
Specification and Dynamic Verification of Agent
Properties

Stefania Costantini1, Pierangelo Dell’Acqua2, Lu ı́s Moniz Pereira3, and
Panagiota Tsintza1

1 Dip. di Informatica, Universit̀a di L’Aquila, Coppito 67100, L’Aquila, Italy
stefcost@di.univaq.it

2 Dept. of Science and Technology - ITN, Linköping University Norrk̈oping, Sweden
piede@itn.liu.s

3 Departamento de Inforḿatica, Centro de Inteliĝencia Artificial (CENTRIA), Universidade
Nova de Lisboa 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. In previous work, we have proposed a multi-level agent model with
(at least) a meta-level aimed at meta-reasoning and meta-control. In agents, these
aspects are strongly related with time and therefore we retain that they can be
expressed by means of temporal-logic-like rules. In this paper, we propose an
“interval” temporal logic inspired by METATEM, that allows properties to be
verified in specific time interval situated either in the past or in the future. We
adopt this logic for definition and run-time verification of properties which can
imply modifications to the agent’s knowledge base.

1 Introduction

Agents are by definition software entities which interact with an environment, and thus
are subject to modify themselves and evolve according to both external and internal
stimuli, the latter due to the proactive and deliberative capabilities of the agent them-
selves (whenever encompassed by the agent model at hand). In past work, we have
defined semantic frameworks for agent approaches based on logic programming that
account for: the kind of evolution of reactive and proactive agents due to directly deal-
ing with stimuli, that are to be coped with, recorded and possibly removed [1]; the kind
of evolution related to adding/removing rules from the agent knowledge base [2]. These
frameworks have been integrated into an overall framework for logical evolving agents
(cf. [3] and [4]) where moreover every agent is seen as the composition of a base-
level (or ground-level or object-level) agent program and one or more meta-layers. In
this model, updates related to recoding stimuli are performed in a standard way, while
updates involving the addition/deletion of (sets of) rules, related to learning, belief re-
vision, etc. are a consequence of meta-level decisions.

As agent systems are more widely used in real-world applications, the issue of ver-
ification is becoming increasingly important (see [5]) and the many references therein).
In computational logic, two common approaches to the verification of computational
systems are model checking [6] and theorem proving. There are many attempts to adapt



these techniques to agents (see again [5]). In this paper, we address the problem con-
cerning the monitoring of agents behavior against desired properties, or w.r.t. a certain
specification, in a different way. We assume defined, possibly both at the object and at
the meta-level, axioms that determine properties to be respected or enforced, or simply
verified, whenever a property is desirable but not mandatory. We assume these prop-
erties to be verified at runtime, with a certain frequency associated with the property
itself depending upon its criticality. Upon verification of a property (which is evalu-
ated within a context instantiated onto the present circumstances), suitable actions can
be undertaken, that we call in generalimprovementactions, or simplyimprovements:
improvements can implyrevisionof the agent knowledge, or tentativerepair of mal-
functioning, or tentativeimprovementof future behavior, according to the situation at
hand. Our approach is to some extent similar to that of [7] for evolving software.

As many of the properties to be defined and verified imply temporal aspects, we
have considered to adopt a temporal logic, and our choice has fallen on METATEM [8]
[9], since properties should often be defined on certain intervals, we define a variant
of METATEM, that we call A-IMETATEM, where operators are defined over intervals.
Operationally nevertheless, we do not adopt the full power of METATEM rules, where
operators are interpreted as modalities, and semantics provided accordingly. Instead,
we remain in the realm of logic programming, and interpret the temporal axioms in
the context of the above-mentioned semantic framework. Therefore, we should better
call our axioms “temporal-logic-like” axioms. However, to simulate to some extent the
power of modal logic, improvements can imply the removal/addition of new temporal-
logic-like axioms. The addition of new ones determines their immediate operational
use. In this way, we stay within our semantic framework, where we are able to provide
a full declarative semantics and an efficient corresponding operational semantics, as
demonstrated by the existing implementations ([10], [2]), though the proposed approach
has not been fully implemented yet.

The plan of the paper is as follows. In Section 2 we summarize the features of the
agent model our framework is based upon. This model is very general, and many exist-
ing agent-oriented logic languages can be easily rephrased in terms of it. In Section 3
we shortly summarize the METATEM temporal logic, and then introduce the proposed
extension. In Section 3.3 we show how we mean to use temporal-logic-like rules for
defining properties, how these properties are meant to be verified, and we establish our
notion of improvement. We then conclude.

2 Layered Agent Model

The multi-layer framework for agents proposed in [3] and [4] is composed of two dis-
tinct interacting layers: the BA (orbase layer, or ground layer) and (one or more)
Meta-level(s). The BA is a base level, The MA (that stands for Meta-Agent) along with
the IEA (Information Exchange Agent), constitutes the Meta-Level. Here we assume
that the BA is a logic program and make an additional assumption that its semantics
may ascribe multiple models to BA in order to deal with “uncertainty”. For the seman-
tics of logic programs we can adopt one of those reported in the survey [11] and for the



semantics dealing with “uncertainty” we can suggest, e.g., the Answer Set Semantics
proposed in [12].

The Meta-level, by means of both components MA and IEA, performs various kinds
of meta-reasoning and is the responsible for supervising and coordinating the BA’s ac-
tivities. The MA meta-level is in charge of coordinating all activities and takes deci-
sions over the BA layer. More precisely, the MA layer will be the one up to decide
which modifications have to be undertaken onto the BA level, in order to correct (or im-
prove) inadequacies or unexpected behavior. The IEA layer, instead, is the one deciding
and evaluating when an interaction with the society is necessary in order to exchange
knowledge: in fact, agents are in general not entities standing alone but, rather, are part
of (one or more) group(s) called “society”.

2.1 Agent Model: the knowledge base

In line with [13], the components establishing the BA and/or the MA layers include the
following.

1. Both BA and MA layer contain abelief component, enclosing modules for reason-
ing, planning, goal identification, reactivity and proactivity, etc.

2. The BA and MA layers also contain a set ofdesires(called SD) and intentions
(called SI).SD includes all goals adopted or under considerations while theSI is
composed by all plans both in execution and consideration.

3. In addition to the components proposed in [4], we consider the components ofabil-
ity and confidenceenclosing modules of:trust, abilities of agents in computing
certain action andconfidence. The latter component is the one responsible for rea-
soning about the confidence of the agent in doing something (an action, a goal, etc.)
and can be influenced by other agents in the society.

4. A set ofconstraints(calledSC): as we will see, here we include all temporal con-
straints designed in order to induce or verify that certain actions or goals are per-
formed in the correct order and in the allocated time. In addition, we consider con-
straints on appropriate performance of actions that include what should happen and
what should not happen.

5. In order to interact with the society, the BA agent includes interaction mechanisms.
6. A set of mechanisms to manage beliefs as well as confidence (and their alterations).

This set includes a learning mechanism.
7. All components mentioned in the above points have to be combined, exploited, and

supervised by a control component. This component is based on control informa-
tion aimed at improving control effectiveness.

2.2 Agent Model: Operational Behavior

The operational behavior of the agent model is based on our previous work reported in
[3]. Each agent is considered as a logic program that will evolve by its interaction with
the environment. In fact, the interaction triggers many agent activities such as response,
goals identification, decisions on recording or pruning the gathered information. Of
course, these activities will be affected by the belief, desire and intention control that is



part of the agent’s MA. Note that this component will itself evolve and change in time
as a result of the interaction with the society. In this paper, we are going to consider the
evolution of the initial agent into subsequent (related) versions. Therefore, we consider
that each interaction will, eventually, determine the evolution of the initial agent (in
terms of successive transformations) into new agents.

Here is a more formal view of agent evolution and learning. For simplicity, in the
following we consider a generic agent model that we refer asM.

Definition 1. An agent programPM is a tuple〈BA,MA, C, CI〉 of software compo-
nents whereBA andMA are logic programs,C is the control component andCI is
some related (optional) control information.

In previous definition, we consider that the control componentC takes as input
both the logic programs BA and MA and the control informationCI. Note thatCI is
composed by a set of directives and therefore is the one affecting therun-timebehavior
of the agent. Thus, the componentCI will state both the priorities among different
events/goals that the agent has to cope with, and the frequency those properties have to
be taken into consideration. That means that the component of the control information
is the one controlling - atrun-time- the reaction of the agent to stimuli coming from the
society.

As mentioned before, the initial agent is considered as a logic program, to which
is associated theinitial state of the agent. More formally, the initial agent is given by
means of the following definition.

Definition 2. The initial agentA0 is an agent programP0M (or simplyP0 whenM
is clear from the context), i.e.,〈BA0,MA0, C0, CI0〉, whereBA0,MA0 are the initial
logic programs, andC0, CI0 are, respectively, the initial control and control information
components.

In the following, we are going to outline how the controlC and control information
CI components actually affect the operational behavior of agents. Here, we consider the
control component to be based upon an underlying control mechanism that implements
the operational counterpart of the agent model.

Definition 3. Theunderlying control mechanismUM (or U in short), able to put into
operation the various components of an agent modelM, is a transformation function
operating in terms of a set of distinguishablesteps, starting fromA0 and transforming it
step by step intoA1,A2, . . . , givenCi andCIi as defined inA0, A1, A2,. . . respectively.

Next, we consider that the transition from a generic stepAi into the next stepAi+1

is defined as follows:

Definition 4. LetP be an agent program. Then,∀i ≥ 0,Ai→U(Ci,CIi)Ai+1.

From this last definition it is clear that, given an initial stepA0, subsequent steps
Ajs do not follow deterministically. The reason is that each step depends on the both
on the interaction with the society (external environment) and on the internal choices of
each agent that are based on its previous knowledge and ”experience”.

Theunderlying controlU can operate in two different ways:



– U provides different parallel threads for the levelsBA andMA and
– U is interleaved between the two layers.

In the first case, theMA level continuously monitors theBA. In the second case,
instead, control must somehow pass between the two levels, e.g. as follows:

– control will shift upfrom PA to MA by performing an act calledupward reflection.
Such an act will periodically perform both constraint and condition verification.

– on contrary the control willshift downfrom the MA to the BA by performing a n
act calleddownward reflection. This control is considered as a completion to the
MA activities and can be based on the theory described in [14].

The frequency as well as the conditions of each type of shift is defined in the con-
trol information componentCIi and therefore can be encoded as a subset of directives
included in this component. The proposed generic model and its operational behavior
are consistent with the KGP ([15], [16],[17]) and DALI ([18], [19], [10]) agent-oriented
languages. Dynamic changes that the MA level can operate on the BA level can be se-
mantically modeled by means of the approach of Evolving Logic Programs (described
in [20]). In our setting, we assume the new knowledge to be recorded in two different
ways:

– together with meta-information that allows the agents to track the new knowledge
and to store it, by means ofassertrules, along with time-stamps and expectations.

– as plain knowledge added to the beliefs component.

The first case enables agents to reason about expectations and thus goals that have
not been accomplished yet. Therefore, the meta-information will help the agent ”ex-
plore”the set of beliefs adequately update it (that is, remove/deactivate those beliefs
that are deemed useless).

3 A-IMETATEM: Temporal Logic in the proposed Framework

As already mentioned, the MA level is the one responsible of run-time monitoring of
BA’s activities over time. Therefore, in our perspective the MA will include rules in-
spired by temporal logic. Also the BA may include and take profit of this kind of rules:
however, we mainly consider here meta-rules defined in the MA. Note that the MA is
supposed to perform checks atrun-timerather in advance like in model checking (which
is however by no means excluded, but is not treated here). The basic aim of the checks
is the detection of either fulfillment or violations of constraints that have to be worked
out by some action ofimprovement. Those actions can not be decided “a priori” since
they will depend on each specific context.

In previous section, we discussed the non determinism of states that can be reached
by agents during their evolution. For defining temporal-logic-like rules while keeping
the complexity under control, we are going to adapt the approach of METATEM, a
propositional Linear-time Temporal Logic (LTL), that implicitly quantifies universally
upon all possible paths. LTL logics are called linear because, in contrast to Branching
time logics, they evaluate each formula with respect to a vertex-labeled infinite path



p0p1..., where: each vertexpi in the path corresponds to a point in time,p0 is the present
and eachpi, with i > 0, is the future.

In order to model the dynamic behavior of agents, we propose an extension to
the well-established METATEM logic called A-IMETATEM, an acronym standing for
”Agent-Interval METATEM”.

3.1 METATEM

In this subsection, we present the basic elements of propositional METATEM logic
or PML ([9], [8]). The PML language is based both on the classical propositional logic
enriched by temporal operators and on the direct execution of temporal logic statements.

First, we present thesyntaxof METATEM. The symbols used by this language are
as follows:

1. a setAC of propositions controlled by the component;
2. a setAE of propositions controlled by the environment (note thatAC ∩AE = ∅);
3. an alphabet of propositional symbolsAP , obtained as the union of setsAC andAE

(AP = AC ∪AE)
4. a set of propositional connectives such astrue, false, ¬, ∧, ∨,⇒ and⇔;
5. a set of temporal connectives;
6. quantifiers,∀ and∃.

The set of temporal connectives is composed of a number of unary and binary con-
nectives referring to future-time and past-time. G iven a propositionp ∈ Ap and the
formulaeϕ andψ, the syntax of connectives is given below. Note that ifϕ andψ are
formulae so is their combination.

Unary connectives referring to future time:

– © that is the ”next state”symbol and©ϕ stands for: the formulaϕ will be true at
next state,

– � that is the ”always in future”symbol and�ϕ means that the formulaϕ will
always be true in the future,

– ♦ that is the ”sometime in future”symbol and♦ϕ stands for there is a future state
where the formulaϕ will be true.

Binary connectives referring to future time:

– W that is the ”unless”(or ”weak until”) symbol. The formulaϕWψ is true in a state
s if the formulaψ is true in a statet, in the future of states, andϕ is true in every
state in the time interval [s,t) (t excluded)

– U that is the ”strong until”. The formulaϕUψ is true in a states if the formulaψ
is true in a statet, in the future of states, andϕ is true in every state in the time
interval [s,t] (t included). In other worlds, from now on,ϕ remains true untilψ
becomes true.

Unary connective referring to past time:

– • is the ”last state”operator and the formula•ϕ stands for “if there was a last
state, thenϕ was true in that state”,



– � is the ”some time in past”operator and the formula�ϕmeans that formulaϕ was
true in some past state,

– � is the ”always in past”and the formula�ϕ means thatϕ was true in all past
states,

– � is the strong last time operator given from�ϕ⇔¬• ¬ϕ
Note that the last state operator can determine the beginning of time by using the

formula•false.
Binary connectives referring to past time:

– Z is the ”zince”(or ”weak since”) operator. The formulaϕZψ is true in a states
if the formulaψ is true in a statet (in the past of states), andϕ was true in every
state of the time interval [t,s),

– S that is the ”since”operator. The formulaϕZψ is true in a states if the formulaψ
is true in a statet (in the past of states), andϕ was true in every state of the time
interval [t,s]. That means thatϕ was true sinceψ was true.

A METATEM program is a set of temporal logic rules in the form:

past time antecedent→ future time consequent

where the ”past time antecedent”is considered as a temporal formula concerning the
past while the “future time consequent” is a temporal formula concerning the present
and future time. Therefore, a temporal rule is the one determining how the process
should progress through stages.

The last part of this section is dedicated to the presentation of METATEM formulae
semantics. For doing so, we firstdefine the Model structures used in the interpretation
of temporal formulae.

Definition 5. Let σ be astate sequences0s1... and i the current moment in time. A
structureis a pair (σ, i) ∈ (N → 2AP ) x N. Then amodelM is a structure(σ, i) and
a genericsj denotes aset of propositionsgiven true byσ at momentj.

Below, the relation� is the one giving the interpretation for temporal formulae in
the given model structure. In general, a propositionp ∈ AP is true in a given model
iff it is true in the current moment. As base case, we consider that formulatrue is true
in any modelM, while false is true in no model. Then, the semantics of propositional
connectives is defined as follows:

Definition 6. Semanticsof temporal connectives is defined as follow:

– σ, i � true
– σ, i � ¬ϕ iff not σ, i � ϕ
– σ, i � ϕ ∧ ψ iff σ, i � ϕ andσ, i � ψ
– σ, i �© ϕ iff σ, i+ 1 � ϕ
– σ, i � � ϕ iff for all k ∈ N σ, i+ k � ϕ
– σ, i � ♦ ϕ iff exists somek ∈ N σ, i+ k � ϕ
– σ, i � ϕ U ψ iff exists somek ∈ N such thatσ, i+ k � ψ and forall j ∈ 0..k − 1,
σ, i+ j � ϕ



– σ, i � ϕW ψ iff σ, i � ϕ U ψ or σ, i � � ϕ
– σ, i �•ϕ iff i > 0 thenσ, i− 1 � ϕ
– σ, i � � ϕ iff for all k ∈ 1..i σ, i− k � ϕ
– σ, i � � ϕ iff exist somek ∈ 1..i such thatσ, i− k � ϕ
– σ, i � ϕ S ψ iff exist somek ∈ 1..i such thatσ, i− k � ψ and forall j ∈ 1..k− 1,
σ, i− j � ϕ

– σ, i � ϕ Z iff σ, i � ϕ S ψ or σ, i � � ϕ

3.2 A-IMETATEM

As mentioned before, the purpose of this work is to allow one to define and verify at
run-time properties and anomalous behavior in agent evolution. Since agent evolution
can be considered as an infinite sequence of states, it is often not possible (and not
suitable) to verify properties of the entire sequence. Sometimes it is not even desirable,
since one needs properties to hold (or never to hold) within a certain time interval. This
is why we propose an extension, called A-IMETATEM (acronym of ”Agent-Interval
METATEM”), to the METATEM logic.

Below are the future time interval operators of A-IMETATEM.

– τ where the propositionτ(si) is true ifsi is the current state. I.e., we introduce the
possibility of accessing the current state;

– ©m, i.e.,ϕ should be true at statesm+1;
– ♦m stands for “bounded eventually”, i.e.,♦mϕmeans thatϕ eventually has to hold

somewhere on the path from the current state tosm;
– �m,n stands for “always in a given interval”, i.e.,�m,nϕ means thatϕ should

become true at most at statesm and then hold at least until statesn;
– �〈m,n〉 means thatϕ should become true just insm and then hold until statesn,

and not insn+1, where nothing is said for the remaining states;
– N stands for “never”, i.e.,Nϕ means thatϕ should not become true in any future

state;
– Nm,n stands for “bounded never”, i.e.Nm,nϕ means thatϕ should not be true in

any state betweensm andsn, included.

The past time interval operators instead are:

– •m, i.e., given the current statesi thenϕ should be true at statesm, withm < i;
– �m,n is the ”always in past” operator where, given the current statesi andm ≤
n ≤ i thenϕ was true in the entire time intervalm,n. I.e.,�m,nϕ means that ifϕ
was true at statesm and then it remained true at least until statesn;

– �〈m,n〉 is the strict version of�m,n, whereϕ was true only in the time interval
m,n. I.e.,SP〈m,n〉 means thatϕ became true just in statesm and then remained
true exactly until statesn

After having introduced the syntax of A-IMETATEM, we present the semantics of
A-IMETATEM formulae.



Definition 7. (Semantics of A-IMETATEM formulae)Letσ be astate sequences0s1...,
i the current momentin time, andϕ, ψ METATEM-formulae. Thesemanticsof A-
IMETATEM is defined as:

– all basic METATEM operators are defined as in Definition 6
– σ � τ(s0), wheres0 ≡•false;
– σ �©mϕ iff σ,m+ 1 � ϕ;
– σ � ♦mϕ iff exist somej, j ≤ m: σ, j � ϕ;
– σ � �m,nϕ iff for all m ≤ j ≤ n: σ, j � ϕ;
– σ � �〈m,n〉ϕ iff for all j, m ≤ j ≤ n: σ, j � ϕ andfor all r: r < m: σ, r � ¬ϕ

andσ, n+ 1 � ¬ϕ;
– σ � Nϕ iff for all j, j ≥ 0: σ, j � ¬♦ϕ;
– σ �•mϕ iff for m < i: σ,m �ϕ;
– σ � �m,nϕ iff for all j,m ≤ j ≤ n ≤ i: σ, j �ϕ;
– σ � �〈m,n〉ϕ iff for all m ≤ j ≤ n ≤ i: thenσ, j �ϕ andfor all r: r < m thenσ,
r � ¬ϕ andσ, n+ 1 � ¬ϕ

Based on the previous definition of A-IMETATEM semantics we propose a run-time
control of goals/plans performed by agents during their evolution and learning process.
We remark that verification of properties does not occur at every state but, rather, with
a frequency associated to each property. In such a way, a crucial property for agent
evolution can be tested more often than a less relevant one. For doing so, we need a
further extension to define subsequences and refine the semantics accordingly.

Definition 8. Letσ be an infinite sequence of statess0, s1, ... of a system. Then,σk is
the subsequences0, sk1 , sk2 , ... where for eachkr (r ≥ 1), kr modk = 0, i.e.,kr = g
× k for someg.

Note that from the previous definition it follows thatσ1 = σ, σ2 = s0, s2, s4, ...
etc., and that all operators introduced above can be redefined for subsequences.

Definition 9. LetOp be any of the operators introduced in A-IMETATEM andk ∈ N
with k > 1. ThenOpk is an operator which semantics is a variation of the semantics of
Op where each sequenceσs is replaced by the subsequenceσsk .

3.3 A-IMETATEM for defining and verifying properties

In our framework, agents are supposed to live in an open society where they interact
with each other and with the environment, and where they can learn either by observing
other agents behavior or by imitation. Given the evolving nature of learning agents, their
behavior has to be checked from time to time and not (only) a priori. Model checking
and other “a priori” approaches are static, since the underlying techniques require to
write an ad-hoc interpreter and this operation can not be re-executed whenever the agent
learns a new fact/rule/action. Note that, in case of re-execution this operation would
in principle be required a huge number of times, adding a further cost to the system.
Moreover, an a priori full validation of agent’s behavior would have to consider all
possible scenarios that are not known in advance. These are the reasons why we propose



(also) a run-time control on agent behavior and evolution, for checking correctness
during agents activity, rather than a model checking control.

In fact, we will add to the underlying logic programming agent-oriented language
the possibility of specifying rules including A-IMETATEM operators. These rules will
be attempted at a certain frequency, and whenever verified may determine suitable mod-
ifications to the program itself. In the rest of this section, we first define the syntax of
A-IMETATEM operators in the context of logic programs, and introduce some useful
notation; next, we define A-IMETATEM basic rules, A-IMETATEM contextual rules,
and A-IMETATEM rules with improvements. Along with the explanation we provide
some examples.

3.4 A-IMETATEM basic rules

In our framework, we consider A-IMETATEM rules to be applied upon universally
quantified formulae. Note that the negation operator (not) is interpreted in our setting
as “negation-as-failure”. For defining A-IMETATEM rules in logic-programming based
languages, we first have to represent the A-IMETATEM operators within this kind of
languages. This representation is shown in Figure 1.

A-IMETATEM Op k OP(m,n;k)
τ(t) NOW (t)

©k NEXT (1 ; k)

©j
k NEXT (j ; k)

♦k FINALLY (1 ; k)

♦k
m FINALLY (m; k)

�k ALWAYS(1 ; k)

�m,n
k ALWAYS(m,n; k)

�〈m,n〉
k ALWAYS 2 (m,n; k)

Nk NEVER(1 ; k)

Nm,n
k NEVER(m,n; k)•k LAST (1 ; k)•k

m LAST (j ; k)

�k P ALWAYS(1 ; k)

�k
m,n P ALWAYS(m,n; k)

�k
〈m,n〉 P ALWAYS 2 (m,n; k)

Fig. 1.Representation of A-IMETATEM operators
-

In the following, we omit the operator arguments when implied from the context,
and in these cases we writeOP instead ofOP (m,n; k). We often omit frequency: we
assume in fact that there exists a default frequency; in practice, this default frequency
is assumed to be set in the componentCI including control information (cf. Section 2).
Also, as a special case, when we do not know exactly the starting point of the inter-
val, we introduce the special constantstart whereOP (start, n; k) means thatOP is



checked since the “beginning of time” up ton, where the beginning of time coincides
with the agent’s activation time. We also introduce the shortcomingnow standing for
the timet for whichNOW (t) holds.

In addition to the basic operators, we introduce here two useful derived operators.
The first one is related to the issue, that often occurs in practice, of defining a “nor-
mal” occurrence of an event, such as, e.g., a reaction on external stimulus or an inter-
nal process of an agent trying to archive a goal. We say that an event’s occurrence is
“normal” when it occurs sufficiently often. For performing this type of control, it is
necessary to define a new operator of A-IMETATEM, calledUSUALLY .

Definition 10. Given a sentenceϕ and a numberl ∈ N we define the new operator as
follows:USUALLY (M,N)ϕ = ALWAYS (M,N ; l)ϕ. The shortcomingUSUALLYϕ
stands forALWAYS (start, now; l)ϕ

According to this definition, the new operatorUSUALLY is checked with the given
(l) frequency. Then, propositionϕ has to be checked with a frequencylwhileALWAYS
has the obvious role of checking the proposition in all states.USUALLYϕ holds as far
as the periodical check is successful.

The second derived operator holds if given event has occurred at some point of an
interval, one or more times:

Definition 11. Given a sentenceϕ we define the new operator as follows:
SOMETIMES (M,N)ϕ = ¬ALWAYS (M,N)ϕ ∧ ¬NEVER(M,N)ϕ.

For each A-IMETATEM operator, we define its negated counterpart.

Definition 12. Given an A-IMETATEM formulaOP (m,n; k), we defineN−OP (m,n; k)
standing for¬OP (m,n; k).

We can now define an A-IMETATEM rule

Definition 13. An A-IMETATEM ruleρ is a writing of the formα : β or simplyβ
whereβ is a conjunction including either logic programming literals or A-IMETATEM
operators (possibly negated) andα is an atom of the formp(t1, . . . , tn) where variables
occurring in termst1, . . . , tn also occur inρ. The atomp(t1, . . . , tn) is called the rule
representative.

Once attempted, an A-IMETATEM rulesucceedswhenever all it conjuncts succeed
(which implies that all the A-IMETATEM operators hold). In the case of A-IMETATEM
operators (or their negation), this means that the related property holds either in the
specified interval (if elapsed) or up to now. According to the semantic framework of [1]
where special formulas can be designated to be periodically executed, A-IMETATEM
rules will be periodically attempted (we will also say “checked”). Whenever we should
have a conjunction including A-IMETATEM operators with different frequencies, it is
up to the implementation to choose one, here we assume a random choice. We also
assume a default frequency whenever not explicitly defined.

As a first example of an A-IMETATEM rule, we are going to comment the follow-
ing:



NEVER(goal(g), deadline(g, t), NOW (T1), T1 ≤
t, not achieved(g), dropped(g))

This rule contains the factgoal(g) meaning thatg is the goal that has to be achieved.
achieved(g) is deemed true when the plan for reaching the goalg has been successfully
completed, whiledropped(g) means that agent has dropped any attempt to achieveg.
The rule states that it cannot be the case that a given goal not accomplished up to now,
but not expired yet (the deadlineT for this goal has not been met) is dropped by the
agent. There are in principle different ways to exploit this rule:

– as an “a priori” check to be performed whenever adrop action is attempted; if the
check fails, then the action is not allowed;

– as an “a posteriori” check on the agent behavior; in case of violation, some repair
action should presumably been undertaken, as discussed below.

Notice that for performing this kind of evaluation we have to consider ground rules.
In the above rule in fact, the only variable is the present timeT1, which is however
instantiated by the predefined operatorNOW . Below we generalize to the non-ground
case.

3.5 A-IMETATEM contextual rules

For the sake of generality, and in view of a changing environment, we propose a further
extension of rule syntax that include not only ground terms but also variables instanti-
ated by anevaluation contextassociated to each rule.

Definition 14. Letρ be anA-IMETATEM rule. The correspondingcontextual A-IMETATEM
rule is a rule of the formρ :: χ where:

– χ is called theevaluation contextof the rule, and consists of a quantifier-free con-
junction of literals;

– every variable occurring inρ must occur in an atom (non-negated literal) of the
contextχ.

From Definition 14 it follows that the evaluation of a contextual rule becomes feasi-
ble only when grounded from the context. In order to clarify the syntax of acontextual
A-IMETATEM rule, we propose the following example:

FINALLY (N ;F ) achieved(G) ::
goal(G), priority(G ,P), timeout(P ,N ), frequency(P ,F )

.
According to this definition,G is the goal to achieve while the context is a conjunc-

tion of the atomspriority, timeout andfrequency stating that the timeout for achiev-
ing a goal is established according to its priority, and so is the frequency for checking
the constraint itself. This contextual rule can be verified whenever instantiated to a spe-
cific goalg, and holds ifg has actually been achieved within the established time-out.



3.6 A-IMETATEM rules with improvement

In general, each A-IMETATEM rule is checked at a certain frequency and with certain
priorities (possibly customizable by means of directives specified inCI). For each in-
stance of an A-IMETATEM rule that suceeds, either it expresses a desirable property,
or not. In the former case some kind of “positive” action may be undertaken, in the
latter case a repair action will in general be required. The corresponding modification
of the program is in general terms calledimprovement. Program modification/evolution
is accounted for by the EVOLP semantics [2], [20].

In order to make the improvement possible either immediately or later, we record
the successful A-IMETATEM rules. In fact, according to the semantic approach of
[1] which encompasses lemma assertion, the representativeα of a successful rule is
recorded in the formαP : t where postfixP stands for “past”, andt is the time-stamp
of the record (which can be omitted if not useful, but is needed to distinguish among
different “versions” of the same record).

We now extend the definition of contextual A-IMETATEM rules to specify a corre-
spondingimprovementaction, that can be a repair or other according to the situation at
hand.

Definition 15. AnA-IMETATEM rule with a improvement is a rule the form:
ρ :: χ÷ ψ, or αP ÷ ψ where:

– ρ :: χ is a contextualA-IMETATEM rule;
– αP is the recorded representative of a contextualA-IMETATEM rule;
– ψ is called theimprovement actionof the rule, and it consists of an atomψ.

the left-hand-side is called themonitoring conditionof the rule

If the monitoring condition of anA-IMETATEMrule is violated when the rule is
checked, the improvement actionψ is attempted. The improvement action is specified
via an atom that is executed as an ordinary goal.

Consider again the previous example which monitors the achievement of goals, but
extended to specify that, in case of violation, the present level of commitment of the
agent to its objectives has to be increased. This can be specified as:

N −NEVER (not achieved(G), dropped(G) ) ::
(goal(G), deadline(G ,T ),NOW (T1 ),T1 ≤ T )÷
inc comt(T1 )

incr comt(T ) ← level(commitment ,L),
increase level(L,L1 ),
assert(neg(commitment mod(L)),
assert(commitment mod(L1 )),
assert(inc comt at(T ))

Suppose that at a certain timet the monitoring condition

NEVER (not achieved(G), dropped(G))



is violated for some specific goalg, i.e, its negationN −NEVER holds. Upon detec-
tion of the violation, the system will attempt the improvement (in this case a repair)
action consisting in executing the goal?−inc comt(t). In turn, its execution will al-
low the system to perform the specified run-time re-arrangement of the program that
attempts to cope with the unwanted situation.

Semantically, the execution of the repair action will determine the update of the
current agent programPi, returning a new agent programPi+1.

The A-IMETATEM rules with improvements are to some extent similar to METATEM
rules, though here one does not state properties of the future but rather specify actions
to be undertaken.

Based on this definition, we are able for instance to define rules aim to control the
different types of anomalous behavior of an agent (for a discussion of run-time anom-
alies see, e.g., [21]). For example we can introduce a rule for checking an unexpected
behavior such asomission, that is an agent fails to perform the desired action/goal. The
rule:

ALWAYS (T1 ;T2 ) :: goal(G),not achieved(G), dropped(G ,T3 ),NOW (T ),
T > T3 , confidence(G ,T ) > confidence(G ,T3 )÷ re − exec(G).

states how the agent has to behave in the case of a dropped goal. If, after dropping the
goal (because it has not been achieved in a given interval), the goal is attempted again if
in the meanwhile the agent’s confidence in being able to achieve the goal has increased.

In the case of an anomalous behavior due toduplication or incoherence, i.e., an
agent performs more than once the same action/goal when not necessary, we introduce
the following rule

FINALLY (start ,T ) :: NOW (T ), goal(G), times exec(G) > K ÷ disable(G)
with the role of checking if a goal/plan has been executed more times than a given
threshold, and of disabling the goal further execution if so.

In the case of an unexpected behavior arisen form the execution of a goal (so-called
anomaly ofintrusion ), a new constraint is set as a repair, establishing thatG cannot be
further pursued, at least until a certain time has elapsed.

SOMETIMES (start ,T ) ::
NOW (T ), goal(G), executed(G), consequence(G ,C ),not desired(C )÷
assert(NEVER(T ,T1 )exec(G) :: NOW (T ), threshold(T1 ))

Notice that the repair consists in adding a new constraint to the knowledge base,
that once asserted will start being checked (at the default frequency).

A-IMETATEM operators and operations can be used to check the past behavior
and knowledge of the agent but also to plan the future steps to compute in order to
archive a plan/goal. The agent evolution entails also an evolution of recorded informa-
tion and therefore can change or affect the future agent behavior. Based on the proposed
model, agents can act and react not only based upon a description of their goals/plans
to achieve, but also based upon social futures as trust, confidence, beliefs, etc. In these
cases, knowledge about the past can be profitably exploited. Consider for instance the
following example, where the level of trust is increased for agents that have proved
themselves to be reliable in communication during a test interval. The increase of the



level of trust is modeled as an improvement. Notice that the improvement is defined on
recorded representatives. I.e., each agent which will have passed the test will have its
trust level increased as soon as the rule with repair is executed.

Rel Ag(Ag) : ALWAYS (m,n; k) reliable(Ag)
Rel Ag(A)P ÷ increase trust level(A)

4 Conclusions

We have introduced an approach to the definition and the run-time verification of prop-
erties of agent behavior that has elements of novelty: in fact, we adopt a temporal logic
with operators defined on intervals; we are able to undertake suitable actions based on
the verification of properties and, as the underlying agent-model includes meta-level(s),
these actions may imply modifications to the agent’s knowledge base.

Future work includes a full implementation of the approach, the development of
suitable case-studies in significant application realms such as, e.g., ambient intelligence,
and theoretical developments aimed at coping with challenging contexts, e.g., learning.

Acknowledgements

We thank Arianna Tocchio for her long-termed contribution to this research work and
for her valuable help in some parts of this paper.

References

1. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages. In
Baldoni, M., Torroni, P., eds.: Declarative Agent Languages and Technologies. LNAI 3229.
Springer-Verlag, Berlin (2006)

2. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Logics in
Artificial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002. LNAI 2424, Springer-
Verlag, Berlin (2002) 50–61

3. Costantini, S., Tocchio, A., Toni, F., Tsintza, P.: A multi-layered general agent model. In:
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing, 10th Congress of the
Italian Association for Artificial Intelligence. LNCS 4733, Springer-Verlag, Berlin (2007)

4. Costantini, S., Acqua, P.D., Pereira, L.M.: A multi-layer framework for evolving and learning
agents. In M. T. Cox, A.R., ed.: Proceedings of Metareasoning: Thinking about thinking
workshop at AAAI 2008, Chicago, USA. (2008)

5. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road
map of current technologies and future trends. Computational Intelligence Journal23(1)
(2007) 61–91

6. Clarke, E.M., Lerda, F.: Model checking: Software and beyond. Journal of Universal Com-
puter Science13(5) (2007) 639–649

7. Barringer, H., Rydeheard, D., Gabbay, D.: A logical framework for monitoring and evolving
software components. In: TASE ’07: Proceedings of the First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering, Washington, DC, USA, IEEE Computer
Society (2007) 273–282



8. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: MetateM: A framework for
programming in temporal logic. In: Proceedings of REX Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness. Volume 430 of Lecture Notes in
Computer Science., Springer-Verlag (1989)

9. Fisher, M.: Metatem: The story so far. In Bordini, R.H., Dastani, M., Dix, J., Fallah-
Seghrouchni, A.E., eds.: PROMAS. Volume 3862 of Lecture Notes in Computer Science.,
Springer (2005) 3–22

10. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Logics in Artificial Intelligence, Proc. of the 9th European Conference, Jelia 2004. LNAI
3229, Springer-Verlag, Berlin (2004)

11. Apt, K.R., Bol, R.: Logic programming and negation: A survey. The Journal of Logic
Programming19-20(1994) 9–71

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic
Programming, Proc. of the Fifth Joint Int. Conf. and Symposium, MIT Press (1988) 1070–
1080

13. Fisher, M., Ghidini, C.: The abc of rational agent modelling. In: AAMAS ’02: Proceedings
of the first international joint conference on Autonomous agents and multiagent systems,
New York, NY, USA, ACM (2002) 849–856

14. Barklund, J., Dell’Acqua, P., Costantini, S., Lanzarone, G.A.: Reflection principles in com-
putational logic. J. of Logic and Computation10(6) (2000) 743–786

15. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Global Computing: IST/FET International Workshop, Revised Selected
Papers. LNAI 3267. Springer-Verlag, Berlin (2005) 340–367

16. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proc. ECAI-2004. (2004)

17. Stathis, K., Toni, F.: Ambient Intelligence using KGP Agents. In Markopoulos, P., Eggen, B.,
Aarts, E.H.L., Crowley, J.L., eds.: Proceedings of the 2nd European Symposium for Ambient
Intelligence (EUSAI 2004). LNCS 3295, Springer Verlag (2004) 351–362

18. Tocchio, A.: Multi-Agent systems in computational logic. PhD thesis, Dipartimento di
Informatica, Universit̀a degli Studi di L’Aquila (2005)

19. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Logics in Artificial Intelligence, Proc. of the 8th Europ. Conf.,JELIA 2002. LNAI 2424,
Springer-Verlag, Berlin (2002)

20. J.Alferes, J., Brogi, A., Leite, J.A., Pereira, L.M.: An evolvable rule-based e-mail agent. In:
Procs. of the 11th Portuguese Intl.Conf. on Artificial Intelligence (EPIA’03). LNAI 2902,
Springer-Verlag, Berlin (2003) 394–408

21. Costantini, S., Tocchio, A.: Memory-driven dynamic behavior checking in logical agents.
In: Electr. Proc. of CILC’06, Italian Conference of Computational Logic. (2006) URL:
http://cilc2006.di.uniba.it/programma.html.


