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Abstract

We illustrate a general agent model which includes a base
level BA and a meta-level MA. The MA performs various
forms of meta-reasoning including meta-control, which has
the role of making meta-level decisions effective on the BA.
As, in our view, meta-reasoning and meta-control are often
concerned with time, we introduce the possibility of express-
ing temporal meta-rules. A very important meta-level activity
in evolving agents is learning: we propose a general vision
for interacting agents, where agents learn their patterns of be-
havior not only by observing and generalizing their observa-
tions, but also by “imitating” other agents, after being told
by them. The process of learning by imitation is based on
meta-reasoning about various aspects, from self-monitoring
to knowledge evaluation. We propose an operational model
for knowledge exchange assuming an agent society which is
based on concepts of reputation and trust.

Introduction
In this work, we adopt a multi-layered underlying agent
model where there is a base (or object) level, that we call
BA for “Base Agent”, and (at least) two meta-layers. Thus,
referring to Figure 1 (which has been taken from the meta-
reasoning manifesto (Cox and Raja 2007)), while the BA
monitors the “ground level”, the MA (Meta-Agent) and the
IEA (Information Exchange Agents) compose in our model
the “Meta-level”. We discuss at some length this agent
model and its semantics in the next sections. In defining the
agent model, we do not commit to specific agent languages
or models: our sole (soft) commitment in fact is to the adop-
tion of computational logic. Many existing agent models
and systems can be adopted as “building blocks”, and even
commitment to computational logic is not really strict.

The MA performs meta-reasoning of various kinds and
supervises the BA activities. The MA includes a meta-
control component that on the one hand coordinates the
BA activities, and on the other hand makes the MA deci-
sions effective by acting upon the BA. The actions that the
MA will be able to undertake will include modifications to
the BA in terms of adding/removing knowledge (modules)
in the attempt at correcting inadequacies and generating a
more appropriate behavior. The IEA will be put into action
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Figure 1: Multi-layered agent model

whenever the need and opportunity of social interactions and
knowledge exchange has to be evaluated.

One may notice that supervising the BA, and thus check-
ing whether the agent performs its tasks in a correct and
timely manner, implies several aspects related to time. In
this paper, we propose an agent-oriented temporal logic that
allows “temporal” meta-rules to be expressed. These meta-
rules express constraints whose violation may imply suit-
able actions to be undertaken. I.e., whenever all rules are
complied with the overall agent is supposed to work well.
Whenever some rule is violated, the meta-level is supposed
to operate so as to restore correct functioning.

In our view, a very important meta-level activity in evolv-
ing agents that have to cope with a complex “world” is learn-
ing. The process of learning is a form of meta-reasoning that
involves various aspects: self-monitoring, for identifying
problems and needs; proper learning; evaluation of learned
knowledge either according to concepts such as reputation
and trust, or according to the usefulness that provisionally
learned knowledge demonstrates in practice.

We propose a general vision of interacting agents: in this
vision, agents learn their patterns of behavior not only by ob-
serving and generalizing their observations, but also by “im-
itating” other agents, after being told by them. As concerns
learning abilities, we assume that “our” agents are able1 (i)
to elicit (e.g., by inductive learning) the behavioral patterns
that other agents are adopting, and (ii) to learn rules and
plans from other agents by imitation (or “being told”). In-
deed, this is a fairly practical and economical way of increas-
ing abilities, widely used by human beings, as widely stud-
ied in evolutionary biology (Richardson and Boyd 2005).

1We make the simplifying assumption that agents speak the
same language, and thus we overlook the problem of ontologies.



We believe in fact that some principles emerging from these
studies can equally apply to societies of agents.

The envisaged agents will try to either modify or reinforce
the rules/plans/patterns they hold, based on appropriate eval-
uation performed by the internal meta-level component. The
evaluation might also convince the agent to modify its own
behavior by means of advanced evolution capabilities.

Avoiding the costs of learning is an important benefit of
imitation, but nevertheless learning involves many issues
and some potential risks. The involved issues are at least
the following: (a) how to ask for what an agent needs; (b)
how to evaluate the actual usefulness of the new knowledge.
We propose a practical operational model for Information
Exchange based on meta-level evaluation and meta-control.

The plan of the paper is the following. First, we comment
about our view of meta-reasoning, compared to relevant re-
lated work. Then, we introduce our agent model and the
new temporal logic. Next, we discuss learning, and argue
that our agents will often attempt to learn new knowledge in
the form of A-ILTL rules. Finally, we outline an operational
model for information exchange and then conclude.

Background and Related Work
In (Raja and Lesser 2007) and (Alexander et al. 2007) and in
the references therein (the reader is referred to (Cox 2005)
for a review of the main approaches to meta-reasoning),
meta-level control is defined as the ability of complex agents
operating in open environments to sequence domain and de-
liberative actions to optimize expected performance. De-
liberative control actions may include for instance schedul-
ing domain-level actions and coordinating with other agents
to complete tasks requiring joint effort. The meta-control
component is triggered based on dynamic occurrence of pre-
defined conditions. Meta-control generates an abstract meta-
level problem based on the agent’s current problem solv-
ing context and available deliberative actions and chooses
the appropriate deliberative action which is executed, possi-
bly resulting in further domain-level actions. In their view,
meta-level control supports, e.g., decisions on when to ac-
cept, delay, or reject a new task; when it is appropriate to
negotiate with another agent; whether to renegotiate when a
negotiation task fails; how much effort to put into scheduling
when reasoning about a new task; and whether to resched-
ule when actual execution performance deviates from ex-
pected performance. Each agent has its own meta-level con-
trol component.

In our approach, each agent has its own meta-level com-
ponent including meta-control. The meta-level is, as illus-
trated in the next section, a standard component of the agent
architecture. However, the meta-level is not just triggered
upon specific conditions. Rather, it performs a continuous
supervision of object-level activities (in practice, thiswill
result either in real parallelism or in an interleaving of a
number of object-level and meta-level steps).

Meta-reasoning can be related to several aspects of the
agent operation like, e.g., learning, negotiation, goal evalu-
ation and setting etc. Meta-reasoning involves also check-
ing whether object-level activities are performed timely and
correctly (i.e., similarly to previously mentioned work poor

performance is considered to be an anomaly). In case a mal-
functioning is detected, appropriate deliberations are taken
that may include stopping/starting object-level activities and
replacing pieces of object-level code. Meta-control coordi-
nates object-level activities by triggering appropriate activi-
ties at the appropriate stage. Also, meta-control puts meta-
reasoning deliberations into effect, by affecting the base(ob-
ject) level.

More generally, as widely discussed in (Barklund et al.
2000) and in the references therein, object-level reasoning
manipulates elements of the domain of interest in which the
agent operates: in logic, this means that constants denote
elements of the domain, variables range over elements of
the domain, and predicates manipulate these constants and
variables. Meta-level reasoning manipulates object-level ex-
pressions, including formulas or entire theories: in logic,
this means that variables (i.e., meta-variables) range over
object-level predicates and formulas, and meta-level pred-
icates and formulas are defined and operate over these rep-
resentations. A link must exist to correlate the two levels,
in one direction for producing meta-level representation and
in the other directions to transpose meta-level results to the
object-level and put it in operation.

Agent Model
We propose a general agent model that goes in the direction
of flexibility and adaptability. This is obtained by provid-
ing high flexibility in how an agent is built and may evolve,
and by equipping an agent with forms of understanding and
awareness that we “situate” at different control layers. Be-
yond the basic (object) layer we in fact introduce a meta-
layer, where non-trivial supervising and tuning tasks (in-
cluding agent reconfiguration) can be performed.

Agent Model: Knowledge Base
In order to meet the vision outlined in the Introduction, we
consider an agent as composed of two layers:

• A base layer or object layerBA in charge of interacting
with the agent’s environment. We assume in this paper
that BA is a logic program, but we do not commit to a
particular semantics for it (for a survey of semantics for
logic programs, see e.g. (Apt and Bol 1994)). We assume
however a semantics possibly ascribing multiple models
to BA, in order to deal with “uncertainty”. One such a
semantics might be the stable model semantics (Gelfond
and Lifschitz 1988).

• A meta-layerMA in charge of performing meta-level ac-
tivities and meta-control.

Important components of the BA and/or the MA include:

• A belief, component, for both the BA and the MA, pos-
sibly encompassing several modules for reasoning, plan-
ning, reactivity and proactivity, goal identification, etc.

• A set ofdesires, i.e., goals that have been adopted or goals
that are under consideration, andintentions, i.e., plans in
execution and plans under analysis.

• A set of constraints, that will in general include tempo-
ral constraints; in the MA, these constraints will have the



aim to either induce or verify that the BA performs in the
established time, in the correct order and in the appropri-
ate way its activities. Constraints can state what should
happen and when or what should not happen.

• In the BA, a set of mechanisms for interacting with the
environment.

• A set of mechanisms formanaging beliefs,including: a
learning mechanism and a belief revision mechanism.

• A control componentfor combining, exploiting and su-
pervising the above components, based oncontrol infor-
mationaimed at improving the control mechanism effec-
tiveness.

Agent Model: Operational Behavior
Below we sketch the operational behavior of this agent
model, which is further described in (Costantini et al. 2007).

Each agent, once created, will in general pass through a
sequence of stages, since it will be affected by the interac-
tion with the environment, that will lead it to respond, to set
and pursue goals, to either record or prune items of informa-
tion, etc. This process, that we can call the agentlife, is un-
derstood here in terms of successive transformations of the
initial agent into new agents, that are its descendants where
the program has changed by modifying the beliefs, desires,
intentions, and by learning and belief revision steps; each
transformation is determined by the step that has been done.
Formally, an agent starts from a program that defines it, ac-
cording to the given agent model.

For the sake of generality, we do not go any deeper into
the feature of the agent model that we refer to simply asM.

Definition An agent programPM is a tuple
〈BA,MA, C, CI〉 of software components whereBA
andMA are logic programs,C is the control component
andCI is some related (optional) control information.

The control informationCI is given as input toC together
with BA and MA. While however BA and MA are programs
written in a logic agent-oriented language,CI contains a set
of directivesthat can affect in a relevant way the run-time
behavior of an agent. Typically, directives will state at least
which are the priorities among different events/actions the
agent has to cope with and at which frequency they will be
taken into consideration. Therefore, by modifying the con-
trol information while not touching the code, one can ob-
tain a “lazy” agent rather that an “eager” one or affect the
“interest” that the agent will show with respect to different
matters.

We can take the agent program as theinitial state of the
agent, where nothing has happened yet.

Definition Theinitial agentA0 is an agent programP0M

(or simply P0 whenM is clear from the context), i.e.,
〈BA0,MA0, C0, CI0〉.

The operational behavior of the agent will result from the
control component and the control information, which rely
on an underlying control mechanism that implements the op-
erational counterpart of the agent model.

Definition Theunderlying control mechanismUM (or U
in short), able to put in operation the various components
of an agent modelM, is a transformation function operat-
ing in terms of a set of distinguishablesteps, starting from
A0 and transforming it step by step intoA1, A2, . . . , given
Ci andCIi as defined inA0, A1, A2,. . . respectively.

Definition Let P be an agent program. Then,∀i ≥ 0,
Ai→

U(Ci,CIi)Ai+1.

Operationally, two different solutions are possible. In the
first oneU provides different parallel threads for the BA and
MA: therefore, MA continuously monitors BA and can pos-
sibly make interventions in case of problems. In the second
one (where no parallel threads are possible) the control is
interleaved between BA and MA where in turn a series of
steps is performed at the BA level and a sequence of steps
is performed at the MA level. Control willshift upfrom the
BA to the MA by an act that is sometimes calledupward
reflectioneither periodically, in order to perform constraint
verification at the meta-level, or upon some conditions that
may occur. Control willshift downby downward reflection
from the MA to the BA on completion of the MA activi-
ties (a general theory of reflection in logic programming lan-
guages has been developed in (Barklund et al. 2000)). How
frequently and upon which conditions there will be a shift is
control information that can be encoded inCIi. For a work-
ing examples of this kind of behavior, one can consider the
internal eventsmechanism of DALI (Costantini and Tocchio
2006).

Notice that theAjs do not deterministically follow from
A0, as there is the unforeseen interaction with the external
environment and the agent internal choices are not in general
deterministic. A full “evolutionary” declarative semantics
that is not specific to a language/approach but is rather de-
signed to encompass a variety of computational-logic based
approaches, thus accounting for the agent model proposed
here, is described in (Costantini and Tocchio 2006).

A relevant function of the MA is that of evaluating re-
sources used by the BA. Such an evaluation is needed by the
MPA layer when it has to make a decision upon which re-
sources to use next for the BA layer. In what follows, we
assume to enhance the MA (Meta-Agent) by introducing a
meta-meta-level that we call the IEA (Information Exchange
Agents), whose role is discussed later.

The MA interventions on the BA may encompass modifi-
cations to the BA by replacing some of its rules/components
by others. To describe and semantically account for the dy-
namic changes that the MA performs on BA we rely upon
EVOLP, an extension of logic programming (Alferes et al.
2002) that allows to model the dynamics of knowledge bases
expressed by programs, as well as specifications that dy-
namically change.2 EVOLP augments a given logic pro-
gramming language by adding the new distinguished atom
assert(R), whereR is a rule. The intended meaning is that
wheneverassert(R) is a consequence of the given program,
then the ruleR is added to the program itself. Symmetri-
cally, a rule can be removed by asserting its negation.

2An implementation of EVOLP is available from
http://centria.fct.unl.pt/˜jja/updates.



Though EVOLP is originally intended for addi-
tion/deletion of rules, it may as well be used for ad-
dition/deletion of modules (sets of rules). In fact, the
result of adding/deleting a whole module consists in the
agent program (with its semantics) obtained after having
added/deleted all the rules composing the module itself.

Temporal Logic Rules and Meta-rules
The supervision that the MA performs on the BA will in
general encompass temporal aspects. As discussed above,
MA will check whether some constraints on BA activity are
respected. The checks that we consider here are not sup-
posed to be performed in advance in the model-checking
style, as done by a number of approaches in the literature
that incorporate intervals into temporal logic. Instead, here
we consider run-time verification of properties: violations,
if present, are treated by means of some kind ofrepair, and
by possibly modifying BA.

As it is not possible to foresee in advance all possible
states that our agents can reach by interacting with both
the user and the environment, we do not adopt a tempo-
ral logic based on a branching time, i.e., based on sepa-
rately considering all paths that the agent may undertake.
Rather, we intend to check that some properties are ver-
ified anyway, no matter the chosen path. So we adopt
and extend LTL, a “Linear Time Logic”, that implicitly
quantifies universally upon all possible paths. LTL is a
propositional logic with additional operators for time, where
formulas are constructed from a set ofatomic proposi-
tions. For LTL syntax and semantics the reader may re-
fer to (Ben-Ari, Manna, and Pnueli 1983; Emerson 1990;
Lichtenstein, Pnueli, and Zuch 1985)

Extension: A-ILTL
In the context of a resource-bounded agent, it is not possible
to verify properties on the entire (infinite) sequence of states.
Often this is not even necessary, since one needs properties
to hold within a certain time interval. Also, it is useful to
be able to state explicitly that a certain undesired property
never holds or never holds within a certain time interval.
Therefore, we have proposed an extension of LTL that we
call A-ILTL, for “Agent Interval LTL”, fully described in
(Costantini et al. 2008).

We introduce the possibility of accessing the current state
(or time): the propositionτ(si) is true if si is the current
state. Letϕ be a proposition. The A-ILTL operators are the
LTL operators plus the following ones.Xm, i.e. ϕ should
be true at statesm. Fm stands for bounded eventually,Fmϕ
means thatϕ eventually has to hold somewhere on the path
from the current state tosm. Gm,n stands for always in
a given interval, i.e.,Gm,nϕ means thatϕ should become
true at most at statesm and then hold at least until state
sn. G〈m,n〉 means thatϕ should become true just insm and
then hold until statesn, and not insn+1, where nothing is
said for the remaining states.N stands for “never”, i.e.Nϕ
means thatϕ should not become true in any future state.
Nm,n stands for “bounded never”, i.e.Nm,nϕ means thatϕ
should not be true in any state betweensm andsn, included.

A-ILTL Op k OP(m,n;k)
τ(t) NOW (t)
Xk NEXT (1 ; k)

Xj
k NEXT (j ; k)

F k FINALLY (1 ; k)
F k

m FINALLY (m; k)
Gk ALWAYS (1 ; k)

Gm,n
k ALWAYS (m,n; k)

G〈m,n〉
k ALWAYS 2 (m,n; k)

Nk NEVER(1 ; k)

Nm,n
k NEVER(m,n; k)

Figure 2: Representation inL of A-ILTL operators

In practice, run-time verification of A-ILTL properties
may not occur at every state (of the given interval). Rather,
properties will be verified with a certain frequency, that can
even be different for different properties.

A-ILTL Rules
In our setting, A-ILTL rules are defined upon a logic-
programming-like set of formulas where all variables are
implicitly universally quantified. In this way, we are able
to directly adopt the semantics proposed in (Costantini et al.
2008) for the propositional underlying language. In this set-
ting however, the negation operatornot is interpreted (as
usual) as negation-as-failure.

Before defining A-ILTL rules, we need to represent A-
ILTL operators within the language. Here we follow the
naming convention illustrated in Figure 2. When not needed
from the context, we omit the arguments of the operator and
simply writeOP (instead ofOP (m,n; k)).

Definition Given a setS of literals (i.e., atoms and
negated atoms), we writeconj(S) to indicate the set of
all the conjunctions that can be formed by using literals in
S. Let m, n andk be natural numbers. Define the setQ
as follows:

– S ⊂ Q

– if ϕ ∈ conj(Q), thenOP (m,n; k)ϕ ∈ Q.

An A-ILTL rule is any rule of the formOP (m,n; k)ϕ,
for anyϕ ∈ conj(Q).

In many monitoring situations, one has to check that what
normally should happen actually occur. The occurrence
of an event is said to be “normal” when it occurs suffi-
ciently often, if not always. We define a new operator called
USUALLY in terms ofALWAYS that is checked at a cer-
tain frequency, sayf , that reinforces “normality”.

Definition Given a sentenceϕ and a natural numberf ,
we letUSUALLY ϕ = ALWAYS (1 ; f )ϕ.

Notice that frequencies can possibly be specified separately,
e.g., as control information included inCI. For simplicity,
both the interval and the frequency, indicated in the defini-
tion as(m,n; k), can be omitted if not relevant to understand
the context. That is, one can writeALWAYSϕ if ϕ has to
be checked on all the future states.



To show the potential of A-ILTL rules we define below a
check for an agent that, once decided to obtain the goalg, is
blindly committed to actually obtaing within a given dead-
line d. After the deadline, a resource-bounded agent can
possibly drop the commitment (or keep it, but only if possi-
ble). The factgoal(g) means thatg is a goal that has been
selected to be executed.achieved(g) means that the plan
for reaching the goalg has been successfully completed. In
contrast,dropped(g) means that the agent has given up any
attempt to achieveg. The following A-ILTL rule checks that
an agent respects the blind commitment to its goals.

NEVER (goal(G), deadline(g ,T ),NOW (T1 ),
T1 ≤ T ,not achieved(g), dropped(G))

In order to fulfill the semantic specification, A-ILTL rules
must be ground when they are evaluated, i.e. no variables
must occur. For instance in the above example the evaluation
will be related to each ground instance obtained by suitably
instantiating the variablesG, T andT1.

A-ILTL Rules with Time-Related Variables The syntax
of A-ILTL rules defines time instants as constants. We in-
troduce a further extension where time instants can possibly
be variables which are instantiated by what we call aneval-
uation context.

Definition Let OP(m,n; k)ϕ be an A-ILTL rule. The
correspondingcontextual A-ILTL rule has the form
OP(M ,N ;K )ϕ :: χ where:

– M , N andK can be either variables or constants;
– χ is called theevaluation contextof the rule, and con-

sists of a quantified-free conjunctions of literals;
– each of theM , N andK which is a variablemustoccur

in an atom (non-negated literal) inχ.

A contextual A-ILTL rule will be evaluated whenever
ground. The contextχ can possibly instantiate not only the
time instants, but also other variables occurring inϕ. More
precisely, all its ground instances are subject to evaluation.
In the example below, the contextual A-ILTL rule states that
the time-out for completion of a goal is established accord-
ing to its priority.

FINALLY (T ;F )G ::
goal(G), priority(G ,P), timeout(P ,T ),
frequency(P ,F )

A-ILTL Rules with Repairs During the monitoring
process, each A-ILTL rule is attempted at a certain fre-
quency and with certain priorities (possibly customizableby
means of directives specified inCI). If the current state of
affairs satisfies every A-ILTL rule, then no action is required.
Otherwise, some kind of repair action has to be undertaken
with respect to the violated A-ILTL rule. To this aim, we
extend the definition of contextual A-ILTL rules to specify a
corresponding repair action.

Definition An A-ILTL rule with a repair is a rule the form:
OP(M ,N ;K )ϕ :: χ ÷ ψ, where:

– OP(M ,N ;K )ϕ :: χ is a contextual A-ILTL rule;

– ψ is called therepair actionof the rule, and it consists
of an atomψ.

Anytime, the monitoring conditionOP(M ,N ;K ) of an
A-ILTL rule is violated, the repair actionψ is attempted.
The repair action is specified via an atom that is executed as
an ordinary goal.

Consider again the previous example which monitors the
achievement of goals, but extended to specify that, in case
of violation, the present level of commitment of the agent to
its objectives has to be increased. This can be specified as:

NEVER (not achieved(G), dropped(G) ) ::
(goal(G), deadline(G ,T ),NOW (T1 ),T1 ≤ T )÷
inc comt(T1 )

incr comt(T ) ← level(commitment ,L),
increase level(L,L1 ),
assert(neg(commitment mod(L)),
assert(commitment mod(L1 )),
assert(inc comt at(T ))

Suppose that at a certain timet the monitoring con-
dition NEVER (not achieved(g), dropped(g) ) is violated
for some goalg. Upon detection of the violation, the system
will attempt the repair action consisting in executing the goal
?−inc comt(t). In turn, its execution will allow the system
to perform the specified run-time re-arrangement of the pro-
gram that attempts to cope with the unwanted situation.

Notice that the above-presented A-ILTL rules performs
meta-reasoning rather than object-level adaptation. In fact,
it is defined overanygoal rather than over specific goals as
one would expect at the object level, and involves the con-
cept oflevel of commitmentwhich is a meta-level decision.
In fact, also in the approach of (Raja and Lesser 2007) and
(Alexander et al. 2007) this decision would be subject to
meta-control.

Semantically, the execution of the repair action will deter-
mine the update of the current agent programPi, returning
a new agent programPi+1.

On Learning and Evolution
We assume that our agent do not act in isolation: rather, they
are part of a society of agents. This society in its simplest
version can be a set of sibling agents. More generally, it can
be a structured society of agents sharing common knowl-
edge and possibly common objectives. We assume that the
agents belonging to this society are benevolent and willing
to cooperate.

An agent that performs activities of monitoring/training a
user must perform at least three kinds of different learning
activities:

• Initialization stage: in order to start its monitor-
ing/training activities, the agent must receive either by a
sibling agent or by the society a set of basic facts and rules
that define:

– therole that the agent will impersonate in the society
– the basic behavior of the agent

This is clearly a form ofLearning by Being Told.



• Subsequent stages, Observation: the agent will be able
to observe the environment along time and in different sit-
uations. The agent will collect the observations and will
try to classifythem with the aim of eliciting general rules
or at least being able to expect with a reasonable confi-
dence what is likely to happen in the future.

• Subsequent stages, Interaction: whenever the agent will
have to cope with situations for which it has no sufficient
knowledge/expertise, the agent will try to obtain the nec-
essary knowledge either from other agents or from the
society. The agent will however in general evaluate the
actual usefulness of the acquired knowledge.

We may notice that, in general, at the initialization stage
agents will acquire from the society knowledge that they
take for granted, while at the interaction stages agents will
be told knowledge that may be uncertain, in that it may have
in turn learned by the others. The initialization will pro-
vide general meta-rules to be included in the MA. The fol-
lowing sample A-ILTL rules for a Personal Assistant agent
state that a user should eventually perform necessary actions
within the associated time-threshold, and should never per-
form forbidden actions.

FINALLY (T )A ::
action(A),mandatory(user ,A), timeout(A,T )

NEVER A ::
action(A), forbidden(user ,A)

Vice versa, each agent will give its contribution to the so-
ciety. For instance, the rule above might be communicated
to the society and might (after suitable evaluation by the so-
ciety itself) be integrated into the society’s common knowl-
edge and then communicated to other agents. An agent may
contribute to the society’s “common belief set” under several
respects:

• Provide the others with its own knowledge when required.

• In case of a structured society, insert into a repository
whatever it has been able to learn.

• Provide feedback about the usefulness/effectiveness in its
own context of the knowledge it has been told by others.

• Participate in possible “collective evaluations” of learned
knowledge.

In Observation and Interaction stages, a basic premise that
is quite usual in any form of assumption-based reasoning is
that the agent distinguishes betweenassumableknowledge
that it can try to learn, and basic knowledge that is taken for
granted. Based on a record of past observations the agent
should be able to produce:

• classifications, such as decision trees aimed at predicting
what the other agents will do in some situation described
by a set of parameters;

• A-ILTL rules, describing whatALWAYS , USUALLY
or NEVER should either occur or be done in a certain
situation.

The set of A-ILTL rules that an agent is able to learn from
can be very important for the society, in that they can form

knowledge that they will acquire “by being told”. The agent
will be later on verify the adequacy of learned rules and will
be prompt to revise/retract them in front of new evidence.
In fact, since in the real world the most common situation is
one where there is incomplete and changeable information,
any system making a serious attempt at dealing with real
situations must cope with such complexities. The principle
to be used here is theUnknown World Assumption(UWA)
where everything is unknown or undefined until we have
some solid evidence of its truthfulness or falseness. This
principle differs from the more usualClosed World Assump-
tion (CWA) where everything is assumed false until there is
solid evidence of its truthfulness. The UWA stance is more
skeptical, cautious, and even more realistic than the CWA.

Hopefully, after some iterations along this build-
ing/refinement cycle the knowledge built is “good enough”
in the sense that the predictions it makes are accurate
“enough” concerning the environment observations result-
ing from experiences. At this point, the theory can be used
both to provide explanations to observations as well as to
produce new predictions.
The Role of the Society Finding possible alternative
pieces of information is one problem; finding which one(s)
is(are) the “best” is another issue. In the next section we
assume “best” means a minimal well-rated set of hypothe-
ses and we describe the method we use to find such best.
Another interpretation of “best” could be “most probable”
and in this case the theory inside the agents must contain the
adequate probabilistic information.

Ex contradictione quodlibet. This well-known Latin say-
ing means “Anything follows from contradiction”. But con-
tradictory, oppositional ideas and arguments can be com-
bined together in different ways to produce new ideas. Since
“anything follows from contradiction” one of the things that
might follow from it is a solution to a problem to which sev-
eral alternative positions contribute.

One well known method for solving complex problems
widely used by creative teams is that of ‘brainstorming’.
In a nutshell, every agent participating in the ‘brainstorm’
contributes by adding one of his/hers idea to the common
idea-pool shared by all the agents. All the ideas, some-
times clashing and oppositional among each other, are then
mixed, crossed and mutated. The solution to the problem
arises from the pool after a few iterations of this evolution-
ary process.

The evolution of alternative ideas and arguments in order
to find a collaborative solution to a group problem is the
underlying inspiration of this work.

In fact, we have introduced a meta-meta-level IEA which
is present in every agent which participates in the society.
This higher level is responsible for information exchange.
As discussed in the next section, the IEA can operate by
exploiting strategies and techniques involving social evalua-
tion and consensus, credibility measures and overall prefer-
ences.



Modeling Imitation Learning
In designing learning agents, particular attention shouldbe
dedicated to strategies involving reputation and trust forthe
evaluation of learned knowledge. The social acceptance of
rules can be partly based on existing techniques and algo-
rithms. However, we believe that an extension is necessary
because, where learning is concerned, techniques that just
measure reputation/trust on the basis of agents’ feedback are
not sufficient: some kind of economical and efficient evalu-
ation of both the degree of compatibility of the new knowl-
edge with an agent’s previous knowledge base and of the
performance of the acquired rules with respect to the ex-
pected objectives is also required.

In order to obtain an enhanced framework which allows
for advanced imitation learning, we have introduced ameta-
meta-layerIEA (for “Information Exchange Assistant”) in
charge of exchanging information with other agents. In our
framework, the agent’s information exchange is controlled
by the IEA. The IEA may to this aim also exploit the re-
source evaluation performed by the MA.

The IEA is activated in at least three situations: (1) when
an agent A asks another agent B information about how to
solve a certain problem, (2) when A asks B information
on how to improve its performance, and (3) when A pro-
actively informs/recommends B a piece of information that
A considers relevant for B.

To exchange information, we assume that agents are lo-
cated in an agent society allowing for social interactions
based on the notions of reputation and trust. In such a frame-
work, agents interact with one another through their IEA.
Our social structure is inspired and motivated by the findings
in trust and distributed reputation systems, see for exam-
ple (Gupta, Judge, and Ammar 2003; Damiani et al. 2002;
Obreiter, F̈ahnrich, and Nimis 2005). Indeed, trust and rep-
utation systems are receiving considerable attention bothin
the academic community and the industry as practical meth-
ods for assessing the quality of resources and the reliability
of entities in online environments. The basic idea of repu-
tation systems is to let entities rate each other and use ag-
gregated ratings about a certain entity to derive its reputa-
tion value. Reputation systems have therefore a typical col-
laborative flavor, reputation being a quantity derived from
the underlying social structure which is usually visible toall
the members of the network. In contrast, the basic idea of
trust systems is to analyze and combine trust relationships
in order to derive the measure of trustworthiness of specific
nodes3.

In non-centralized information societies, an agent neigh-
borhood’s pooled and polled reputation consulting mecha-
nism will allow for improved trust evaluation, and summa-
tion of positive/negative credibility over time. Indeed, in
distributed environments, each agent is responsible for col-
lecting and combining ratings from other agents. Since it
is often impractical and costly to collect the ratings derived
from all the agents interactions within the society, the repu-
tation rating can be based on a subset of the agent interac-

3See (Jøsang 2007) for a detailed description and overview of
trust and reputation systems.

tions, typically relying on neighborhood agents.

Information Exchange: Operational Semantics
In this section we outline a possible operational semanticsof
information exchange. We make the following assumptions.

• We letαi andβi be the trust and reputation rating/value
of an agent towards an agentAi.

• Sometimes we usei to denote agentAi.

• We assume that the trust ratingαi towards an agentAi

builds upon its reputation ratingsβi. Thus, we do not ex-
plicit require the value ofβi and evaluate the information
received byAi with respect toαi.

• Every agent will normally have the possibility of inter-
acting with a limited part of the agent society, i.e., with
its “neighbor” agents. The notion of neighbor agents de-
pends in general upon the context at hand and may be
defined for example in terms of the trust relationship.

• We assume that IEA maintains anexperience repository
containing the trust and reputation ratings of other agents,
as well as an history log of previously exchanged infor-
mation.

The proposed information exchange protocol consists of 4
phases4.

Phase 1: Resource Searching.Initially, an agent that is
searching for new knowledge broadcasts to all its neigh-
bors a query indicating which information it is looking for.
We assume that agents reply by sending back an answer
equipped with its evaluation. Thus, a reply of an agentAi

takes the formxi = (x,Ei), wherex is the answer ofAi to
the original query andEi the evaluation (ofx) performed by
Ai. In such a framework,x can be any piece of information,
andEi meta-knowledge uponx. In casex is any procedural
information about how to solve some particular task, then
Ei may be a list of facts evaluatingx itself, like:

• the prerequisites and objectives ofx;

• the conditions for whichx is not suitable;

• the risk, gain, and probability of success ofx;

• the evaluation ofx w.r.t. its objectives;

• its performance results.

Phase 2: Resource Selection and Vote Polling.Upon re-
ception of the answers to its query, the agent selects the one
that seems to best satisfy its request. To do so, the agent
evaluates every received answerxi:

wi
x = f(xi, αi)

by taking into consideration also the trust rating of the agent
Ai proposing it. Note thatf can be any function, and may
differ from agent to agent. Before accepting it, the agent
inquires its neighbor agents about their opinion concerning

4Note that we do not consider here security problems arising
during communication, as they are out of the focus of the paper.
The interested reader can refer to (Damiani et al. 2002) for details
on security problems in a P2P reputation system protocol.



both the information and the proposing agent. Vote polling
can be performed via broadcasting. Each agent upon receiv-
ing the poll message checks its experience repository and
can therefore respond by communicating its vote on the re-
source as well as on the proposing agent.

Phase 3: Vote Evaluation. During this phase, the agent
collects the set of votes on the resource and its offerer. To
evaluate the votes received, the agent needs to base its deci-
sion on the trust level of the respondents. The weight of the
vote is greater if given by a more trusted respondent. Thus,
the final evaluation will be:

wS
x = H

i∈S
(wi

x)

whereS is the set of respondent agents to the voting andH
may be for example an average function.

Phase 4: Resource Acceptance.In case the agent con-
siders the resource quality not sufficient, then it can repeat
the voting process on another available resource. Otherwise,
it will accept the information received by registering it into
the experience repository log, and by sending the resource
to the MA that will incorporate it in the agent’s knowledge
base and will possibly set an “a posteriori” evaluation.

Concluding Remarks
There are several future directions for the ideas that we have
discussed and sketched in this initial work. A full system
corresponding to the architecture outlined in the paper has
not been implemented yet. However, some of its building
blocks have been implemented, and we mean to build a full
implementation in the near future.

For future directions, a perspective that we believe to be
important concerns the fact that in many applications intelli-
gent agents will soon require some kind of “moral” or “eth-
ical” reasoning abilities, which can be modeled as a form of
meta-reasoning. Some of the authors of this paper have ini-
tiated this research, as reported in (Pereira and Saptawijaya
2007).
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