
Context-based Commmonsense Reasoning
in the DALI Logic Programmming Language?

Stefania Costantini Arianna Tocchio

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost, tocchio }@di.univaq.it

Abstract. In this paper we will discuss the context management features of the
new logic programming language DALI, aimed at defining agents and multi-
agent systems. In particular, a DALI agent, which is capable of reactive and
proactive behaviour, builds step-by-step her context. Context update is modelled
by the novel concept of “evolutionary semantics”, where each context manipu-
lation is interpreted as a program transformation step. We show that this kind
of context-based agent language is well-suited for representing many significant
commonsense reasoning examples.

1 Introduction

The new logic programming language DALI [Co99], [CT02], [CGT02] has been de-
signed for modelling Agents and Multi-Agent systems in computational logic. Syntacti-
cally, DALI is close to the Horn clause language and to Prolog. DALI programs however
may contain a new kind of rules, reactive rules, aimed at interacting with an external
environment. The environment is perceived in the form of external events, that can be
exogenous events, observations, or messages from other agents. In response, a DALI
agent can either perform actions or send messages. This is pretty usual in agent for-
malisms aimed at modelling reactive agents (see among the main approaches [KS96],
[DST99], [Fi94] [Ra91], [Ra96]), [SPDEK00].

What is new in DALI is that the same external event can be considered under dif-
ferent points of view: the event is first perceived, and the agent may reason about this
perception, then a reaction can take place, and finally the event and the (possible) ac-
tions that have been performed are recorded as past events and past actions. Another
important novel feature is that internal conclusions can be seen as events: this means,
a DALI agent can “think” about some topic, the conclusions she takes can determine
a behaviour, and, finally, she is able to remember the conclusion, and what she did in

? Research partially funded by MIUR 40% projectAggregate- and number-reasoning for com-
puting: from decision algorithms to constraint programming with multisets, sets, and maps
and by theInformation Society Technologies programme of the European Commission, Future
and Emerging Technologiesunder the IST-2001-37004 WASP project. Many thanks to Stefano
Gentile, who has joined the DALI project, has cooperated to the implementation of DALI, has
designed the language web site, and has helped and supported the authors in many ways.



reaction. Whatever the agent remembers is kept or “forgotten” according to suitable
conditions (that can be set by directives). Then, a DALI agent is not a purely reactive
agent based on condition-action rules: rather, it is a reactive, proactive and rational agent
that performs inference within an evolving context.

The evolutionary semanticsof the language consists of a sequence of logic pro-
grams, resulting from subsequent transformations, together with the sequence of the
Least Herbrand Models of these programs. This makes it possible to model an evolving
agent incorporating an evolving context. In this way, it is possible to reason about the
conclusions reached and the actions performed by the agent at a certain stage, or, better,
in a certain context.

In this paper we want to demonstrate that the features of the DALI language allow
many forms of commonsense reasoning to be gracefully represented.

A prototype implementation of the DALI language has been developed by the au-
thors of this paper at the University of L’Aquila. The implementation, together with a
set of examples, is available at the URL [CGT02].

2 Context-dependent Reasoning in everyday situations

A DALI program is syntactically very close to a traditional Horn-clause program. In
particular, a Prolog program is a special case of a DALI program. Specific syntactic
features have been introduced to deal with the agent-oriented capabilities of the lan-
guage, and in particular to deal with events.

Let us consider an event incoming into the agent from its “external world”, like for
instancebell ringsE (postfixE standing for “external”). From the agent’s perspective,
this event can be seen in different ways.

Initially, the agent has perceived the event, but she still have not reacted to it. The
event is now seen as a present eventbell ringsN (postfixN standing for “now”). She
can at this point reason about the event: for instance, she concludes that a visitor has
arrived, and from this she realizes to be happy.

visitor arrived :- bell ringsN.

happy:- visitor arrived.

As she is happy, she feels like singing a song, which is an action (postfixA). This
is obtained by means of the mechanism of internal events: this is a novel feature of
the DALI language, that to the best of the authors’ knowledge cannot be found in any
other language. Conclusionhappy, reinterpreted as an event (postfixI standing for
“internal”), determines a reaction, specified by the followingreactive rule, where new
connective :> stands fordetermines:

happyI :> sing a songA.

In more detail, the mechanism is the following: goalhappy has been indicated to
the interpreter as an internal event by means of a suitable directive. Then, from time to
time the agent wonders whether she is happy, by trying the goal (the frequency can also
be set in the directive). If the goalhappy succeeds, it is interpreted as an event, thus
triggering the corresponding reaction. I.e., internal events are events that do not come
from the environment. Rather, they are goals defined in some other part of the program.

2



For coping with unexpected unpleasant situations that might unfortunately happen to
ruin a good day, one can add a directive of the form:

keep happyIunless 〈 terminatingcondition〉.

stating in which situationshappy should not become an internal event.
〈terminating condition〉 is any predicate, that must be explicitly defined in the pro-
gram, and is attempted upon success ofhappy. This formulation is elaboration-tolerant,
since it separates the general definition of happiness, from what (depending on the evo-
lution of the context) might “prevent” happiness.

Finally, the actual reaction to the external eventbell ringsE can be that of opening
the door:

bell ringsE :> openthe doorA.

After reaction, the agent is able to remember the event, thus enriching her reasoning
context. An event (either external or internal) that has happened in the past will be called
past event,and writtenbell ringsP , happyP , postfixP standing for “past”. External
events and actions are used also for sending and receiving messages. Then, an event
atom can be more precisely seen as a tripleSender : Event Atom : Timestamp.
TheSender andTimestamp fields can be omitted whenever not needed.

The DALI interpreter is able to answer queries like the standard Prolog interpreter,
but it is able to handle a disjunction of goals. In fact, from time to time it will add
external and internal event as new disjuncts to the current goal, picking them from
queues where they occur in the order they have been generated. An event is removed
from the queue as soon as the corresponding reactive rule is applied.

3 Coordinating Actions based on Context

A DALI agent builds her own context, where she keeps track of the events that have
happened in the past, and of the actions that she has performed. As soon as an event
(either internal or external) is reacted to, and whenever an action subgoal succeeds (and
then the action is performed), the corresponding atom is recorded in the agent database.
By means of directives, it is also possible to indicate other kinds of conclusions that
should be remembered. Past events and past conclusions are indicated by the postfixP ,
and past actions by the postfixPA. The following rule for instance says that Susan is
arriving, since we know her to have left home.

is arriving(susan):- left homeP(susan).

The following example illustrates how to exploit past actions. In particular, the ac-
tion of opening (resp. closing) a door can be performed only if the door is closed (resp.
open). The window is closed if the agent remembers to have closed it previously. The
window is open if the agent remembers to have opened it previously.

openthe doorA :- door is closed.

door is closed:- closethe doorPA.

closethe doorA :- door is open.

door is open:- openthe doorPA.

3



It is possible to have a conjunction of events in the head of a reactive rule, like in
the following example.

rainE, windE:> closewindowA.

In order to trigger the reactive rule, all the events in the head must happen within
a certain amount of time. The length of the interval can be set by a directive, and is
checked on the time stamps.

It is important to notice that an agent cannot keep track ofeveryevent and action
for an unlimited period of time, and that, often, subsequent events/actions can make
former ones no more valid. In the previous example, the agent will remember to have
opened the door. However, as soon as she closes the door this record becomes no longer
valid and should be removed: the agent in this case is interested to remember only the
last action of a sequence. In the implementation, past events and actions are kept for
a certain (customizable) amount of time, that can be modified by the user through a
suitable directive. Also, the user can express the conditions exemplified below:

keep openthe doorPA until closethe doorA.

As soon as theuntil condition (that can also beforever) is fulfilled, i.e., the cor-
responding subgoal has been proved, the past event/action is removed. In the imple-
mentation, events are time-stamped, and the order in which they are “consumed ”cor-
responds to the arrival order. The time-stamp can be useful for introducing into the
language some (limited) possibility of reasoning about time. Past events, past conclu-
sions and past actions, which constitute the “memory” of the agent, are an important
part of the (evolving) context of an agent. The other components are the queue of the
present events, and the queue of the internal events. Memories make the agent aware of
what has happened, and allow her to make predictions about the future.

The following example illustrates the use of actions with preconditions. The agent
emits an order for a productP of which she needs a supply. The order can be done
either by phone or by fax, in the latter case if a fax machine is available.

needsupplyE(P):> emit oder(P).

emit order(P) :- phoneorderA.

emit order(P) :- fax orderA.

fax orderA :- fax machineavailable.

If we want to express that the order can be done either by phone or by fax, but not
both, we do that by exploiting past actions, and say that an action cannot take place if
the other one has already been performed. Here,not is understood as default negation.

needsupplyE(P):> emit order(P).

emit order(P) :- phoneorderA, not fax orderPA.

emit order(P) :- fax orderA, not phoneorderPA.

4 Evolutionary Semantics

The declarative semantics of DALI is aimed at describing how an agent is affected by
actual arrival of events, without explicitly introducing a concept of state which is in-
compatible with a purely logic programming language. Rather, we prefer the concept

4



of context, where modifications to the context are modelled as program transformation
steps. For a full definition of the semantics the reader may refer to [CT02]. We sum-
marize the approach here, in order to make the reader understand how the examples
actually work.

We define the semantics of a given DALI programP starting from the declarative
semantics of a modified programPs, obtained fromP by means of syntactic transfor-
mations that specify how the different classes of events are coped with. For the declara-
tive semantics ofPs we take the Well-founded Model, that coincides with the the Least
Herbrand Model if there is no negation in the program (see [PP90] for a discussion).
In the following, for short we will just say “Model”. It is important to notice thatPs

is aimed at modelling the declarative semantics, which is computed by some kind of
immediate-consequence operator, and not represent the procedural behaviour of the in-
terpreter.

For coping with external events, we have to specify that a reactive rule is allowed
to be applied only if the corresponding event has happened. We assume that, as soon as
an event has happened, it is recorded as a unit clause (this assumption will be formally
assessed later). Then, we reach our aim by adding, for each event atomp(Args)E , the
event atom itself in the body of its own reactive rule. The meaning is that this rule can
be applied by the immediate-consequence operator only ifp(Args)E is available as a
fact. Precisely, we transform each reactive rule for external events:

p(Args)E :> R1, . . . , Rq.

into the standard rule:

p(Args)E :- p(Args)E,R1, . . . , Rq.

Similarly, we have to specify that the reactive rule corresponding to an internal event
q(Args)I is allowed to be applied only if the subgoalq(Args) has been proved.

Now, we have to declaratively model actions, without or with an action rule. Proce-
durally, an actionA is performed by the agent as soon asA is executed as a subgoal in
a rule of the form

B :- D1, . . . , Dh, A1, . . . , Ak. h ≥ 1, k ≥ 1
where theAi’s are actions andA ∈ {A1, . . . , Ak}. Declaratively, whenever the con-
ditionsD1, . . . , Dh of the above rule are true, the action atoms should become true as
well (given their preconditions, if any). Thus, the rule can be applied by the immediate-
consequence operator. To this aim, for every action atomA, with action rule

A :- C1, . . . , Cs. s ≥ 1
we modify this rule into:

A :- D1, . . . , Dh, C1, . . . , Cs.
If A has no defining clause, we add clause:

A :- D1, . . . , Dh.

In order to obtain theevolutionarydeclarative semantics ofP , as a first step we
explicitly associate toPs the list of the events that we assume to have arrived up to a
certain point, in the order in which they are supposed to have been received. We let
P0 = 〈Ps, []〉 to indicate that initially no event has happened.

Later on, we havePn = 〈Progn, Event listn〉, whereEvent listn is the list of the
n events that have happened, andProgn is the current program, that has been obtained

5



from Ps step by step by means of atransition functionΣ. In particular,Σ specifies that,
at the n-th step, the current external eventEn (the first one in the event list) is added to
the program as a fact.En is also added as a present event. Instead, the previous event
En−1 is removed as an external and present event, and is added as a past event.

Then, givenPs and listL = [En, . . . , E1] of events, each eventEi determinesthe
transition fromPi−1 to Pi according toΣ. The listP(Ps, L) = [P0, . . . , Pn] is called
theprogram evolutionof Ps with respect toL.

Notice thatPi = 〈Progi, [Ei, . . . , E1]〉, whereProgi is the program as it has
been transformed after the ith application ofΣ. Then, the sequenceM(Ps, L) =
[M0, . . . ,Mn] whereMi is the model ofProgi is themodel evolutionof Ps with respect
to L, andMi the instant model at stepi .

Finally, the evolutionary semanticsEPs
of Ps with respect toL is the couple

〈P(Ps, L),M(Ps, L)〉.
The DALI interpreter at each stage basically performs standard SLD-Resolution on

Progi, while however it manages a disjunction of goals, each of them being a query, or
the processing of an event.

5 A complete example: barman and customer

Below we show the DALI code for two agents:Barman, who is the shopkeeper of a
cafeteria, andGino, who is a customer coming in to drink a beer.

The barman waits for events of the formC : requestE(P ) whereC is the name
of the customer agent, andP is the product he would like to get. For instance, we
may haveC = Gino andP = beer. The barman examines the request, and ifPr is
available at a costA, he asks the customer for payment (in this cafeteria you pay in
advance!). Otherwise, he tells the customer that therePr is not available. The action
messageA(C,M) consists in sending messageM to agentC.

Barman

C:requestE(Pr):> examinerequest(C,Pr).

examinerequest(C,Pr):- not finished(Pr), cost(Pr,A),

messageA(C,ok(Pr)), messageA(C,pleasepay(Pr,A)).

examinerequest(C,Pr):- finished(Pr), messageA(C,no(Pr)).

The barman concludes thatPr is finished if the quantity left in store is zero. This
conclusion is an internal event, and thus (via the next rule) triggers a reaction, that
consists in ordering a supply of the product, butonly if the order has not been issued
already: in fact, in the body of the rule there is a check that there is not in the memory
of the agent past actionorder productPA(Pr, Q1).

If the payment arrives (eventpaidE(C,Pr, A1)), then the barman makes some
checks. First, if heremembersthatPr is finished (in fact,finishedP is a past event),
he tells again the customer thatPr is finished, and that he should take the money back.
Otherwise, if the customer has paid an amountA1 which is different from the costA,
he will be required again to pay. Finally, if everything is ok,Pr will actually be served
to the customer. Then,serve(C,Pr) is interpreted as an internal event, and will cause
the available quantity ofPr to be updated.

6



Barman (continued)

finished(Pr) :- quantity(Pr,0).

finishedI(Pr):> not order productPA(Pr,Q1), order productA(Pr,Q).

C:paymentE(Pr,A):> checkpayment(C,Pr,A).

checkpayment(C,Pr,A1):- finishedP(Pr), messageA(C,no(Pr)), messageA(refund(A1)).

checkpayment(C,Pr,A):- cost(Pr,A), A =/= A1, messageA(C,pleasepay(Pr,A)).

checkpayment(C,Pr,A):- serveA(C,Pr).

serveI(C,Pr):> updatequantity(Pr).

We have now to explain one more reason why it is useful to use internal events also
form a procedural point of view. In fact, one may wonder why not write a rule such as:

checkpayment(C,Pr,A):- serveA(C,Pr), updatequantity(Pr).

Consider however that the Barman might receive several concurrent requests by
several customers. Therefore, these requests are to be “contextualized”, i.e., they have
to be considered in a sequence, keeping in mind the information about the available
quantity of each product. Procedurally, a purely reactive rule would produce concurrent
attempts to update the same quantity. The use of internal events prevents any problem
of “dirty update”: in fact, the internal events to be reacted to are put in a FIFO queue.
Then, the different updates to the quantity ofPr are performed one at a time, and cannot
interfere with each other.

Moreover, the mechanism of internal events is more elaboration-tolerant since it
separates the phase where the agent becomes aware of something, and the phase where
the agent decides what to do in consequence. Rules for updating the quantity are
straightforward, and those for making the order have been reported in a previous ex-
ample.

The code for the customer agent might look for instance like the following. Agent
Gino is thirsty whenever he has played tennis. Then, as a reaction (thirsty is an inter-
nal event) he asks the barman for a beer. If he is told by the Barman that the beer is
finished, as a reaction he asks for a coke. He pays when requested by the external event
please payE(beer, amount) coming from Barman. The rule for payment is general,
and can be used for either beer or coke. Notice that Gino is disappointed whenever
what he asked for is not available. This conclusion is drawn from the present event
finishedN(Pr) coming from Barman.

Gino

thirsty :- play tennisPA.

thirstyI :> messageA(Barman,request(beer)).

Barman:pleasepayE(Pr,A):> messageA(Barman,paymentE(Pr,A)).

Barman:finishedE(beer):> messageA(Barman,request(coke)).

disappointed:- Barman:finishedN(Pr).

6 Concluding Remarks

We have presented some examples of context-based commonsense reasoning in the
formalism of DALI logical agents. Their ability to behave in a “sensible” way comes

7



from the fact that DALI agents are not just reactive, but have several classes of events,
that are coped with and recorded in suitable ways, so as to form a context in which the
agent performs her reasoning. A simple form of knowledge update and “belief revision”
is provided by the conditional storing of past events and actions. In the future, more
sophisticated belief revision strategies as well as full planning capabilities and a real
agent communication language will be integrated into the formalism.

References

[Co99] S. Costantini. Towards active logic programming. In A. Brogi and P. Hill,
(eds.), Proc. of 2nd International Works. on Component-based Software
Development in Computational Logic (COCL’99), PLI’99, Paris, France,
September 1999. http://www.di.unipi.it/ brogi/ ResearchActivity/COCL99/
proceedings/index.html.

[CGT02] S. Costantini, S. Gentile, A. Tocchio. DALI home page:
http://gentile.dm.univaq.it/dali/dali.htm.

[CT02] S. Costantini, A. Tocchio. A Logic Programming Language for Multi-agent
Systems. In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.), Logics in Artifi-
cial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002, Cosenza, Italy,
September 2002, LNAI 2424, Springer-Verlag, Berlin, 2002

[DST99] P. Dell’Acqua, F. Sadri, and F. Toni. Communicating agents. In Proc.
International Works. on Multi-Agent Systems in Logic Progr., in conjunction
with ICLP’99, Las Cruces, New Mexico, 1999.

[Fi94] M. Fisher. A survey of concurrent METATEM – the language and its ap-
plications. In Proc. of First International Conf. on Temporal Logic (ICTL),
LNCS 827, Berlin, 1994. Springer Verlag.

[KS96] R. A. Kowalski and F. Sadri. Towards a unified agent architecture that
combines rationality with reactivity. In Proc. International Works. on Logic
in Databases, LNCS 1154, Berlin, 1996. Springer-Verlag.

[PP90] Przymusinska, H., and Przymusinski, T. C., Semantic Issues in Deductive Data-
bases and Logic Programs. R.B. Banerji (ed.) Formal Techniques in Artificial Intel-
ligence, a Sourcebook, Elsevier Sc. Publ. B.V. (North Holland), 1990.

[Ra96] A. S. Rao. AgentSpeak(L): BDI Agents speak out in a logical computable
language. In W. Van De Velde and J. W. Perram, editors, Agents Break-
ing Away: Proc. of the Seventh European Works. on Modelling Autonomous
Agents in a Multi-Agent World, LNAI, pages 42–55, Berlin, 1996. Springer
Verlag.

[Ra91] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In R. Fikes and E. Sandewall, editors, Proc. of Knowledge Rep-
resentation and Reasoning (KR&R-91), pages 473–484. Morgan Kaufmann
Publishers: San Mateo, CA, April 1991.

[SPDEK00] V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit
Kraus, Fatma Özcan, and Robert Ross. Heterogenous Active Agents. MIT-
Press, 2000.

8


