P to PNV. This transmigration is based on the satisfaction
of the related constraints. LetPC the set of Past Constraints. A generic past eventXT

P

will be transformed intoXT
PNV iff there exists a Past Constraint inPC related toXT

P

whose conditions expressed in the body are satisfied.

Φ(XT
P ) =

{XT
PNV ∃C ∈ PC | C(XT

P ) is true

XT
P else

More precisely, the PNV set will be composed of a certain number ofXT
PNV items:
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PNV = {XT0
0PNV , XT1

1PNV , ..., XTn

nPNV }.

Past events in PNV may still have a relevant role for the entity decisional process.
In fact, an agent could be interested for instance in knowing how often an action has
been performed or a particular stimuli has been received by the environment. For this
reason, we introduced some operators capable of deducing from PNV data useful to
draw internal conclusions:

– How often an action, a reaction or an internal conclusion has been performed.
This information can be obtained by the agent via the operator∆PNV

n (X) that
returns the numbern of occurrences ofX in PNV. In fact, the parametern has
been adopted to indicate the number of occurrences that∆ has to return, and can
take the special valuesfirst andlast to indicate in fact that one is searching for either
the first or the last occurrence, given the temporal order specified by time-stamps.
For example, consider an agent that bought a car through instalments. If it wants to
know when it paid all the money, it could check the number of instalments that has
been paid:

N = #∆PNV
n (pay instalmentA(V alue, Date))

– The first or last past event occurrence.An agent would want to know when it
performed an action, reached a conclusion or reacted to a certain event for either
the first or the last time. This information can be obtained searching for eventX in
P ∪ PNV :

Efirst = ∆P∪PNV
first (X) or Elast = ∆P∪PNV

last (X)

For example, the agent that bought the car could be interested in verifying when it
paid the first or last instalment:

First payment = ∆P∪PNV
first (pay instalment(V alue, Date))

Last payment = ∆P∪PNV
last (pay instalment(V alue, Date))

– Past event occurrences in a time interval.Sometimes an agent is interested to
know how many past event occurrences are present in a certain time intervalT1,T2.
In this case it will search the response in PNV:

Occurrences list = ∆PNV
T1,T2

(X)

Suppose for instance that the bank that lent money to our agent, at a certain time
contests the payment of the instalments from March to June. The agent is able to
verify the situation via the following operator:

Instalments = ∆PNV
March,June(pay instalment(V alue, Date))
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Finally, in order to formalize the consideration for which experience and knowledge
concur to generate agent “memory”, we formally define theagent memoryM as:

M = {X ∈ P ∪ PNV ∪KBfacts}

where KBfacts is the set of facts belonging to the agent knowledge base. Then,
memory (in terms of facts) includes what the agent knows from start and what it
records later. This “static” memory is then to be elaborated so as to reach internal
conclusions about the state of either the world or the agent itself, that constitute the
“dynamic” memory, or, in an alternative interpretation, the “self-consciousness” of the
entity.

The agentexperiencesynthesized by the setsP and PNV constitutes the starting
point for our behavior checking approach.

5 Constraints for behavioral anomalies checking

Past events have a main role in defining our detection anomalies system. In fact, the
possibility of discovering wrong behavioral sequences is strictly linked to the study of
performed actions, reactions and internal conclusions. Given that past events resume
previous agent behavior, as skillful archaeologists, we propose a method based on sev-
eral behavioral constraintsuseful to discover specific traces. What kind of traces? In
this section we cope with those suggested by the anomalies classification proposed in
section 2. We introduce the following kinds ofbehavioral constraints.

– Existential Constraint: Existential Constraintscontain a reference to the past, one
to the present and a set of conditions useful to describe the class of histories that
we are considering. They check whether the agent performed an action, a reaction
or a conclusion that the expected behavior considers anomalous. More formally:

Definition 2 (Existential Constraint). LetP be the set of past events, letXi ∈ P ,
let Ti be its time-stamp and letC1, ..., Cn be a set of additional conditions (a simi-
lar reasoning can be performed with PNV events), for us an Existential Constraint
has the following structure:
XkP : Tk, ..., XmP : Tm∃ / XsP : Ts, ..., XzP : Tz, {C1, ..., Cn}.

The meaning is: if inP there are past eventsXsP : Ts, ..., XzP : Tz and conditions
C1, ..., Cn are true, thenX :

kP Tk, ..., XmP : Tm past events must not be inP .
Otherwise, we are in presence of an anomaly. The constraint is existential in that if
just one ofX :

kP Tk, ..., XmP : Tm is in P , this constitutes an anomaly.
– Inquiring Constraint: This kind of behavioral constraint checks past events that,

considered some conditions, must be inP at a certain time. I.e., if an agent has
performed some actions, reacted to some external stimuli or reached some internal
conclusions and if some conditions are true, then necessarily, after a certain amount
of time, the agent should have performed certain actions, reactions or reasoning as
specified in the expected behavior. Or else, the entity is assuming an incomprehen-
sible behavior. Formally, aninquiring constrainthas the form:
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Definition 3 (Inquiring Constraint). An Inquiring Constraint has the structure:

XkP : Tk, ..., Xk+mP : Tk+m¬∃ / XsP : Ts, ..., XzP : Tz, {C1, ..., Cn}.
whereP is the set of past events, eachXiP ∈ P with time-stampTi andC1, ..., Cn

are a set of conditions.

The meaning is: if inP there are the past eventsXsP : Ts, ..., XzP : Tz conditions
andC1, ..., Cn are true, then we expect that at most at the timeTk the past event
XkP : Tk be inP , and. . . at most at timeTk+m the past eventXk+mP be inP . If
any of them is lacking at the limit time, we are in presence of an anomaly.

In the next section we show how the behavioral constraints we have introduced allow
us to detect the anomalies suggested by Wallace.

6 Detecting anomalies

In this section we propose, for each anomaly, howbehavioral constraintsare able to de-
tect the specific traces. We will adopt some examples in order to explain the potentiality
of our approach.

Incorrect time execution: An action or goal is performed at the incorrect time. Sup-
pose for instance that our agent bought a goldfish and an aquarium. To keep the fish
safe it is necessary that it first fills the aquarium up with water and then puts the animal
inside. We will indicate an action with the postfix A for the sake of readability. So, the
expected action sequence will be:fill the aquariumA, put inside fishA.

In order to check the actions execution correctness, we must verify that agent does
not perform the second action before the first one. To this aim, we can adopt theexis-
tential constraint:

fill the aquariumP : T1∃ / put inside fishP : T2, {T2 < T1}.

indicating that if the agent has accomplished the actionput inside fishA (it be-
came past event) at the timeT2 and inP there is the past eventfill the aquariumT1

P ,
which occurred later (T2 < T1) then the action sequence is not correct and we are in
the presence ofIncorrect time executionanomaly.

Incorrect duration: An action or goal last beyond a reasonable time or a specifiied
condition.Consider the following simple program where we indicate external events
(perceptions) with postfixE and we mean that opening the umbrella is a reaction to the
perception of rain. We assume that an external event is recorded as a past events only
after the related reaction has successfully taken place and that an action is recorded as
a past events as soon as it has been successfully performed.

rainE : −open the umbrellaA.

Then, inP we cannot have the past eventsrainP : T1 andopen the umbrellaP :
T2 with T1 > T2. This would mean in fact that reaction has been considered to have
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been successfully accomplished while the action had not yet been completed. It is an
anomalous behavior. In order to detect this anomaly we can employ aninquiring con-
straint:

open the umbrellaP : T1,¬∃ / rainP : T2, {T1 < T2}.

Omission: The agent fails to perform the required action or pursue the required goal.
An action omission can be detected if we expect that the agent performs an actions
sequence but one of the corresponding past events is lacking after a certain time limit.
Suppose that our agent is on an island and must go fishing for surviving. For reaching
its purpose, the agent must take the fishing-rod, then must bait the hook and finally
must drop the fish-hook in the sea. So, the corresponding actions sequence will be:
take fishing rodA, bait hookA, drop fish hookA. Now, we can check anomission
anomalyby adopting the followinginquiring constraint:

take fishing rodP : Tk,¬∃ /
bait hookP : T2, drop fish hookP : T3, {Tk < T2 + Th2, Tk < T3 + Th3}.

whereThi are predefined time thresholds. The meaning is: if inP there are the past
eventsbait hookP : T2 anddrop fish hookP : T3 but at the timeTk defined by the
conditions the past eventtake fishing rodP : Tk is absent, we can deduce that the
corresponding action has been omitted.

Intrusion: The agent performs a goal or action that is not allowed.Suppose that our
agent is situated in a critical environment where we need be sure that it never performs
a dangerous action. We can verify if this happens by using anexistential constraint. In
particular, consider an agent that, if enters into the red room, must not push the green
button. The corresponding constraint will be:

push green buttonP : T1,∃ / enter in red roomP : T2, {T1 > T2}.

Duplication: An action or a goal is repeated inappropriately.This anomaly can be
detected by searching for two past events corresponding to the same action, reaction or
conclusion having the same timeTi. The existential constraint capable of detecting this
incorrect behavior is:

push green buttonP : T1,∃ / push green buttonP : T2, {T1 = T2}.

Incoherency:An action or goal is executed a number of times greater than an expected
threshold.This anomaly is strictly correlated with PNV events. In fact, the agent expe-
rience maintains the information on how often an action/goal has been accomplished.
Consider again the agent that bought the car. It must pay twelve instalments in the
current year. If it pays a further instalment, the expected behavior is violated:

pay instalment(V alue, Date))P : T ∃ /
{N = ∆PNV

n (pay instalment(V alue, Date)), N > 20, T > 0}.

Behavioral constraintsare to be checked from time to time by the system in order
to point out the anomalies. When an incorrect behavior takes place, a particular past
event can be generated. This event may contain information about the kind of violation
for allowing the agent to activate possible recovery strategies. Moreover, by inspecting
the setsP and PNV, one can discover the motivation of the entity anomalous behavior
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examining all past events generated by the system. Consequently, appropriate counter-
measures can be taken either by the agent itself, or by an external controller. In the next
sections, after giving the semantics of the approach, we will put our idea at work in a real
multi-agent system called DALI, a logic language capable of generating autonomous,
reactive, pro-active and communicative agents.

7 Semantics of Past and Behavioral Constraints

The semantics of Computational Logic agent languages may in principle be expressed
as outlined in [6] for the DALI language. In particular, given programPAg, the seman-
tics is based on the following.

1. An initialization stepwherePAg is transformed into a corresponding programP0

by means of some sort of knowledge compilation (which can be understood as a
rewriting of the program in an intermediate language).

2. A sequence of evolution steps, where the reception of an event or a certain expired
time threshold is understood as a transformation ofPi into Pi+1, where the trans-
formation specifies how the event affects the agent program (e.g., it is recorded).
The time threshold allows one to verify the behavioral constraints if no event is
happened.

Then, one has a Program Evolution SequencePE = [P0, ..., Pn] and a correspond-
ing Semantic Evolution Sequence[M0, ...,Mn] whereMi is the semantic account ofPi

(in [6] Mi is the model ofPi).

This semantic account can be adapted by transforming the initialization step into a
more general knowledge compilation step, to be performed:

(i) At the initialization stage, as before.
(ii) When a new behavioral constraint is added.

(iii) In consequence to a violation evidence.

8 Anomalies detection in DALI

DALI [6] [7] [29] [9] [5] is an Active Logic Programming language designed in the
line of [17] for executable specification of logical agents. The Horn-clause language is
a subset of DALI, that in fact procedurally employs an Extended Resolution Procedure
that interleaves different activities (based on the declarative semantics outlined above,
and on an operational semantics based on Dialogue Games Theory [8]).

The reactive and proactive behavior of a DALI agent is triggered by several kinds
of events: external, internal, present and past ones. All the events and actions are time-
stamped, so as to record when they occurred. Past events represent the agent’s “mem-
ory”, that makes it capable to perform future activities while having experience of pre-
vious events, and of its own previous conclusions. Past events are kept for a certain
default amount of time, that can be modified by the user through a suitable directive in
the initialization file.
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Definition 4 (Past Event).A past event is syntactically indicated by the postfix P:
PastEvent ::=<< AtomP >>

Original DALI program definition has been modified for introducing the set of be-
havioral constraints:

Definition 5 (DALI logic program). A DALI logic programPri is the tuple:

〈Actioni, Reactivei, Activei,Hclausei, Past constraints,Beh constraintsi〉

whereActioni is the set of the Action rules,Reactivei is the set of the Reactive
rules,Activei is the set of the Active rules,Hclausei is the set of Horn clause rules,
Past constraintsi is the set of Past constraints andBeh constraintsi is the set of
Behavioral constraints. Reactive rules have an external or internal event in the head,
Action rules specify the action-preconditions, Active rules have actions in their body,
Horn clause rules are general prolog-like rules while Past and Behavioral constraints
have been defined above.

Constraints on DALI agent behavior maintain a very similar syntax to that presented
in Definitions 2 and 3.

Definition 6 (DALI Past constraints). Let E1P , ..., EnP be DALI past events, let
C1, ..., Cs be conditions andT1, ..., Tn be time variables, we define a DALI past con-
straint as:
E1P : T1, ..., EkP : Tk ∼ / Ek+1P : Tk+1, ..., EnP : Tn, {C1, ..., Cs}.

Definition 7 (DALI Behavioral constraints). Let E1P , ..., EnP be DALI past events,
let C1, ..., Cs be conditions, letT1, ..., Tn be time variables and let Time indicate a
precise moment, we define DALI Behavioral Constraints as follows:

– Existential constraint
E1P : T1, ..., EkP : Tk < / Ek+1P : Tk+1, ..., EnP : Tn, {C1, ..., Cs}.

– Inquiring constraint
E1P : at(Time) ?/ Ek+1P : Tk+1, ..., EnP : Tn, {C1, ..., Cs}.

The meaning of these constraints corresponds to the Existential and Inquiring con-
straints introduced in previous sections. DALI constraints can be added to the logic
agent program either at the initialization phase or when the agent is active. In fact, DALI
agents are capable of learning rules and constraints through a particular mechanism, as
discussed in [10]. This improvement allows one to expand the detection anomalies sys-
tem potentialities by adapting the constraints to new knowledge learned by the entity
during its life. Consider a simple DALI example on an agent being at home when it
receives the perception that something dangerous is happened. In this example, we use
the postfix E to indicate an external perception and A to identify the actions.
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dangerE :> once(ask for help).
ask for help : −call policeA.
call police :< have a phoneP .
ask for help : −screamA.
danger :< at homeP .

The new tokens introduced have the following meaning::> denotes reaction, i.e.
the body of the rule is involved whenever the head occurs as an external event;:<
denotes (for sake of clarity) that the rule expresses preconditions of an action. The
meaning of this example is: if the agent receives from the environment the stimulus
dangerE , it can react either by calling the police, if it has a phone, or by screaming. The
reaction is allowed only if the agent is at home when the danger happens. The contextual
information on the phone and the agent position is synthesized bypast events. Two
actions,call policeA andscreamA constitute agent alternative options and describe
as past events a different evolution of the world. If the agent called the police, then it
cannot have in its memory the past event of the opposite actionscreamP . For keeping
the world coherency we introduce in the agent program the followingpast constraints:

call policeP : T ∼ / screamP : T1, {T < T1}.
screamP : T ∼ / call policeP : T1, {T < T1}.

The directive expressed in the first constraint is: if in the agent memory there is
the past eventcall policeP happened at the timeT and at the timeT1 greater thanT
the entity performs the actionscreamA, the system must eliminate the previous action
because it is no longer valid for describing the current world. The second constraint
copes with the opposite situation.

At this point we complicate the agent behavior by introducing new rules:
remain at home : −dangerP , call policeP , robber in kitchenP .
remain at homeI :> go to bathroomA, close the doorA.
go out : −dangerP , screamP , robber in garageP .
go outI :> go to police stationA.

We suppose that the agent, on the basis of performed actionsscreamA or
call policeA, could draw some internal conclusions. In fact, when the agent decides
to call the police it knows that the robber is in the kitchen. Then, not being able to
escape, goes to the bathroom and locks the door. Instead, if the entity screamed and
the robber is in the garage, then it goes to the police station. At this point, in order to
guarantee the agent behavior correctness, we will introduce anexistential constraint
indicating that an agent cannot be in different places within a restricted time interval:
go to police stationP : T < / remain at homeP : T1, {T1 − 20 ≤ T ≤ T1 + 20}.

By this constraint we define as anomalous behavior the situation in which the agent
is within an interval of 20 seconds both in the police station and at home. In this case
we have an incorrect execution.

Inquiring Constraintscan help the agents system user to individuate actions that the
agent has not performed but that it should have done within a certain timeT . Suppose
in our example that the police received the call and the policemen are sent to the agent’s
home. When they arrive, the agent receives the external stimulusarrived policeE and
it is happy because robber escapes:
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arrived policeE :> robber escapesA.
i am happy : −robber escapesP .
i am happyI :> i embrace the policemanA.

However, we suppose that our agent will also be happy if it reaches the police station.
Then we update the previous internal event adding a new condition:

i am happy : −go to policeP .

At this point, we have an agent that receives the external eventdangerE and, after
a certain time it becomes happy because it meets the police. We can verify the agent
behavior correctness by means of the followingInquiring Constraint:
i am happy1P : at([2006, 01, 16, 23, 44, 55]) ?/

dangerP : T1, at homeP : T2, {T2 < T1}.
The meaning is: after the dangerous situation described by the example, we will

expect that, within a certain time interval fixed by the date, the entity will be happy. If
this does not happen, the agent behavior is anomalous (Omission). We conclude this
section emphasizing that Past and Behavioral Constraints are attempted by the DALI
interpreter from time to time in order to detect as quickly as possible the anomalies.

9 Concluding Remarks

In this paper we have presented an approach to update agent memory and to detect
behavioral anomalies by using logic constraints. The approach is based on introducing
particular events, past events, that records what has happened. Past events are used to
identify contexts in which agents adopt a behavior different from the one expected.
Relating past behavior to future one is also proper of Temporal Logic. This is a special
branch of modal logic that investigates the notion of time and order. With Temporal
Logic one can specify and verify how components, protocols, and objects behave as
time progresses ([11],[26]). Temporal Logic is also the core of an important language
for multi-agent systems, Concurrent METATEM [12]. Despite Concurrent METATEM
demonstrated that Temporal Logic is a fruitful land to generate software entities, some
perplexities on its use in time-critical applications remain, due to limited efficiency.

Our approach aims in principle at introducing mechanisms similar to that of Tem-
poral Logic but based on a simple and efficient constraint language. We are conscious
that detecting behavioral anomalies is not sufficient in multi-agent systems. Actually,
one should provide not only a mechanism to point out anomalies during the agent life
but also error recovery strategies usable by the running agent without asking for human
intervention. This is in fact a topic of our future research.
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