
Under consideration for publication in Theory and Practice of Logic Programming 1

On the Existence of Stable Models of Non-stratified
Logic Programs

Stefania COSTANTINI
Dip. di Informatica, Università di L’Aquila

via Vetoio Loc. Coppito, L’Aquila, I-67010 Italy
(e-mail: stefcost@di.univaq.it)

Abstract

In this paper we analyze the relationship between cyclic definitions and consistency in Gelfond-
Lifschitz’s answer sets semantics (initially defined as ‘stable model semantics’). This paper intro-
duces a fundamental result, which is very relevant for Answer Set programming, and planning. For
the first time since the definition of the stable model semantics, the class of logic programs for which
a stable model exists is given a syntactic characterization. This condition may have a practical im-
portance both for defining new algorithms for checking consistency and computing answer sets, and
for improving the existing systems. The approach of this paper is to introduce a new canonical form
(to which any logic program can be reduced to), to focus the attention on cyclic dependencies. The
technical result is then given in terms of programs in canonical form (canonical programs), without
loss of generality: the stable models of any general logic program coincide (up to the language) to
those of the corresponding canonical program. The result is based on identifying the cycles contained
in the program, showing that stable models of the overall program are composed of stable models
of suitable sub-programs, corresponding to the cycles, and on defining the cycle graph. Each vertex
of this graph corresponds to one cycle, and each edge corresponds to one handle, which is a literal
containing an atom that, occurring in both cycles, actually determines a connection between them.
In fact, the truth value of the handle in the cycle where it appears as the head of a rule, influences
the truth value of the atoms of the cycle(s) where it occurs in the body. We can therefore introduce
the concept of a handle path, connecting different cycles. Cycles can be even, if they consist of an
even number of rules, or vice versa they can be odd. Problems for consistency, as it is well-known,
originate in the odd cycles. If for every odd cycle we can find a handle path with certain proper-
ties, then the existence of stable model is guaranteed. We will show that based on this results new
classes of consistent programs can be defined, and that cycles and cycle graphs can be generalized to
components and component graphs.



2 S. Costantini

1 Introduction

In this paper we analyze the relationship between cyclic definitions and consistency in
Gelfond-Lifschitz’s answer sets semantics. As it is well-known, under the answer set se-
mantics a theory may have no answer sets, since the corresponding general logic program
may have no stable models (GelLif88) (GelLif91).

This paper introduces a fundamental result, which is relevant for Answer Set Program-
ming (MarTru99), (Nie99) and planning (Lif99). For the first time, the class of logic pro-
grams for which a stable model exists is given a syntactic characterization (the result ex-
tends naturally to answer sets semantics) by providing a necessary and sufficient condition.

While checking for the existence of stable models is as hard a computational problem
(in fact, NP-complete) as planning under certain assumptions (see (Lib99)), consistency
checking is a good conceptual tool when derivations are based on consistency arguments.
This is the case for approaches to planning that treat goals as constraints over models of the
program. In general, constraints of the form: ← g or, equivalently f ← not f, g (where
f does not appear elsewhere in the program) raise the expressivity of the language, though
the programs where they appear are non-stratified. In Answer Set Planning, they become
essential for expressing goals and conditions over goals. Then, being able to check for the
existence of stable models syntactically for every answer set program can be of help for
the logic programming encodings of planning (like, e.g., those of (Erd99), (FabLeoPfe99),
(BBLMP00) and (DNK97)), to guarantee that a plan achieving the goal exists.

The approach of this paper is to introduce a new canonical form to which any logic
program can be reduced to. The technical result is then given in terms of programs in
canonical form (canonical programs), without loss of generality. Canonical programs focus
the attention on cyclic dependencies. Rules are kept short, so as to make the syntactic
analysis of the program easier. The stable models of any general logic program coincide
(up to the language) to those of the corresponding canonical program.

A detailed analysis of the cost involved in reducing programs to their canonical form has
been performed in (CosPro03) and, as intuition suggests, this transformation is tractable.
Nevertheless, all definitions and results presented in this paper might be rephrased for
general programs without conceptual problems, just at the expense of a lot of additional
details. This means that reduction to canonical form is not strictly required neither for the
theory, nor for an implementation.

The main result of this paper is a necessary and sufficient syntactic condition for the
existence of stable models. On the one hand, this condition is of theoretical interest, as it is
the first one ever defined since the introduction of the stable model semantics in (GelLif88).
On the other hand, it may have a practical importance both for defining new algorithms for
checking consistency and computing answer sets, and for improving the existing systems
(Systems).

The result is based on identifying the cycles contained in the program, showing that sta-
ble models of the overall program are composed of stable models of suitable sub-programs,
corresponding to the cycles, and on representing the program by means of the cycle graph.
Each vertex of this graph corresponds to one cycle, and each edge corresponds to one han-
dle, which is a literal containing an atom that, occurring in both cycles, actually determines



On the Existence of Stable Models of Non-stratified Logic Programs 3

a connection between them. In fact, the truth value of the handle in the cycle where it ap-
pears as the head of a rule, influences the truth value of the atoms of the cycle(s) where it
occurs in the body. We can therefore introduce the concept of a handle path, connecting
different cycles. Cycles can be even, if they consist of an even number of rules, or vice
versa they can be odd. Problems for consistency, as it is well-known, originate in the odd
cycles. If for every odd cycle we can find a handle path with certain properties, then the
existence of stable model is guaranteed.

The necessary and sufficient condition that we introduce is syntactic in the sense that it
does not refers either to models or derivations. Checking this condition does not require
to find the stable models, or to apply the rules of the program. It just requires to look at
the program (represented by the cycle graph) and at the rules composing the cycles. The
condition can however be exploited, so as to obtain: (i) new algorithms for finding the
stable models, which are at least of theoretical interest; (ii) a new method for consistency
checking divided into two steps: a first step related to the coarse structure of the program,
that can be easily checked on the cycle graph so as to rule out a lot of inconsistent programs,
thus leaving only the potentially consistent ones to be verified in a second step, that can be
performed according to the approach presented here, or in any other way.

We will argue that the approach can also be useful for defining classes of programs that
are consistent by construction, and as a first step toward a component-based methodology
for the construction and analysis of answer set programs. This by means of a further gener-
alization of cycle graphs to component graphs, where vertices are components consisting
of bunches of cycles, and edges connect different components. We will argue that, in this
framework, components can even be understood as independent agents.

It is useful to notice that in Answer Set Programming graph representations have
been widely used for studying and characterizing properties of answer set programs,
first of all consistency, and for computing the answer sets. Among the most important
approaches we may mention the Rule Graph (DimTor96) and its extensions (Lin01)
(Lin03b) (KonSchLin03a), and the Extended Dependency Graph (BCDP99), that we have
considered and compared (Cos01), (CosDanPro02). Enhanced classes of graphs have been
recently introduced in order to cope with extensions to the basic paradigm such as for
instance preferences (KonSchLin03b) or nested logic programs (Lin03a). However, the
cycle graph proposed in this paper is different form all the above-mentioned approaches,
since its vertices are not atoms or rules, but significant subprograms (namely cycles), and
the edges are connections between these subprograms.

2 Cycles and Handles

Assume the standard definitions of (propositional) general logic program and of Well-
founded (VanGRosSch90) and stable models semantics (GelLif88). Whenever we mention
consistency (or stability) conditions, we refer to the conditions introduced in (GelLif88).
Let Π be a general logic program. In the following, we will often simply say “logic pro-
gram” to mean a general logic program. Let WFS(Π) be the well-founded model of Π.



4 S. Costantini

Definition 1

A program Π is WF-irreducible if and only if WFS(Π) = 〈∅, ∅〉.

That is, in a WF-irreducible programs all the atoms involved have truth value undefined
under the Well-founded semantics.

For general logic programs, atoms with truth value “undefined” under the Well-founded
semantics are exactly the atoms which are of interest for finding the stable models. This
is a consequence of the fact that all stable models of a program extend its Well-founded
model (VanGRosSch90), i.e., every literal which is true (resp. false) in the Well-founded
model is also true (resp. false) in all stable models. Since (Cos95) we have proposed and
refined over time a methodology for finding the stable models based on simplifying the
given program w.r.t. the Well-founded semantics, thus obtaining a WF-irreducible reduct.
The stable models of the original program can be easily obtained from the stable models
of the reduct. Vice versa, if the reduct has no stable models the same holds for the original
program.

For instance, for program

p← not p, not q

with Well-founded model 〈∅; {q}〉 where atom p has truth value “undefined”, we get the
reduct p← not p by getting rid of a literal which is true under the Well-founded semantics,
and thus is true in all stable models (if any exists). The reduct has no stable models, like
the original program.

The following definitions are aimed at introducing a canonical form for any given WF-
irreducible program. In the rest of this paper, we rely on the assumption that the order of
literals in the body of rules is irrelevant.

Definition 2

A set of rules C is called a cycle if it has the following form:

λ1 ← not λ2,∆1

λ2 ← not λ3,∆2

. . .

λn ← not λ1,∆n

where λ1, . . . , λn are distinct atoms. Each ∆i, i ≤ n, is a (possibly empty) conjunction
δi1 , . . . , δih

of literals (either positive or negative), where for each δij
, ij ≤ ih, δij

6= λi

and δij
6= not λi. The ∆i’s are called the AND handles of the cycle. We say that ∆i is an

AND handle for atom λi, or, equivalently, an AND handle referring to λi.

We say that C has size n and it is even (respectively odd) if n = 2k, k ≥ 1 (respectively,
n = 2k + 1, k ≥ 0). By abuse of notation, for n = 1 we have the (odd) self-loop λ1 ←

not λ1,∆1. In what follows, again by abuse of notation λi+1 will denote λ(i+1)modn, i.e.,
λn+1 = λ1.

Given cycle C, we call Composing atoms(C) = {λ1, . . . , λn} the set containing
all the atoms involved in cycle C. We say that the rules listed above are involved in
the cycle, or form the cycle. In the rest of the paper, sometimes it will be useful to see



On the Existence of Stable Models of Non-stratified Logic Programs 5

Composing atoms(C) as divided into two subsets, that we indicate as two kinds of atoms:
the set of the Even atoms(C) composed of the λi’s with i even, and the set Odd atoms(C),
composed of the λi’s with i odd.

Conventionally, in the rest of the paper with C or Ci we will refer to cycles in general,
with OC or OCi to odd cycles and with EC or ECi to even cycles

In the following program for instance, there is an odd cycle, that we may call OC1,
with composing atoms {e, f, g} and an even cycle, that we may call EC1, with composing
atoms {a, b}.

— OC1

e← not f, not a

f ← not g, b

g ← not e

— EC1

a← not b

b← not a

OC1 has an AND handle not a referring to e, and an AND handle b referring to f .
Notice that the sets of atoms composing different cycles are not required to be disjoint.

In fact, the same atom may be involved in more than one cycle. The set of atoms composing
a cycle can even be a proper subset of the set of atoms composing another cycle, like in the
following program, where there is an even cycle EC1 with composing atoms {a, b}, since
a depends on not b and b depends on not a, but also and an odd cycle OC1 with composing
atom {a}, since a depends on not a.

— EC1

—– OC1

a← not a, not b

b← not a

Here, OC1 has an AND handle not b referring to a, but, symmetrically, EC1 has an
AND handle not a referring to b.

Thus, it may be the case that a handle of a cycle C contains an atom α which is involved
in C itself, because α is also involved in some other cycle C1.

Definition 3

A rule is called an auxiliary rule of cycle C (or, equivalently, to cycle C) if it is of this
form:
λi ← ∆

where λi ∈ Composing Atoms(C), and ∆ is a non-empty conjunction δi1 , . . . , δih
of liter-

als (either positive or negative), where for each δij
, ij ≤ ih, δij

6= λi and δij
6= not λi. ∆

is called an OR handle of cycle C (more specifically, an OR handle for λi or, equivalently,
and OR handle referring to λi).

A cycle may possibly have several auxiliary rules, corresponding to different OR han-
dles. In the rest of this paper, we will call Aux(C) the set of the auxiliary rules of a cycle
C.



6 S. Costantini

In the following program for instance, there is an odd cycle OC1 with composing atoms
{c, d, e} and an even cycle EC1 with composing atoms {a, b}. The odd cycle has three
auxiliary rules.

— OC1

c← not d

d← not e

e← not c

—– Aux(OC1)

c← not a

d← not a

d← not b

— EC1

a← not b

b← not a

In particular, we have Aux(OC1) = {c← not a, d← not a, d← not b}.
In summary, a cycle may have some AND handles, occurring in one or more of the rules

that form the cycle itself, and also some OR handles, occurring in its auxiliary rules.
All possible situations are enumerated, exemplified and discussed in (CosPro03). Cycles

and handles can be unambiguously identified on the Extended Dependency Graph (EDG)
of the program (BCDP99).

A cycle may also have no AND handles and no OR handles, i.e., no handles at all, in
which case it is called unconstrained.The following program is composed of unconstrained
cycles (in particular, there is an even cycle involving atoms a and b, and an odd cycle
involving atom p).

— EC1

a← not b

b← not a

— OC1

p← not p

3 Canonical programs

In order to analyze the relationship between cycles, handles and consistency, below we
introduce a canonical form for logic programs. This canonical form is new, and has been
proposed and discussed in the companion paper (CosPro03) with the general objective
of simplifying the study of formal properties of logic programs under the Answer Set
semantics. Rules in canonical programs are in a standard format, so as to make definitions
and proofs cleaner and easier to read. There is however no loss of generality, since, as
proved in (CosPro03), any logic program can be reduced to a canonical program, and
that stable models of the canonical program coincide (up to the language) with the stable
models of the original program. In (CosPro03), an algorithm is described for obtaining the
canonical form of a logic program, and the complexity analysis of the transformation is
performed.



On the Existence of Stable Models of Non-stratified Logic Programs 7

Definition 4
A logic program Π is in canonical form (or, equivalently, Π is a canonical program) if it is
WF -irreducible, and fulfills the following syntactic conditions.

1. every atom in Π occurs both in the head and in the body of some rule;
2. every atom in Π is involved in some cycle;
3. each rule of Π is either involved in a cycle, or is an auxiliary rule of some cycle;
4. each handle of a cycle C consists of exactly one literal, either α or not α, where

atom α does not occur in C.

Since the above definition requires handles to consist of just one literal, it implies that
in a canonical program Π : (i) the body of each rule which is involved in a cycle consists
of either one or two literals; (ii) the body of each rule which is an auxiliary rule of some
cycle consists of exactly one literal.

Nothing prevents a rule to be at the same time involved in a cycle, and auxiliary to some
other cycle. In this case however, the definition requires the rule to have exactly one literal
in the body, i.e., the rule cannot have an AND handle.

As described in detail in (CosPro03), the transformation of a program into its canonical
form consists in:

• Simplifying the program with respect to it Well-Founded model;
• Eliminating the “top” rules, i.e., those rules whose head atom does not occur in the

body of any other rule;
• transforming long rules into new cycles (this by possibly adding new atoms), or into

new rules that extend existing cycles;
• eliminating “bridges”, i.e., intermediate steps in cycles or between cycles.

Consider for instance the program

a← not b, c, d

b← not a, e

e← b

d← not a

c← not b

Its Well-Founded model is 〈{b, e}{c}〉 where atoms a and d are undefined. By simpli-
fying with respect to this WFS (Cos95), we cancel literals which are true in the WFS and
rules containing literals which are false in the WFS. We get:

a← d

d← not a

that can be reduced by a further step (eliminating the “top”, i.e., the first rule) to the canon-
ical program

a← not a

Since the canonical program is inconsistent, so is the original program.
In fact (CosPro03), a program is consistent if and only if its canonical counterpart is

consistent, and answer sets of the original program can be obtained in linear time from
answer sets of the canonical program.



8 S. Costantini

All the following definitions and proofs might be rephrased for the general case, but
the choice of referring to canonical programs is a significant conceptual simplification
that leads without loss of generality to a more readable and intuitive formalization. Notice
for instance that in canonical programs the problem of consistency arises only in cycles
containing an odd number of rules, since cycles do not have non-negated composing atoms.

Although for a detailed discussion we refer to (CosPro03), it is important to recall that
canonical programs are WF -irreducible. For instance, the program

p← not p, q

q ← not q, p

may look canonical, while it is not, since it has a non-empty Well-Founded model
〈∅; {p, q}〉. In particular, since there are no undefined atoms, the set of true atoms of the
Well-Founded model (in this case ∅) coincides (as it is well-known) with the unique stable
model.

Similarly, the program

q ← not q

q ← p

may look canonical, while it is not, since it has a non-empty Well-Founded model
〈∅; {p}〉. Atom q is undefined. The corresponding canonical program is q ← not q that,
like the original program, has no stable models. The second rule is dropped by canoniza-
tion, since its condition is false w.r.t. the WFM.

The program

q ← p

p← not r

r ← not q

is not canonical because atom p is not involved in any cycle. In fact, in order to be
involved in a cycle an atom must occur in the head of some rule but, also, its negation must
occur in the body of some other rule. Here, atom p forms an (inessential) intermediate
step between the two atoms q and r that actually form a cycle. The canonical form of the
program is q ← not r, r ← not q, and puts the cycle into evidence. Given the stable models
{q} and {r} of the canonical program, the stable models {p, q} and {r} of the original
program can be easily obtained, since the truth value of p directly depends on that of r.

In the following, let the program at hand be a logic program Π in canonical form. Let
C1, . . . , Cw be all the cycles occurring in Π (called the composing cycles of Π). Whenever
we will refer to C, C1, C2 etc. we implicitly assume that these are cycles occurring in Π.

4 Active handles

In this Section, we make some preliminary steps toward establishing a connection between
syntax (cycles and handles) and semantics (consistency of the program). Truth or falsity of
the atoms occurring in the handles of a cycle w.r.t. a given interpretation affects truth/falsity
of the atoms involved in the cycle. As we discuss at length in the rest of the paper, this
creates the conditions for stable models to exist or not.



On the Existence of Stable Models of Non-stratified Logic Programs 9

Handles may help avoid inconsistencies in two ways. An AND handle ∆i which is false
allows the head λi of the rule to be false. An OR handle ∆ which is true forces the atom λi

to which it refers to be true as well. This idea is formalized into the following definitions
of active handles, that will be widely used in the rest of the paper.

Definition 5

Let I be an interpretation. An AND handle ∆ of cycle C is active w.r.t. I if the corre-
sponding literal is false w.r.t. I. We say that the rule where the handle occurs has an active
AND handle. An OR handle ∆ of cycle C is active w.r.t. I if the corresponding literal is
true w.r.t. I. We say that the rule where the handle occurs has an active OR handle.

Assume that I is a model. We can make the following observations. (i) The head λ of
a rule ρ with an active AND handle is not required to be true in I. (ii) The head of a rule
λ← ∆ where ∆ is an active OR handle is necessarily true in I: since the body is true, the
head λ must also be true.

Observing which are the active handles of a cycle C gives relevant indications about
whether an interpretation I is a stable model.

Consider for instance the following program:

— OC1

p← not p, not a

— EC1

a← not b

b← not a

— OC2

q ← not q

—– Aux(OC2)

q ← f

— EC2

e← not f

f ← not e

Interpretations {a, f, q}, {a, e, q}, {b, p, f, q} {b, p, e, q} are minimal models. Consider
interpretation {a, f, q}: both the AND handle not a of cycle p ← not p, not a and the
OR handle f of cycle q ← not q are active w.r.t. this interpretation. {a, f, q} is a stable
model, since atom p is forced to be false, and atom q is forced to be true, thus avoiding
the inconsistencies. In all the other minimal models instead, one of the handles is not
active. I.e., either literal not a is true, and thus irrelevant in the context of a rule which
is inconsistent, or literal f is false, thus leaving the inconsistency on q. These minimal
models are in fact not stable.

In conclusion, the example suggests that for a minimal modelM to be stable, each odd
cycle must have an active handle. This will be stated formally in the next section.

Another thing that the example above shows is that the stable model {a, f, q} of the
overall program is actually the union of the stable model {a} of the program fragment
OC1 ∪EC1 and of the stable model {f, q} of the program fragment OC2 ∪Aux(OC2)∪

EC2. This is not by chance, and in the next Sections we will study how to relate the



10 S. Costantini

existence of stable models of the overall program to the existence of stable models of the
composing cycles. This relation is far from obvious, as demonstrated by the following
simple program.

— OC1

p← not p, not a

— EC1

a← not b

b← not a

— OC2

q ← not q, not b

In this case, we have only one even cycle, and we might consider the program fragments:
(i) OC1∪EC1 with stable model {a}, based on the active handle not a; (ii) (i) OC1∪EC1

with stable model {b}, based on the active handle not b. Unfortunately, the union {a, b} of
the stable models of the subparts is a minimal model but is not stable. In fact, neither atom
a nor atom b is supported. This because the unconstrained even cycle EC1, taken per se,
has stable models {a} and {b}, which are alternative and cannot be merged: this cycle in
fact states that a holds if b does not hold, and vice versa. Thus, EC1 cannot provide active
handles for both the odd cycles.

Then, if we want to check whether a minimal model is stable, we not only have to check
that every odd cycle has an active handle w.r.t. that model, but also that these handles do
not enforce contradictory requirements on the even cycles. Similarly, we can try to build
a stable model of the overall program out of the stable models of the composing cycles,
taking however care of avoiding inconsistencies on the handles.

In summary, necessary and sufficient conditions for the existence of stable models can
be obtained (and useful sufficient conditions can be derived from them) by taking the com-
posing cycles, finding their stable models, and check if the corresponding active handles
are in accordance. In order to do so, some preliminary definitions are in order.

It is useful to collect the set of handles of a cycle into a set, where however each handle
is annotated so as to keep track of its kind. I.e., we want to remember whether a handle is
an OR handle or an AND handle of the cycle.

Definition 6
Given cycle C, the set HC of the handles of C is defined as follows, where β ∈

Composing Atoms(C):

HC = {(∆ : AND : β) |∆ is an AND handle of C referring to β} ∪

{(∆ : OR : β) |∆ is an OR handle of C referring to β}

Whenever we need not care about β we shorten (∆ : K : β) as (∆ : K), K = AND/OR.
By abuse of notation, we call “handles” the expressions in both forms, and whenever neces-
sary we implicitly shift from one form to the other one. Informally, we will say for instance
“the OR (resp. AND) handle ∆ of β” meaning (∆ : OR : β) (resp. (∆ : AND : β)).

The definitions below for instance does not rely on β.



On the Existence of Stable Models of Non-stratified Logic Programs 11

Definition 7
The handles (∆ : AND) and (∆ : OR) are called opposite handles. Given a handle h, we
will indicate its opposite handle with h−.

Definition 8
The handles (∆1 : K) and (∆2 : K) are called contrary handles if ∆1 = α and ∆2 =

not α. Given a handle h, we will indicate its contrary handle with hn.

Whenever either contrary or opposite couples of handles occur in a program, even for
different β’s, if one is active the other one is not active, and vice versa.

Definition 9
The handles (∆1 : K1) and (∆2 : K2) are called sibling handles if K1 6= K2, and
∆1 = α and ∆2 = not α. Given a handle h, we will indicate its sibling handle with hs.

Whenever sibling couples of handles occur in a program, even for different β’s, if one is
active the other one is active as well.

Taken for instance atom α, we have:

• (α : AND) and (α : OR) are opposite handles;
• (not α : AND) and (not α : OR) are opposite handles;
• (α : AND) and (not α : AND) are contrary handles;
• (α : OR) and (not α : OR) are contrary handles;
• (α : OR) and (not α : AND) are sibling handles;
• (α : AND) and (not α : OR) are sibling handles;

In general however the indication of β is necessary. In fact, different atoms of a cy-
cle may have handles with the same ∆, but although active/not active at the same time,
they may affect the existence of stable models differently. Take for instance the following
program with the indication of the composing cycles:

— OC1

q ← not q, e

q ← not a

— OC2

a← not b, not e

b← not c, not f

c← not a, not e

— OC3

p← not p, not e

— EC1

e← not f

f ← not g

we have HOC1
= {(e : AND : q), (not a : OR : q)}, HOC2

= {(not e : AND :

a), (not f : AND : b), (not e : AND : c)}, HOC3
= {(not e : AND : p)}, HEC1

= ∅.
Handle (not e : AND) occurs several times, even twice in cycle OC2, referring to different
atoms. While however OC2 may in principle rely upon two different AND handles for



12 S. Costantini

keeping consistency, OC3 can rely only upon this one, which means that if it is not active
the whole program is surely inconsistent.

Given any subset Z of HC , it is useful to identify the set of atoms occurring in the
handles belonging to Z.

Definition 10
Let Z ⊆ HC . The set of the atoms occurring in the handles belonging to Z is defined as
follows.

Atoms(Z) = {α | (α : K) ∈ Z} ∪

{α | (not α : K) ∈ Z}

If for instance we take Z = HOC1
, we have Atoms(HOC1

) = {a, e}.
Given any subset Z of HC , it is useful to state which are the atoms that are required to

be true, in order to make all the handles in Z active (implicitly, to this aim all the other
atoms are required to be false).

Definition 11
Let Z ⊆ HC . The set of atoms ActivationAtC(Z) ⊆ Atoms(Z) is defined as follows.

ActivationAtC(Z) = {α | (α : OR) ∈ Z} ∪

{α | (not α : AND) ∈ Z}

If for instance we take Z = HOC1
, we have ActivationAt(HOC1

) = {e}.
Vice versa, any subset V of Atoms(HC) corresponds to a subset of the handles of C

that become active, if atoms in V are true.

Definition 12
Let V ⊆ Atoms(HC).

ActiveC(V ) = {(∆ : AND) |∆ = not α, α ∈ V } ∪

{(∆ : OR) |∆ = α, α ∈ V }

If for instance we take V = {a, e} for cycle OC1, we have ActiveOC1
({a, f}) = {((e :

AND))}.
Finally, it is useful to introduce a short notation for the union of different sets of rules.

Definition 13
Let I1, . . . Iq be sets of rules. As a special case, some of the Ij’s can be sets of atoms, where
each atom β ∈ Ij is understood as a fact β ←. By I1 + . . . + Iq we mean the program
consisting of the union of all the rules belonging to I1, . . . Iq. By IBI1,...Iq we mean the
Herbrand base of program I1 + I2 . . . + Iq.

5 Active handles and existence of stable models

In this one and the following sections we proceed further toward a framework that relates
cycles, handles and active handles to the existence of stable models. As a first result, we
are able to prove the following:



On the Existence of Stable Models of Non-stratified Logic Programs 13

Theorem 1

Let Π be a program, and letM be a minimal model of Π.M is a stable model only if each
odd cycle OCi occurring in Π has an active handle w.r.t.M.

Proof

By (Cos95), Corollary 3.1., since there are no positive cycles in Π, minimal modelM is
stable if and only if for each A ∈M there exists a rule in Π with head A, and body which
is true w.r.t.M, i.e., a rule which supports A. Let x mod y be (as usual) the remainder of
the integer division of x by y.
Assume that M is stable, but there is an odd cycle without active handles, composed of
atoms λ1, . . . , λn, n odd. Take a λi, and assume first that λi ∈M. Since there is no active
OR handle, each λi can possibly be supported only by the corresponding rule in the cycle.
By definition of cycle, this rule has the form:

λi ← not λ(i+1) mod n,∆i

Since there are no active AND handles, then all ∆’s are true w.r.t.M. For λi to be sup-
ported, not λ(i+1) mod n should be true as well, i.e., λ(i+1) mod n should be false. The rule
for λ(i+1) mod n has the form:

λ(i+1) mod n ← not λ(i+2) mod n,∆(i+1) mod n

Since ∆(i+1) mod n is true w.r.t.M, for λ(i+1) mod n to be false, not λ(i+2) mod n should
be false as well, i.e., λ(i+2) mod n should be true. By iterating this reasoning, λ(i+3) mod n

should be false, etc. In general, λ(i+k) mod n should be false w.r.t. M with k odd, and
true with k even. Then, since the number n of the composing atoms is odd, λ(i+n) mod n

should be false w.r.t. M, but λ(i+n) mod n = λi, which is a contradiction. Assume now
that λi 6∈ M. Then, not λi is true w.r.t. calm, and thus, since the corresponding AND
handle is not active, λ(i−1) mod n is supported and should belong to M. Consequently,
we should have λ(i−2) mod n 6∈ calm. In general, λ(i−k) mod n should be true w.r.t. M
with k odd, and false with k even. Then, since the number n of the composing atoms
is odd, λ(i−n) mod n should be true w.r.t. M, but λ(i−n) mod n = λi, which is again a
contradiction.

Now, consider a cycle Ci together with its auxiliary rules, i.e., consider the set of rules
Ci + Aux(Ci) and take it as an independent program. There are atoms in this program
that do not appear in the conclusion of rules: these are exactly the atoms occurring in the
handles of C, i.e., the atoms in Atoms(HCi

). Take a set Xi ⊆ Atoms(HCi
). Assume to

add atoms in Xi as facts to Ci + Aux(Ci), thus obtaining Ci + Aux(Ci) + Xi, that we
call extended cycle corresponding to Xi. With respect to the overall program, this addition
simulates atoms in Xi to be concluded true in some other part of the program. Depending
on the active handles corresponding to Xi, the extended cycle Ci + Aux(Ci) + Xi may or
may not be consistent.

Consider for instance the following program.



14 S. Costantini

— OC1

q ← not q

—– Aux(OC1)

q ← f

— OC2

p← not p, not f

— EC1

e← not f

f ← not e

It can be seen as divided into the following parts, each one corresponding to Ci +Aux(Ci)

for some cycle Ci. The first part is composed of odd cycle OC1, with an auxiliary rule (OR
handle):

q ← not q

q ← f

The second part is composed of odd cycle OC2, without auxiliary rules but with an AND
handle:

p← not p, not f

The third part is composed of the unconstrained even cycle EC1:

e← not f

f ← not e

OC1 in itself is inconsistent, but if we take XOC1
= {f} we get an extended cycle with

stable model {f, q}: the active OR handle forces q to be true. Similarly, for OC2, if we
take XOC2

= {f} we get an extended cycle with stable model {f}: the active AND
handle forces p to be false. Cycle EC1 is consistent, with stable models {e} and {f}. If
we now select the stable model {f} for EC1, we make XOC1

and XOC2
effective, thus

obtaining the stable model {f, q} for the overall program. Instead, the stable model {e}
for EC1 does not serve to the purpose of obtaining a stable model for the overall program,
since it does not make the handles of the odd cycles active, thus leaving the inconsistencies
as they are.

Take now this very similar program, that can be divided into cycles analogously.

— OC1

q ← not q

—– Aux(OC1)

q ← f

— OC2

p← not p, not e

— EC1

e← not f

f ← not e

The difference is that OC2 has AND handle not e (instead of not f ). In order to make this
handle active, we should take XOC2

= {e}. In this case, the stable model {e} for EC1



On the Existence of Stable Models of Non-stratified Logic Programs 15

should be selected, but unfortunately it does not suits OC2, that still “requires” {f}. Then,
no choice can be made for EC1 so as to make the program consistent.

The above simple example explains what we will argue in the rest of the paper, and
precisely that, for checking whether a logic program has stable models (and, possibly, for
finding these models) one can do the following.

(i) Divide the programs into pieces, of the form Ci+Aux(Ci), and check whether every
odd cycle has handles; if not, then the program is inconsistent;

(ii) For every cycle Ci with handles, find the sets Xi that make the subprogram Ci +

Aux(Ci) consistent, and find the corresponding stable models SCi
; notice that in the

case of unconstrained even cycles, HCi
is empty, and we have two stable models,

namely M1
Ci

= Even atoms(Ci) and M2
Ci

= Odd atoms(Ci).
(iii) Check whether there exists a collection of Xi’s, one for each cycle, such that the

corresponding SCi
’s agree on shared atoms: in this case the program is consistent,

and its stable model(s) can be obtained as the union of the SCi
’s.

In the ongoing we will show that we can check conditions (ii)-(iii) by representing the
program by means of a kind of graph, whose vertices are the cycles and whose edges are
marked with the handles. Formally:

Definition 14

Let C be a cycle. Let Z ⊆ HC . The program C + Aux(C) + Z is an extended cycle
corresponding to C.

Definition 15

Let Ci be a cycle occurring in Π. We say that SCi
⊆ IBCi+Aux(Ci) is a partial stable

model for Π relative to Ci, if ∃Xi ⊆ Atoms(HCi
) such that SCi

is a stable model of the
corresponding extended cycle Ci +Aux(Ci)+Xi. The set Xi is called a positive base for
SCi

, while the set X−
i = Atoms(HCi

) \Xi is called a negative base for SCi
. The couple

of sets 〈Xi, X
−
i 〉 is called a base for SCi

.

As discussed above, atoms in Xi are added to simulate that we deduce them true in some
other part of the program. Symmetrically, atoms in X−

i are supposed not to be concluded
true anywhere in the program. The positive base Xi may be empty: in this case, all the
atoms occurring in the handles are supposed to be false. The choice of Xi corresponds
to the choice of a specific set of active handles, namely ActiveCi

(Xi). There may be no
partial stable models relative to a cycle Ci, or there may be different ones, depending on
the possible choices of Xi’s that correspond to consistent extended cycles.

By abuse of notation, when program Π and its composing cycles are uniquely identified
in the context of the discussion, and Ci is a cycle occurring in Π, we will speak of partial
stable models of Ci, meaning partial stable models for Π relative to Ci.

Once we get partial stable models of the composing cycles, we can try to put them
together in order to obtain stable models for the whole program. Of course we will try to
obtain each stable model of the overall program by taking one partial stable model for each
cycle, and considering their union. This however will work only if the partial stable models
assign truth values to atoms in a compatible way.



16 S. Costantini

Definition 16

Consider a collection S = S1, . . . , Sw of partial stable models for Π, relative to its com-
posing cycles C1, . . . , Cw, each Si with base 〈Xi, Xi

−〉. We say that S1, . . . , Sw are com-
patible or, equivalently, that S is a compatible set of partial stable models whenever the
following conditions hold:

1. ∀j, k ≤ w, Xj ∩Xk
− = ∅;

2. ∀j ≤ w, ∀A ∈ Xj , ∃h 6= j such that A ∈ Sh, and A 6∈ Xh;
3. ∀j ≤ w, ∀B ∈ Xj

−, 6 ∃t ≤ w such that B ∈ St.

Condition (1) states that the bases of compatible partial stable models cannot assign
opposite truth values to any atom. Condition (2) ensures that, if an atom A is supposed
to be true in the base of some cycle Cj , it must be actually concluded true in some other
cycle Ch. Notice that “concluded” does not mean “assumed”, and thus A must occur in
the partial stable model Sh of Ch, without being in its set of assumptions Xh. Condition
(3) ensures that, if an atom is supposed to be false in the base of some cycle, it cannot be
concluded true in any of the other cycles.

The following theorem formally states the connection between the stable models of Π,
and the partial stable models of its cycles.

Theorem 2

An interpretation I of Π is a stable model if and only if there exists a compatible set
S = S1, . . . , Sw of partial stable models for its composing cycles such that I =

⋃
i≤wSi.

Proof

Suppose that I is a stable model for Π. Let Ci, i ≤ w, be any of the composing cycles of
Π. Let Xi = I ∩Atoms(HCi

), which means that Xi is the set of the atoms of the handles
of Ci which are true w.r.t. I. Let Si = I ∩ IBCi+Aux(Ci) be the restriction of I to the
atoms involved in the extended cycle corresponding to Xi. Si is clearly a stable model for
Pi = Ci + Aux(Ci) + Xi. In fact, all non-unit rules of Pi are also rules of Π. Therefore,
would the consistency conditions be violated for Pi, they would be violated for Π as well.

Vice versa, let us consider a set S = {S1 ∪ . . . ∪ Sw}, of partial stable models for the
cycles in Π. Notice that Π itself corresponds to the union of the cycles and of their auxiliary
rules, i.e., Π =

⋃
i≤w Ci + Aux(Ci).

Let us first show that S is a stable model of the program ΠL obtained as
⋃

i≤w Ci +

Aux(Ci) + Xi, which is a superset of Π. In fact, each Si satisfies the stability condition
on the rules of the corresponding extended cycle, and, since they form a compatible set, by
conditions (1) and (3) of Definition 16 no atom which is in the negative base of any of the
Si’s, is concluded true in some other Sj . Therefore, S is a stable model of ΠL.

In order to obtain Π from ΠL, we have to remove the positive bases of cycles, which are
the unit rules corresponding to the Xi’s. By condition (2) however, in a set of compatible
partial stable models, every atom A ∈ Xi is concluded true in some Sj , i 6= j, i.e., in the
partial stable model of some other cycle. This implies that S satisfies the stability condition
also after Xi’s have been removed: then, S is a stable model for Π.



On the Existence of Stable Models of Non-stratified Logic Programs 17

Each stable model S of Π corresponds to a different choice of of the Xi’s, i.e., of the
active handles of cycles.

The above result is of theoretical interest, since it sheds light on the connection between
stable models of a program and stable models of its sub-parts. It may also contribute to
any approach to modularity in software development under the stable model semantics.
However, to the aim of developing effective software engineering tools and more efficient
algorithms for computing stable models, syntactic conditions for the existence of stable
models are in order. In the ongoing, we use this result as the basis for defining a necessary
and sufficient syntactic condition for program consistency.

In this direction, consider the following corollaries:

Corollary 1

An odd cycle C occurring in Π has partial stable models if and only if it is constrained
(i.e., it has at least one handle).

Whenever this handle is assumed to be active, the corresponding extended cycle has one
partial stable model. We can thus state a necessary condition for the existence of stable
models of Π.

Corollary 2

An interpretation S is a stable model of Π only if every odd cycle occurring in Π has at
least one active handle w.r.t. S.

Otherwise in fact, any odd cycle without active handles would have no partial stable
models. The above condition on the odd cycles is however not sufficient for the consis-
tency of Π. This because the active handles of different odd cycles might correspond to
inconsistent requirements on the truth values of the atoms involved. In order to find a
necessary and sufficient condition, a finer investigation on the structure of program Π is
needed.

6 Handle assignments and admissibility

An important observation that arises from the examples, and has been made formal in
Theorem 2, is that in any stable model for Π different cycles cannot have active handles
requiring opposite truth values of same atom α. A second observation is that the suitable
truth value of atom α occurring in a handle must be derived in the cycles α is involved
into, which are the cycles the handle comes from, or equivalently the source cycles of the
handle.

Definition 17

A handle (∆ : K) of cycle C1, ∆ = α or ∆ = not α comes from source cycle C2 if
α ∈ Composing atoms(C2).

Handles in HC are called the incoming handles of C. The same handle of a cycle C

may come from different cycles, and may refer to different atoms of C. For instance, in the
program below we have:



18 S. Costantini

— OC1

a← not b, not f

b← not c

c← not a, not f

b← g

— EC1

f ← not g

g ← not f

— EC2

f ← not h

h← not f

handle (not f : AND) of OC1 comes from both EC1 and EC2, and refers to two
different atoms in OC1, namely a and c; handle (g : OR) of OC1 comes from EC1, and
refers to atoms b.

The following definition completes the coming-from terminology the other way round,
by identifying the atoms occurring in handles coming from C.

Definition 18
Given cycle C, the set of the atoms involved in C that occur in the handles of some other
cycle is defined as follows:
Out handles(C) = {β |

β ∈ Composing Atoms(C) ∧ ∃C1 such that β ∈ Atoms(HC1
)}

In the above program for instance, Out handles(EC1) = {f, g} and
Out handles(EC2) = {f}.

For an handle to be active w.r.t. an interpretation, we must have the following. (i) If the
corresponding atom α is required to be true, then it must be concluded true (by means of
a supporting rule) in at least one of the cycles the handle comes from, which implies α to
be concluded true in all the extended cycles it is involved into: in fact, the rule that makes
α true is an auxiliary rule for all these cycles. (ii) If the corresponding atom α is required
to be false, then it must be concluded false in all the (extended) cycles it comes from.

This is illustrated by the following example:

— OC1

p← not p, not c

— OC2

c← not d

d← not e

e← not c, f

— EC1

f ← not g

g ← not f

— EC2

f ← not h

h← not f

The extended cycles are:



On the Existence of Stable Models of Non-stratified Logic Programs 19

— OC1

p← not p, not c

with no auxiliary rules, Out handles(EC1) = ∅, HOC1
= {not c : AND : p},

Atoms(HOC1
) = {c} and unique partial stable model {c} obtained by choosing positive

base XOC1
= {c};

— OC2

c← not d

d← not e

e← not c, f

with no auxiliary rules, Out handles(EC1) = {f}, HOC2
= {f : AND : e},

Atoms(HOC2
) = {f} and unique partial stable model {d} obtained by choosing positive

base XOC2
= ∅, X−

OC1
= {f};

— EC1 + Aux(EC1)

f ← not g

g ← not f

f ← not h

with Out handles(EC1) = {f}, HEC1
= {not h : OR : f}, Atoms(HEC1

) = {h}

and two partial stable models {f} and {g}. The former one can be obtained either by
choosing XEC1

= ∅ or, also, XEC1
= {h}. The latter one requires XEC1

= {h}, so as to
allow f to be false.

— EC2 + Aux(EC2)

f ← not h

h← not f

f ← not g

with Out handles(EC2) = {f}, HEC2
= {not g : OR : f}, Atoms(HEC2

) = {g}

and two partial stable models {f} and {h}. The former one can be obtained either by
choosing XEC1

= ∅ or, also, XEC1
= {g}. The latter one requires XEC1

= {g}, so as to
allow f to be false.

Unfortunately, the overall program turns out to have no stable model, because: for ob-
taining the partial stable model of OC2, f must be concluded false so as to make the unique
AND handle active. Both EC1 and EC2 actually admit a partial stable model where f is
false. Thus, for the fragment EC1 + EC2 + OC2 we might construct the unique wider
partial stable model {g, h, d}. However, this fails to make the handle of OC1 active, and
therefore a stable model for the overall program cannot be obtained.

If we replaced OC1 with OC ′
1

— OC1

p← not p, not d

with HOC′
1

= {not d : AND : p}, Atoms(HOC′
1
) = {d} and unique partial stable

model {d} obtained by choosing positive base XOC1
= {d}, then {g, h, d} we would be a

stable model {} for the overall program.
Below we establish the formal foundations of the kind of reasoning that we have infor-

mally proposed up to now. We introduce the definition of handle assignment, which is a



20 S. Costantini

consistent hypothesis on (some of) the handles of a cycle C. Precisely, it is a quadruple
composed of the following sets.

INA
C contains the incoming handles which are assumed to be active. From INA

C

one can immediately derive a corresponding assumption on XC . In particular, XC =

ActivationAtC(INC), i.e. it is exactly the set of the atoms that make the handles in INA
C

active. Vice versa, INN
C contains the incoming handles which are assumed to be not active.

Handles of C which are not in INA
C ∪ INN

C can be either active or not active, but their
status is unknown or irrelevant in the context where the handle assignment is used.

OUT+
C is the set of out-handles which are required to be concluded true, so as to make

some handle of some other cycle active (as we have seen in the example above). Similarly,
OUT−

C is the set of the out-handles which are required to be concluded false, for the same
reason. Of course, the OUTC’s must be disjoint, since no atom can be required to be
simultaneously true and false.

Definition 19
A basic handle assignment to (or for) cycle C is a quadruple of sets

〈INA
C , INN

C , OUT+
C , OUT−

C 〉

where the (possibly empty) composing sets are such that:
INA

C ∪ INN
C ⊆ HC ;

INA
C ∩ INN

C = ∅;
neither INA

C and INN
C contain couples of either opposite or contrary handles; OUT +

C ∪

OUT−
C ⊆ Out handles(C);

OUT+
C ∩OUT−

C = ∅.

A handle assignment will be called is trivial (resp. non-trivial) if OUT +
C = OUT−

C = ∅,
i.e., whenever there is no requirement on the out-handles of C.

If INA
C is empty, then either HC = ∅, i.e., the cycle is unconstrained, or HC 6= ∅

but no active incoming handle is assumed, in which case we say that the cycle is actually
unconstrained w.r.t. this handle assignment. A handle assignment will be called effective
whenever INA

C 6= ∅. For short, when talking of bot INA
C and INN

C we will say ”the
INC’s”.

We have to cope with the relationship between opposite, contrary, and sibling handles,
whenever they should occur in the same cycle C.

Definition 20
A complete handle assignment, or simply a handle assignment, to cycle C is a basic han-
dle assignment to C where the following conditions hold, whenever couples of opposite,
contrary or sibling handles occur in C:
if two opposite handles h and h− both occur in C, h ∈ INA

C if and only if h− ∈ INN
C ;

if two contrary handles h and hn both occur in C, h ∈ INA
C if and only if hn ∈ INN

C ;
if two sibling handles h and hs both occur in C, then either h, hs ∈ INA

C and h, hs 6∈ INN
C

or h, hs ∈ INN
C and h, hs 6∈ INA

C .

A basic handle assignment can be completed, i.e., turned into a complete handle assign-
ment, by an obvious update of the INC’s.



On the Existence of Stable Models of Non-stratified Logic Programs 21

What the definition does not state yet is that INC’s and the OUTC’s should be com-
patible, in the sense that the handles in INA

C and INN
C being active should not prevent

the out-handles in OUTC’s from being true/false as required. Consider for instance the
extended cycle:

— OC

a← not b, f

b← not c

c← not a

b← not e

where HEC = {(e : OR : c), (f : AND : a)}.
Let us assume that Out handles(OC) = {a, b}.
Now take a handle assignment with the following components. INA

OC = {(f : AND :

a)} which means that we assume this handle to be active, i.e., we assume f to be false.
INN

OC = {(e : OR : b)}, which means that we assume this handle to be not active,
i.e., we assume f to be false. Finally, OUT +

OC = {b}, and OUT−
OC = {c}. This handle

assignment cannot be fulfilled in practice: in fact, if f is assumed to be false, then a is
concluded false, and consequently c is concluded true and b false, contrary to what required
in OUT+

OC and OUT−
OC . The OR handle f of b is in INN

OC , and thus it is assumed to
be not active. Notice that even with INN

OC = ∅, i.e., with no knowledge about handle
(e : OR : b), still with the information that we possess, the requirements for OUT +

OC

and OUT−
OC cannot be fulfilled. Instead, an handle assignment with the same INOC ’s,

and with OUT+
OC = {c} and OUT−

OC = ∅ can be fulfilled. Notice also that OUT−
OC = ∅

does not mean that no out-handle is allowed to be false, rather it means that no out-handled
is required to be false. Then, if the requirements in OUT +

OC and OUT−
OC are met, the

remaining out-handles can take any truth value. Notice finally that if we let INA
OC =

INN
OC = ∅, then the extended cycle is inconsistent.

Clearly, a definition of the INOC ’s that makes the corresponding program fragment
C + Aux(C) + ActivationAtC(INA

C ) inconsistent is useless for obtaining stable mod-
els of the overall program. In fact, we are interested in handle assignments where the
INOC ’s corresponds to an assumption on the incoming handles (and thus on XC =

ActivationAtC(INA
C )) such that: the resulting program fragment C + Aux(C) + XC is

consistent, and the requirements established in OUT +
OC and OUT−

OC are met. This means
that in some stable model of the program fragment, all atoms in OUT +

OC are deemed true,
and all atoms in OUT−

OC are deemed false.
The above requirements are formalized in the following:

Definition 21

A handle assignment HA = 〈INA
C , INN

C , OUT+
C , OUT−

C 〉 to a cycle C is admissible if
and only if the program C +Aux(C)+ActivationAtC(INA

C ) is consistent, and for some
stable model SINA

C of this program, OUT+
C ⊆ SINA

C and OUT−
C ∩ SINA

C = ∅. We say
that SINA

C corresponds to HA.

According to Definition 15, each stable model SINA
C is a partial stable model of Π

relative to C, that can be used for building a stable model of the whole program. At least



22 S. Costantini

some of these partial stable models correspond to the given handle assignment, in the sense
that they are consistent with the choice of active handles that the assignment represents.

It is useful to notice that: (i) if the cycle C is even, and it is either unconstrained or
actually unconstrained, then the program fragment C +Aux(C)+ActivationAtC(INA

C )

has two stable models , one coinciding with Even atoms(C), and the other one coinciding
with Odd atoms(C). Otherwise, it has just one stable model. (ii) if instead the cycle is odd,
the program fragment has no stable models whenever the cycle is either unconstrained
or actually unconstrained, and has just one stable model otherwise. In fact, if a handle
assignment is effective then the corresponding program fragment is locally stratified, and
thus (PP90) has a unique stable model that coincides with its well-founded model.

Then, it is easy to see that a non-effective handle assignment is never admissible
for an odd cycle, and is admissible for an even cycle if and only if either OUT +

C ⊆

Even atoms(C) or OUT+
C ⊆ Odd atoms(C).

It may be also observed that a trivial handle assignment, which do not states require-
ments on the out-handles, is always admissible for even cycles, and it is admissible for odd
cycles if it is effective.

The admissibility of a non-trivial effective handle assignment for cycle C can be
checked syntactically, by means of the criterion that we state below. The advantage of
this check is that it does not require to compute the well-founded model of C +Aux(C)+

ActivationAtC(INA
C ), but it just looks at the rules of C. Although the syntactic formu-

lation may seem somewhat complex, it simply states in which cases an atom in OUT +
C ,

which is required to be concluded true w.r.t. the given handle assignment (or, conversely,
an atom in OUT−

C which is required to be concluded false), is actually allowed to take the
specified truth value without raising inconsistencies. Notice that OUT +

C and OUT−
C must

be mutually coherent, in the sense that truth of an atom in OUT +
C cannot rely on truth of

an atom in OUT−
C (that instead is required to be concluded false), and vice versa.

Proposition 1

A non-trivial effective handle assignment 〈INA
C , INN

C , OUT+
C , OUT−

C 〉 to cycle C is
admissible if and only if for every λi ∈ OUT+

C the following condition (1) holds, and for
every λk ∈ OUT−

C the following condition (2) holds.

1. Condition 1.

(a) Either there exists and OR handle ho for λi, ho ∈ INA
C or

(b) for every AND handle ha for λi, ha ∈ INN
C and

λi+1 6∈ OUT+
C , and

condition (2) holds for λi+1.

2. Condition 2.

(a) For every OR handle ho for λ, ho ∈ INN
C , and

(b) either there exists and AND handle ha for λ such that ha ∈ INA
C , or

λk+1 6∈ OUT−
C , and condition (1) holds for λk+1.

Proof

Let us first notice that the set of rules with head λi in C+Aux(C)+ActivationAtC(INA
C )



On the Existence of Stable Models of Non-stratified Logic Programs 23

consists of rule λi ← not λi+1,∆i in C, and possibly, of one or more rules in Aux(C). In
fact, by the definition of canonical program, atoms in INA

C do not occur in C, and thus λi

cannot belong to ActivationAtC(INA
C )).

Consider an atom λi ∈ OUT+
C , that we want to be concluded true in the partial stable

model of C, which corresponds to the given handle assignment. For λi to be concluded
true, there must be a rule whose conditions are guaranteed to be true w.r.t the handle as-
signment.

One possibility, formalized in Condition 1.(a), is that there exists an OR handle ho for
λi, ho ∈ INA

C . That is, there is an auxiliary rule with head λi, and condition true w.r.t. the
handle assignment.
Otherwise, as formalized in Condition 1.(b) we have to consider the rule of cycle C:

λi ← not λi+1,∆i

and check that all the conditions are guaranteed to be true by the handle assignment. First
of all it must be (∆k : AND : λk) ∈ INN

C i.e., in the given handle assignment the AND
handle referring to λi must be supposed to be not active, because an active AND handle
makes the head of the rule false. Second, not λi+1 must be true: this on the one hand
requires λi+1 6∈ OUT+

C , that would be a contradiction; on the other hand, requires λi+1 to
be concluded false. To this aim, condition (2), discussed below, must hold for λi+1.
Consider now an atom λk ∈ OC−

C , that we want to be false the partial stable model of
C, which corresponds to the given assignment: there must not be a rule for λk whose
conditions all true w.r.t. the given assignment.

First, as formalized in Condition 2.(a), we must have any OR handle ho for λk in INN
C .

Otherwise, λk would be necessarily concluded true, being the head of an auxiliary rule
with a true body.
Second, as formalized in Condition 2.(b), we also have to consider the rule of cycle C

λk ← not λk+1,∆k

and check that one of its two conditions is false w.r.t. the handle assignment. A first case
is that (∆k : AND : λk) ∈ INA

C , which means that the AND handle referring to λk is
supposed to be active, i.e., false. Otherwise, not λk+1 must be false, i.e., λk+1 must be
true. To this aim, provided that λk+1 6∈ OUT−

C (that would be a contradiction), condition
(1) must hold for λk+1.

The fact that Conditions 1 and 2 refer to each other is not surprising, since they are to be
applied on cycles. Consider for instance the following cycle:

e← not f

f ← not g

g ← not e

g ← h

The handle assignment 〈{(h : OR)}, ∅, {g}, ∅〉 is admissible, since, according to Con-
dition 1.(a), there exists an auxiliary rule with head g and body in INA

C . Also 〈{(h :

OR)}, ∅, {g, e}, ∅〉 is admissible, because: g is as above; there is no OR handle for e, thus



24 S. Costantini

Condition 1.(a) cannot be applied, but, considering rule e ← not f (Condition 1.(b)), it is
easy to see that Condition 2 holds of f , since there is no OR handle for f , and we have
just shown that Condition 1 holds of g. Then, 〈{(h : OR)}, ∅, {g}, {e}〉 is not admissible,
because Condition 2 does not hold for e.

It is important to notice that it is possible to determine admissible handle assignments
from a partially specified one. An obvious way of doing that is guessing the missing sets,
and checking whether the resulting handle assignment is admissible. It is however possible
to do it much easily by exploiting the definitions.

For given INC’s, it is easy to find the maximal values for OUT +
C and OUT−

C that
form an admissible handle assignment. If INA

C is empty, then they correspond to the stable
models (if any) of the cycle taken by itself (without the auxiliary rules, since an empty IN A

C

empty means that no OR handle is active). If INA
C is not empty, by asserting the atoms in

ActivationAtC(INA
C ) as facts one computes the (unique) stable model of the extended

cycle, and thus the maximal values for OUT +
C and OUT−

C . These maximal values are
determined by assuming all handles not belonging to the INC’s to be not active.

Vice versa, given OUT+
C and OUT−

C , and unknown or partially defined INC’s, the
conditions stated in Proposition 1 can be used for determining the subsets of HC (incoming
handles) that form admissible handle assignments.

Consider for instance the extended cycle:

e← not f, not r

f ← not g

g ← not e

g ← v

g ← h

e← s

e← not h

Assume we let OUT+
C = {g} and OUT−

C = ∅. Then, for forming an admissible handle
assignment we have three possibilities.

First, by Condition 1.(a) of Proposition 1, we can exploit the auxiliary rule g ← v, i.e.
the handle (v : OR), and let INA1

C = {(v : OR)}, and INN1
C = ∅.

Second, again by Condition 1.(a) of Proposition 1, we can exploit the other auxiliary
rule g ← h, i.e. the handle (h : OR), and let INA2

C = {(h : OR)}. This implies to
insert into INN2

C the contrary and opposite handles, since they both occur in C, i.e. let
INN2

C = {(h : AND), (not h : OR)}.
Third, we can exploit condition 1.(b), and consider rule with head g in the cycle, i.e.

g ← not e, and verify Condition 2 for e, that must be false. For satisfying Condition
2.(a), we have to consider both the OR handles for e, i.e. handle (not h : OR) and handle
(s : OR), that must be included in INN2

C , i.e., INN3
C = {(not h : OR), (s : OR)}. For

satisfying Condition 2.(b) we have to consider rule e ← not f, not r. Since we want g

true, this implies f false, which means that for getting e false as well, we have to add its
AND handle (not r : AND) to INN3

C . I.e., finally we get INN3
C = {(not h : OR), (s :

OR), (not r : AND)}. This leads to add the opposite and contrary handles which occur in
C to INA2

C , thus letting: INA3
C = {(h : OR)}.



On the Existence of Stable Models of Non-stratified Logic Programs 25

We may notice that INA2
C = INA3

C but INN2
C ⊆ INN3

C . Both choices form an admis-
sible handle assignment, although the first one is more restricted. It turns out in fact that,
in the above cycle, for building handle assignments where OUT +

C = {g} and OUT−
C = ∅,

the handle (not r : AND) is actually irrelevant. This explains why the definition of handle
assignment does not enforce one to set all handles as active/not active. We can introduce
the following definition:

Definition 22

An admissible handle assignment 〈INA
C , INN

C , OUT+
C , OUT−

C 〉 is minimal if there is no
other sets INA′

C ⊂ INA
C and INN ′

C ⊂ INN
C such that 〈INA′

C , INN ′

C , OUT+
C , OUT−

C 〉 is
still admissible.

As we have seen above, there can be alternative minimal sets of incoming active handles
for the same out-handles. However, there may also be the case there is none. There is for
instance no possibility for OUT +

C = {g, f}, i.e., no choice for the INC’s can produce a
partial stable model where both g and f are true.

7 Cycle graphs

Finally, we build a graph whose nodes are the cycles, and whose edges are the handles. A
handle is considered to connect the cycle it comes from, to the cycle(s) where the handle
appears.

Paths on this graph (that we call handle paths) represent indirect connections between
cycles through the handles. If the handles composing a path are supposed to be active, then
the truth value of the atoms composing the cycle this path starts from influence the truth
value of atoms in the subsequent cycles on the path. If the ending cycle of the path is an
odd cycle, then its consistency may be guaranteed by this kind of influence.

We will formally define under which conditions the consistency of the odd cycles is
guaranteed. At the end, we will state that finding handle paths for the odd cycles, and
checking these conditions, is equivalent to checking the program for consistency.

As mentioned above, it is possible to uniquely identify the set {C1, . . . , Cw} of the
cycles that occur in program Π. This set can be divided in the two disjoint subsets of the
even cycles {EC1, . . . , ECg}, and of the odd cycles {OC1, . . . , OCh}.

Then, the program structure in terms of cycles, handles and handle paths can be de-
scribed by means of a graph, where cycles are the vertices and handles are the edges.
Below in fact we introduce the novel notion of a cycle graph.

Definition 23

The Cycle Graph CGΠ, is a directed graph defined as follows:

• Vertices. One vertex for each of cycles C1, . . . , Cw. Vertices corresponding to even
cycles are labeled as ECi’s while those corresponding to odd cycles are labeled as
OCj’s.

• Edges. An edge (Cj , Ci) marked with (∆ : K : λ) for each handle (∆ : K : λ) ∈

HCi
of cycle Ci, that comes from Cj .



26 S. Costantini

Each marked edge will be denoted by (Cj , Ci|∆ : K : λ), where however by abuse of
notation either (Cj or Ci or λ) will be omitted whenever they are clear from the context,
and we may write for short (Cj , Ci|h), h standing for a handle that is either clear from the
context or does not matter in that point.

An edge on the CG connects the cycle a handle comes from to the cycle to which the
handle belongs. Edges on the CG make it clear that handles connect different cycles: a
handle ∆ being or not being assumed to be active, corresponds to the atom α which occurs
in ∆ to be required to take a certain truth value in the cycles the handle comes from,
depending of the kind of the handle. Precisely, if α is required to be true, then it must be
concluded true in at least one of the cycles it is involved in. If α is required to be false, it
must be concluded false in all cycles it is involved in.

As formally stated in Theorem 2, the odd cycles need to have at least one active handle,
since on their own they would be inconsistent. If such a handle comes from another odd
cycle, then we can repeat the same reasoning. Therefore, any odd cycle, for being consis-
tent, must be directly or indirectly connected to some even cycle, through a “chains” of
handles. On the CG, for every odd cycle it is possible to check whether such a connection
may exists.

First, one has to check that any odd cycle OC has at least one handle. Secondly, one has
to check that there may exist an admissible handle assignment for the cycle C the handle
comes from, so as to make that handle active. This will imply to determine the INC’s ac-
cordingly. Consequently, we have to iterate the reasoning for the handles of C. This means,
we have to identify a subgraph of the CG where all the odd cycles are supported, while
taking into account what follows. If a handle is active, its opposite and contrary handles
are not, while two sibling handles are simultaneously active/not active. Each handle must
be coherently considered active/non-active wherever it occurs on the edges of the CG.

Let us make this kind of reasoning formal.

Definition 24
Given program Φ, let a CG support set be a couple S = 〈ACT +, ACT−〉 of subsets of the
handles marking the edges of CGΦ, represented in the form (∆ : K) (K = AND/OR),
where handles in ACT+ are supposed to be active, and handles in ACT− are supposed to
be not active, and we have:
(i) ACT+ ∩ACT− = ∅.
(ii) neither ACT+ nor ACT− contain a couple of either opposite or contrary handles.
(iii) if two opposite handles h and h− both occur on the CG, then ACT + contains handle
h if and only if ACT− contains its opposite handle h−.
(iv) if two contrary handles h and hn both occur on the CG, then ACT + contains handle
h if and only if ACT− contains its contrary handle hn.
(v) if two sibling handles h and hs both occur on the CG, then either h, hs ∈ ACT+ and
h, hs 6∈ ACT−, or vice versa h, hs ∈ ACT− and h, hs 6∈ ACT+

Given S, we will indicate its two components with ACT +(S) and ACT−(S). By abuse
of notation, for the sake of readability we introduce some simplifying assumptions.

• Given handle h = (∆ : K : λ), by ACT +(S) ∪ {h} (resp. ACT−(S) ∪ {h}) we
mean ACT+(S) ∪ {(∆ : K)} (resp. ACT+(S) ∪ {(∆ : K)}).



On the Existence of Stable Models of Non-stratified Logic Programs 27

• Given handle h ∈ ACT+(S) (resp. h ∈ ACT−(S)) of the form (∆ : K), by
INA

C ∪ {h} (resp. INN
C ∪ {h}) we mean: to identify the set H = {(∆ : K : λ) ∈

HC} and perform INA
C ∪H (resp. INN

C ∪H).
• By HC ∩ ACT+(S) (resp. HC ∩ ACT+(S)) we mean {(∆ : K : λ) ∈ HC |(∆ :

K) ∈ ACT+(S)} (resp. (∆ : K) ∈ ACT+(S)).

A CG support set represents the handles that are supposed to be active/not active for
making the odd cycles and the whole program consistent.

As discussed before, consistency is strongly conditioned by the odd cycles of the pro-
gram. So, we have to restrict the attention on CG support sets including at least one active
handle for each odd cycle, and then we have to check that the assumptions on the handles
are mutually coherent, and are sufficient for ensuring consistency. An CG support set is
potentially adequate if it provides at least one active incoming handle for each of the odd
cycles.

Definition 25

An CG support set S is potentially adequate if for every odd cycle C in Π there exists a
handle h ∈ HC such that h ∈ ACT+(S).

A CG support set S induces a set of handle assignments, one for each of the cycles
{C1, . . . , Cw} occurring in Π.

The induced assignments are obtained on the basis of the following observations:

• Each handle in h ∈ ACT+(S) is supposed to be active, and therefore it must be
active for each cycle Ci such that h ∈ HCi

.
• Each handle in h ∈ ACT−(S) is supposed to be not active, and therefore it must be

not active for each of cycle Cj such that h ∈ HCj
.

• If an handle h in S requires, in order to be active/not active, an atom β to be false,
then it must be concluded false in all the extended cycles of the program h comes
from.

• If an handle h in S requires, in order to be active/not active, an atom β to be true,
then it must be concluded true in all the extended cycles of the program h comes
from. This point deserves some comment, since one usually assumes that it suffices
to conclude β true somewhere in the program. Consider however that any rule β ←

Body that allows β to be concluded true in some cycle is an auxiliary rule to all the
other cycles β is involved into. This is why β is concluded true everywhere it occurs.
This is the mechanism for selecting partial stable models of the cycles that agree on
shared atoms, in order to assemble stable models of the overall program.

Definition 26

Let S = 〈ACT+, ACT−〉 be a GG support set which is potentially adequate. For each
cycle Ck occurring in Π, k ≤ w, the (possibly empty) handle assignment induced by this
set is determined as follows.

1. Let INA
Ck

be HCk
∩ACT+(S).

2. Let INN
Ck

be HCk
∩ACT−(S).



28 S. Costantini

3. Let OUT+
Ck

be the (possibly empty) set of all atoms β ∈ Out handles(Ck) such
that there is a handle h ∈ ACT+(S) either of the form (β : OR) or (not β : AND).

4. Let OUT−
Ck

be the (possibly empty) set of all atoms α ∈ Out handles(Ck) such
that there is a handle h ∈ ACT−(S) either of the form (α : AND) or (not α : OR).

5. Verify that OUT−
Ck
∩OUT+

Ck
= ∅.

If this is the case for each Ck, then S actually induces a set of handle assignments, and is
called coherent. Otherwise, S does not induce a set of handle assignments, and is called
incoherent.

The above definition does not guarantee that the assignments induced by a coherent
support set are admissible, that the same atom is not required to be both true and false
in the assignments of different cycles, and that the incoming handles of a cycle being
supposed to be active/not active corresponds to a suitable setting of the out-handles of the
cycles they come from. I.e., consider for instance cycle Ci which has an incoming handle,
e.g. h = (β : OR : λ), in INA

Ci
: h is supposed to be active, which in turn means that

β must be concluded true elsewhere in the program; then, for all cycles Cj where β is
involved into, we must have β ∈ OUT +

Cj
, in order to fulfill the requirement. Of course, we

have to consider both INA
C and INC

N , and both the AND and the OR handles.
The following definition formalizes this more strict requirements.

Definition 27

A coherent CG support set S of handle paths is adequate (w.r.t. not adequate) if for the
induced handle assignments the following conditions hold:

1. they are admissible;
2. for each two cycles Ci, Cj in Π, OUT+

Ci
∩OUT−

Cj
= ∅.

3. For every Ci in Π, for every handle h ∈ INA
Ck

of the form either (β : OR : λ)

or (not β : AND : λ), and for every handle h ∈ INN
Ck

of the form either (β :

AND : λ) or (not β : OR : λ), for every other cycle Cj in Π, i 6= j, such that
β ∈ Out handles(Cj), we have β ∈ OUT+

Cj
.

4. For every Ci in Π, for every handle h ∈ INA
Ck

of the form either (not β : OR : λ)

or (β : AND : λ), and for every handle h ∈ INN
Ck

of the form either (not β :

AND : λ) or (β : OR : λ), for every other cycle Cj in Π, i 6= j, such that
β ∈ Out handles(Cj), we have β ∈ OUT−

Cj
.

As we will prove later on, this set is adequate whenever the program is consistent, since
the support provided by the handles in S allows every cycle to have partial stable models,
and ensures that these partial stable models agree on shared atoms.

The above definitions allow us to define a procedure for trying to find adequate support
sets starting from the odd cycles, and following the dependencies on the CG.

Definition 28 (Procedure PACG for finding adequate CG support sets for program Π)

1. Let initially S = 〈∅; ∅〉.
2. For each cycle Ck occurring in Π, k ≤ w, let initially HACk

= 〈∅, ∅, ∅, ∅〉

3. For each odd cycle OC in Π do:



On the Existence of Stable Models of Non-stratified Logic Programs 29

(a) Choose h ∈ HOC . If HOC = ∅, than FAIL.
(b) For chosen h:

i do ACT+(S) := ACT+(S) ∪ {h};

ii if hs occurs in the CG, do ACT+(S) := ACT+(S) ∪ {hs};

iii if h− occurs in the CG, do ACT−(S) := ACT−(S) ∪ {h−};

iv if hn occurs in the CG, do ACT−(S) := ACT−(S) ∪ {hn}.

v For each cycle Ck in Π such that h ∈ HCk
:

A do INA
Ck

:= INA
Ck
∪ h;

B if hs occurs in HCj
for some cycle Cj (where possibly j = k), do

INA
Cj

:= INA
Cj
∪ {hs};

C if h− occurs in HCj
for some cycle Cj (where possibly j = k), do

INN
Cj

:= INN
Cj
∪ {h−};

D if hn occurs in HCj
for some cycle Cj (where possibly j = k), do

INN
Cj

:= INN
Cj
∪ {hn}.

vi If h is either of the form (β : OR) or (not β : AND), for each cycle Ck in
Π where β ∈ Out handles(Ck), do: OUT+

Ck
:= OUT+

Ck
∪ {β};

vii If h is either of the form (not β : OR) or (β : AND), for each cycle Ck in
Π where β ∈ Out handles(Ck), do: OUT−

Ck
:= OUT−

Ck
∪ {β}

4. REPEAT

(a) Verify that ACT+(S) ∩ACT−(S) = ∅. If not, FAIL.
(b) Verify that neither ACT+ nor ACT− contain a couple of either opposite or

contrary handles. If not, FAIL.
(c) For each cycle Ck in Π such that OUT+

Ck
6= ∅ or OUT−

Ck
6= ∅:

i Verify that OUT+
Ck
∩OUT−

Ck
= ∅. If not, FAIL.

ii Update (if needed) INA
Ck

and INN
Ck

w.r.t. OUT+
Ck

and OUT−
Ch

, and check
that the resulting handle assignment is admissible. If not, then FAIL.

iii For each other cycle Ch in Π do: verify that OUT+
Ck
∩OUT−

Ch
= ∅, and that

OUT−
Ck
∩OUT+

Ch
= ∅. If not, FAIL.

(d) For each cycle Ck in Π, for each h ∈ INA
Ck

:

i do ACT+(S) := ACT+(S) ∪ {h};

ii if hs occurs in the CG, do ACT+(S) := ACT+(S) ∪ {hs};

iii if h− occurs in the CG, do ACT−(S) := ACT−(S) ∪ {h−};

iv if hn occurs in the CG, do ACT−(S) := ACT−(S) ∪ {hn}.

v For each cycle Ch in Π such that h ∈ HCh
:

A do INA
Ch

:= INA
Ch
∪ h;

B if hs occurs in HCj
for some cycle Cj (where possibly j = h), do

INA
Cj

:= INA
Cj
∪ {hs};

C if h− occurs in HCj
for some cycle Cj (where possibly j = h), do

INN
Cj

:= INN
Cj
∪ {h−};



30 S. Costantini

D if hn occurs in HCj
for some cycle Cj (where possibly j = h), do

INN
Cj

:= INN
Cj
∪ {hn}.

vi If h is either of the form (β : OR) or (not β : AND), for each cycle Ck in
Π where β ∈ Out handles(Ck), do: OUT+

Ck
:= OUT+

Ck
∪ {β};

vii If h is either of the form (not β : OR) or (β : AND), for each cycle Ck in
Π where β ∈ Out handles(Ck), do: OUT−

Ck
:= OUT−

Ck
∪ {β}

(e) For each cycle Ck in Π, for each h ∈ INN
Ck

:

i do ACT−(S) := ACT−(S) ∪ {h};

ii if hs occurs in the CG, do ACT−(S) := ACT−(S) ∪ {hs};

iii if h− occurs in the CG, do ACT+(S) := ACT−(S) ∪ {h−};

iv if hn occurs in the CG, do ACT+(S) := ACT+(S) ∪ {hn}.

v For each cycle Ch in Π such that h ∈ HCh
:

A do INN
Ch

:= INN
Ch
∪ h;

B if hs occurs in HCj
for some cycle Cj (where possibly j = h), do

INN
Cj

:= INN
Cj
∪ {hs};

C if h− occurs in HCj
for some cycle Cj (where possibly j = h), do

INA
Cj

:= INA
Cj
∪ {h−};

D if hn occurs in HCj
for some cycle Cj (where possibly j = h), do

INA
Cj

:= INA
Cj
∪ {hn}.

vi If h is either of the form (β : OR) or (not β : AND), for each cycle Ck in
Π where β ∈ Out handles(Ck), do: OUT−

Ck
:= OUT−

Ck
∪ {β};

vii If h is either of the form (not β : OR) or (β : AND), for each cycle Ck in
Π where β ∈ Out handles(Ck), do: OUT+

Ck
:= OUT+

Ck
∪ {β}

UNTIL no set is updated by the previous steps.

Proposition 2

Procedure PACG either fails, or returns an adequate CG support set.

Proof

Whenever it does not fail, PACG clearly produces a CG support set S. In fact: points (i-ii)
of Definition 24 are verified by steps 4.(a-b) of PACG; points (iii-v) of Definition 24 are
enforced after any update to S, namely by steps 3.b.(ii-iv), 4.d.(ii-iv) and 4.e.(ii-iv). The
CG support set S produced by PACG is potentially adequate by construction, since in step
3.a a handle for each odd cycle is included. S is also adequate, since in fact: admissible
handle assignments for all cycles in Π are incrementally built and verified in steps 4.c.(i-
ii), thus fulfilling point 1. of Definition 27. Point 2 of Definition 27 is verified in step
4.c.(iii). Finally, points 3-4 of Definition 27 are enforced by steps 3.b.(vi-vii), 4.d.(vi-vii)
and 4.e.(vi-vii), after each update to the INC’s of any cycle.

We close this Section by proposing a comprehensive example to illustrate all the con-
cepts we have introduced above. Consider the following collection of cycles.



On the Existence of Stable Models of Non-stratified Logic Programs 31

— OC1

p← not s, not c

s← not t

t← not p

s← a

— OC2

q ← not q

q ← not e

— OC3

r ← not r, not e

— EC1

a← not c

c← not a

— EC2

a← not b

b← not a

— EC3

e← not f

f ← not e

— OC ′
2

q ← not q

q ← not e

q ← a

Consider program π1 = OC1 ∪ EC1. Its cycle graph is reported in Figure 1. The odd
cycle OC1 admits the unique potentially active handle (not c : AND : p) Then, we let Sπ1

be such that ACT+(Sπ1
) = {(not c : AND)} and ACT−(Sπ1

) = ∅. The induced set of
handle assignments are as follows.

For OC1: INA
OC1

= {(not c : AND)}, OUT+
OC1

= OUT−
OC1

= ∅. This assignment is
trivially admissible, since there is no requirement on the out-handles.

For EC1: OUT+
EC1

= {c}, OUT−
EC1

= {∅}. INEC1
= ∅, since EC1 is unconstrained.

It is easy to verify that this handle assignment is admissible, by letting λ1 = a and λ2 = c,
where of course for c to be true a must be false. This handle assignment corresponds to
selecting the partial stable model {c} for EC1, while discarding the other partial stable
model {a}.

Then, Sπ1
as defined above is an adequate CG support set.

Consider program π2 = OC1 ∪EC1 ∪EC2. The situation here is complicated as EC1

and EC2 are not independent. In fact, rule a← not b of EC2 is an auxiliary rule for EC1,
and, vice versa, a← not c of EC1 is an auxiliary rule for EC2. Then, here we have a cyclic
connection between the even cycles. This is evident on the cycle graph of π2, reported in
Figure 2.



32 S. Costantini

The odd cycle OC1 has two handles, of which at least one must be active. Let us first
assume that (not c : AND : p) is active. According to the PACG procedure, we try to
assemble a CG support set S, by letting at first ACT +(Sπ2

) = {(not c : AND)} and
ACT−(Sπ2

) = {(not c : OR)}. In fact, since not c is an incoming OR handle for a in
EC2, when assuming (not c : AND) to be active, we also have to assume its opposite
handle and its contrary handle to be not active.

Consequently, we let INA
OC1

= {(not c : AND)} and INN
EC2

= {(not c : OR)}

Now, we have to put OUT−
OC1

= {p} and OUT+
EC1

= {c}. To form an admissible handle
assignment for EC1, this implies to let INN

EC1
= {(not b : OR)}. Consequently, we have

to update ACT−(Sπ2
) which becomes: ACT−(Sπ2

) = {(not c : AND), (not b : OR)}.
This leads to put OUT+

EC1
= {b}.

By iterating the reasoning nothing changes, and thus the couple of sets ACT +(Sπ2
) =

{(not c : AND)} and ACT−(Sπ2
) = {(not c : OR), (not b : OR)} form, as it is easy to

verify, an adequate CG support set.
Notice that this kind of reasoning does not imply either to find the stable models of the

cycles, or to consider every edge of the CG. In fact, we have had no need to consider the
second incoming handle of OC1.

Let us now make the alternative assumption, i.e. assume that (a : OR : s) is active
for OC1. This means at first ACT+(Sπ2

) = {(a : OR)} and ACT−(Sπ2
) = ∅, since

not a does not occur in handles of the CG. This implies OUT +
EC1

= {a}. Then, there
is no requirement on INEC2

for forming an admissible handle assignment, and then the
procedure stops here.

Consider program π3 = OC1∪EC1∪EC2∪OC2∪OC3. The situation here is hopeless,
since the only incoming handles to OC2 and OC3 are opposite handles, that cannot be both
active. This is evident on the cycle graph of π3, reported in Figure 3. For the other cycles,
the situation is exactly as before.

Then, there is a subprogram which is ok, and a subprogram which gives problems. We
can fix these problems for instance by replacing OC2 with OC ′

2, thus obtaining program π4

(CG in Figure 4) where we can exploit handle (a : OR) for both OC1 and OC ′
2. It is easy to

verify that the CG support set S composed of ACT +(Sπ4
) = {(a : OR), (not e : AND)}

and ACT−(Sπ4
) = {(not e : OR)} is adequate. The need to support OC ′

2 rules out the
possibility of supporting OC1 by means of the handle (not c : AND : p).

8 Main result

For programs in canonical form, we can state the main result of the paper, which gives us
a necessary and sufficient syntactic condition for consistency.

Theorem 3

A program Π has stable models if and only if there exists and adequate CG support set S

for Π.

Proof

⇐



On the Existence of Stable Models of Non-stratified Logic Programs 33

EC
1


OC
1


(not b: AND: p)


Figure 1. The Cycle Graph of π1.

EC
1
 EC
2


OC
1


(not c: AND: p)
 (a: OR: s)


(not b: OR: a)


(not c: OR: a)


Figure 2. The Cycle Graph of π2.

On the basis of S we can obtain the corresponding induced handle assignments, that will
be admissible by the hypothesis that the S is adequate.

From S we can obtain a global handle assignment HA = 〈THA;FHA〉 as follows.
THA = {α|

(α : OR) ∈ ACT+(S) ∨ (not α : AND) ∈ ACT+(S) ∨

(not α : OR) ∈ ACT−(S) ∨ (α : AND) ∈ ACT−(S)}

FHA = {α|

(α : AND) ∈ ACT+(S) ∨ (not α : OR) ∈ ACT+(S) ∨

(α : OR) ∈ ACT−(S) ∨ (not α : AND) ∈ ACT−(S)}

Since the S is adequate, then by definition we have that: (i) by point 1 of Definition 27,



34 S. Costantini

EC
1
 EC
2


OC
1


(not c: AND: p)
 (a: OR: s)


(not b: OR: a)


(not c: OR: a)


EC
3


OC
2


(not e: OR: q)


OC
3


(not e: AND: r)


Figure 3. The Cycle Graph of π3.

EC
1
 EC
2


OC
1


(not c: AND: p)
 (a: OR: s)


(not b: OR: a)


(not c: OR: a)


EC
3


OC
2


(not e: OR: q)


OC
3


(not e: AND: r)
(a: OR: q)


Figure 4. The Cycle Graph of π4.

for each cycle Ci in Π, S induces an admissible handle assignment; (ii) HA is consistent,
i.e. THA ∩ FHA = ∅, which is an immediate consequence of point 2 of Definition 27; (iii)
by point 3 of Definition 27, ∀α ∈ THA, α is concluded true in every cycle Ci it is involved
into, since α ∈ OUT+

Ci
, and the handle assignment induced by S to Ci is admissible;

similarly, (iv) by point 4 of Definition 27, ∀α ∈ FHA, α is concluded false in every cycle
Cj it is involved into, since α ∈ OUT +

Cj
, and the handle assignment induced by S to Cj is

admissible.
On the basis of HA, for each cycle Ci in Π we can build a correspondent independent

program Ci + Aux(Ci) + Xi, where we let Xi = Atoms(HCi
) ∩ THA, and X−

i =



On the Existence of Stable Models of Non-stratified Logic Programs 35

Atoms(HCi
) ∩ FHA. This independent program has a stable model Si by construction,

since the handle assignment induced by S to Ci is admissible (point (i) above). This stable
model is (by Definition 15) a partial stable model for Π relative to Ci, with base 〈Xi, X

−
i 〉.

Taken one Si for each Ci in Π, in the terminology of Definition 16 the Si’s constitute a
compatible set of partial stable models because, according to Definition 16: (1) for any
other cycle Cj , Xi ∩X−

j = ∅, since THA ∩ FHA = ∅ by point (ii) above; (2) ∀A ∈ Xi, A

is concluded true in some other cycle, by point (iii) above; (3) ∀A ∈ X−
i , A is concluded

false all the other cycles, by point (iv) above. Then, by Theorem 2, Π has stable models.
⇒

If Π has a stable model M , then by Theorem 2 we can decompose M into a compatible set
of partial stable models, one partial stable model Si, with base 〈Xi, X

−
i 〉, for each Ci in

Π. Since Xi, X
−
i ⊆ Atoms(HCi

), they correspond to sets INA
Ci

and INN
Ci

of handles of
Ci that are made active/not active by this base. By point (1) of Definition 16, for every two
cycles Ci, Cj Xi∩X−

i = ∅, and then INA
Ci
∩INN

Cj
= ∅. If we let S such that ACT+(S) =

⋃
i≤w INA

Ci
and ACT−(S) =

⋃
i≤w INN

Ci
, we have ACT+(S) ∩ ACT−(S) = ∅ and,

if there are either opposite or contrary handles, they will not be in the same set. Then, S

is a CG support set, and is potentially adequate by construction, because it has been built
from the INA’s and INN ’s of the cycles (point 1-2 of Definition 25), and because the Si’s
agree on shared atoms, having been obtained by decomposing a stable model (points 3-5
of Definition 25). For the same reasons, S is also adequate.

Checking the condition stated in Theorem 3 does not imply finding the stable models
of the program. However, in the proof of the only-if part, a way of determining the stable
models is actually outlined, and is summarized below.

Corollary 3

Assume that the condition stated in Theorem 3 holds for program Π. Then, the stable
models of Π can be determined as follows.

1. Given the handle assignments induced by S, build THA.
2. For each cycle Ci in Π, let Xi = Atoms(HCi

) ∩ THA, build the corresponding
extended cycle Ci + Aux(Ci) + Xi, and find its partial stable models.

3. Assemble each stable model of Π as the union of one partial stable model for each
cycle.

Let us reconsider the previous example. Let for short Ce be C + Aux(C)

For π1, we have THA = {c}. The partial stable model of ECe
1 ∪ c is {c}; the partial

stable model of OCe
1 ∪ c is {c, t}. Then, a stable model of the overall program is (as it is

easy to verify) {c, t}.
For π2, we have two possibilities. In the first one, THA = {c}. The partial stable model

of ECe
1 ∪ c is {c}; the partial stable model of ECe

2 ∪ c is {c, b}; the partial stable model
of OCe

1 ∪ c is {c, t}. Then, a stable model of the overall program is (as it is easy to verify)
{c, b, t}.



36 S. Costantini

In the second one, THA = {a}. The partial stable model of ECe
1 ∪ a is {a}; the partial

stable model of ECe
2 ∪ a is {a}; the partial stable model of OCe

1 ∪ a is {a, s, t}. Then, a
stable model of the overall program is (as it is easy to verify) {a, s, t}.

For π4, we have THA = {a, e}. The partial stable model of ECe
1 ∪ a is {a}; the partial

stable model of ECe
2 ∪a is {a}; the partial stable model of OCe

1 ∪a is {a, s, t}; the partial
stable model of OC ′e

2 ∪ a is {a, q}; the partial stable model of ECe
3 ∪ e is {e}; the partial

stable model of OCe
3 ∪ e is {e}. Then, a stable model of the overall program is (as it is

easy to verify) {a, s, t, q, e}.

9 Usefulness of the result

We believe that our results can be useful in different directions: (i) making consistency
checking algorithms more efficient in the average case; (ii) defining useful classes of pro-
grams which are consistent by construction; (iii) introducing component-based software
engineering principles and methodologies for answer set programming. This by defining,
over the CG, higher level graphs where vertices are components, consisting of bunches of
cycles, and edges are the same of the CG, connecting components instead of single cycles.

The three points are discussed at some length below.

9.1 Splitting consistency checking into stages

The approach and the result that we have presented here can lead to defining new algo-
rithms for computing stable models. However, they can also be useful for improving exist-
ing algorithms.

We have identified and discussed in depth two aspects of consistency checking: (1) the
odd cycles must be (either directly or indirectly) supported by the even cycles; (2) this
support must be consistent, in the sense that no contrasting assumptions on the handles can
be made.

Point (1) is related to the coarse” structure of the program, and can be easily checked on
the CG, so as to rule out a lot of inconsistent programs, thus leaving only the potentially
consistent” ones to be checked w.r.t. point (2). This is the aspect that might be potentially
exploited by any approach to stable models computation.

Notice that a CG support set S determines a subgraph of the CG, which is composed of
all the edges (and the corresponding end vertices) marked with the handles which occur in
S.

Definition 29
Given the CG of program Π, and a CG support set S, an adequate support subgraph is
a subgraph CGS of the CG, composed of the edges marked by the handles belonging to
ACT+(S) and ACT−(S), and of the vertices connected by these edges.

It is easy to see that, syntactically, CGS is composed of a set of handle paths,that connect
the odd cycles, through a chain of handles, to the even cycles (or to cyclic bunches of even
cycles) that are able to support them. Each path may include more than one odd cycle,
while each odd cycle must occur in at least one path.



On the Existence of Stable Models of Non-stratified Logic Programs 37

Then, point 1 above may consist in checking whether a subgraph of the CG with this
syntactic structure exists. Point 2, however performed, in essence must check whether the
handles marking the subgraph constitute an adequate CG support set.

Staying within the approach of this paper, one may observe that the PACG procedure
can easily be generalized for computing the stable models by performing the two steps in
parallel. In fact, PACG it actually tries reconstruct the CGS , starting from the odd cycles
and going backwards through the CG edges to collect the handles that form the set S.
At each step however, the procedure updates the handle assignments of the cycles and
performs the necessary checks to be sure to be assembling an adequate set S. The extension
would consist in computing the stable models of the extended cycles instead of just the
handle assignments, and perform the computation on the whole CG.

9.2 Defining classes of programs that are consistent by construction

Based on the CG it is possible to define syntactic restrictions that, with a slight loss of
expressivity, may ensure the existence of stable models. Suitable restrictions might be en-
forced on line by an automated tool, while the program is being written. This can be made
easier by limiting the number of handles each cycle my have.

A first discussion in terms of cycles and handles about the most common situations
where stable models exist or not is proposed in (CosPro03). The definition of classes of
programs suitable for “interesting” applications is a topic of further research, but it can be
useful to give some hints here.

In the literature, various sufficiency conditions have been defined (beyond stratification)
for existence of stable models.

• Acyclic programs, by Apt and Bezem (AB91);
• Tight programs under certain conditions, by Erdem and Lifschitz (Erd99);
• Signed programs, by Turner (Tur94);
• Call-consistent programs, order consistent programs, and negative cycle free pro-

grams by Fages (Fag90), (Fag94).

We define below a new very simple class of programs that are guaranteed to have stable
models, much broader than the above ones.

Definition 30
A program Π is called tightly-even-bounded if the following conditions hold: (i) every odd
cycle has just one handle; (ii) this handle comes from an unconstrained even cycle; (ii) if
there are two odd cycles whose handles come from the same even cycle, then two handles
that originate in the same kind of node are of the same kind.

The above condition is clearly very easily and directly checked on the CG, and can be
made clearly visible and understandable to a user, via a graphical interface. If you take any
other existing graph representation, like e.g. the EDG (BCDP99) (Cos01), that computes
stable models as graph colorings, the check is of course possible, but is less easy and less
direct.

It is easy to see that:



38 S. Costantini

Theorem 4

Every tightly even-bounded program P has stable models

Proof

Even cycles the handles come from are unconstrained, and conflicting handles are excluded
by definition. Then, we can build an adequate CG support set by just assuming the incom-
ing handles of the odd cycles to be active.

Simple as it is, this is a class of non-call-consistent programs easy understandable by
programmers, which is guaranteed to have stable models.

9.3 Generalizing the CG to components/agents

An important hot topic is, in our opinion, that of defining software engineering principles
for Answer Set Programming.

Here we propose to define a program development methodology for Answer Set Pro-
gramming by defining, over the CG, higher level graphs where vertices are components,
and edges are the same of the CG, but connecting components instead of single cycles. We
give below a first informal description of what kind of methodology we actually mean.

Let a component C be a bunch of cycles. It can be developed on its own, or it can be
identified on the CG of a larger program. Similarly to a cycle however, C is not meant to
be an independent program, but rather it has incoming handles.

As we have seen, partial stable models of cycles are characterized by handle assign-
ments. Analogously, a component will be characterized by a component interface

INA
C , INN

C , OUT+
C , OUT−

C

that is meant to be a specification of which values the incoming handles may take, either
in order to keep the component consistent, or in order to select some of its stable models.
The out-handles provide the other components with a mean of establishing a connection
with this one, i.e., they are true/false atoms that can make the incoming handles of other
components active/not active as required.

Differently from cycles, in general components will not export all their active handles,
but only those they want to make visible and available outside.

Based on the interface, it is possible to connect components, thus building a Component
Graph Comp G. On this new graph Comp CG, one can either add new consistent com-
ponents, or modify existing ones, and can check over the handle paths if there are problems
for consistency, and how to fix them.

Referring to the previous example, in π3 we have the component OC1 ∪ EC1 ∪ EC2

which is consistent, and the component OC2 ∪OC3 ∪EC3 which is instead inconsistent.
Then, we have a Comp CG with two unconnected vertices. We have shown how to fix the
problem by adding a handle to OC2, i.e., by suitably connecting the two components on
the Comp CG.

In this framework, components may even be understood as independent agents, and
making a handle active to a component may be understood as sending a message to the



On the Existence of Stable Models of Non-stratified Logic Programs 39

component itself. Consider the following example, representing a fragment of the code of
a controller component/agent:

circuit ok ← not fault

fault← not fault, not test ok

where test ok is an incoming handle, coming from a tester component/agent. As soon as
the tester will achieve test ok, this incoming handle will become active, thus making the
controller consistent, and able to conclude circuit ok.

A formal definition of the methodology we have outlined, and a detailed study of the
applications, are the main future directions of this research.

References

Apt, K. and Bezem, M., Acyclic Programs, New Generation Computing 9 (3-4), 1991: 335–365
Balduccini M., Brignoli G., Lanzarone G.A., Magni F. and Provetti A., 2000. Experiments in Answer

Sets Planning, Proc. of Mexican International Conference on Artificial Intelligence, 2000.
Brignoli, G., Costantini, S., D’Antona, O. and Provetti, A., 1999. Characterizing and Computing Sta-

ble Models of Logic Programs: the Non–stratified Case, Proc. of 1999 Conference on Information
Technology, held in Bhubaneswar, India, December 1999.

Costantini, S., 1995. Contributions to the Stable Model Semantics of Logic Programs with Negation,
Theoretical Computer Science 149, 1995 : 231-255.

S. Costantini, G. A. Lanzarone, G. Magliocco. Asserting Lemmas in the Stable Model Semantics.
Logic Programming: Proc. of the 1996 Joint International Conference and Symposium (held in
Bonn, Germany, September 1996). The MIT Press, USA, 1996.

Costantini, S., 2001. Comparing different graph representations of logic programs under the Answer
Set semantics, Proc. AAAI Spring Symposium “Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning”, Stanford, CA, March 26-28 2001.

Costantini, S. D’Antona, O. and Provetti, A. On the Equivalence and Range of Applicability of
Graph-based Representations of Logic Programs. Information Processing Letters, Vol. 84, N. 2,
December 2002.

Costantini, S., Intrigila, B. and Provetti, A. Coherence of Updates in Answer Set Programming. In:
G. Brewka and P. Peppas (eds.), Proc. of the IJCAI-2003 Workshop on Nonmonotonic Reasoning,
Action and Change, NRAC03 (Acapulco, Mexico, August 2003).

Costantini, S., and Provetti A., 2002. Normal Forms for Answer Set Programming. Submitted for
publication.

J. Dix. A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties. Fun-
damenta Informaticae XXII(3): 227–255, 1995.

J. Dix. A Classification Theory of Semantics of Normal Logic Programs: I. Weak Properties. Funda-
menta Informaticae XXII(3) : 257–288, 1995.

Dimopoulos Y., Nebel B. and Koehler J., 1997. Encoding Planning Problems in Nonmonotonic Logic
Programs, Proc. of 1997 European Conference on Planning: 169–181.

Dimopoulos, Y. and Torres, A., 1996. Graph theoretical structures in logic programs and default
theories, Theoretical Computer Science 170 (1996): 209–244.

Erdem, E. and Lifschitz, V.,1999. Transformations of Logic Programs Related to Causality and
Planning, In: M. Gelfond, N. Leone and G. Pfeifer (eds.), Logic Programming and Nonmono-
tonic Reasoning: Proc. of 5th International Conference, LPNMR’99, LNAI 1730, Springer-Verlag,
1999: 107–116.



40 S. Costantini

Lifschitz, V. and Turner, H., 1994. Splitting a logic program, In: Proceedings of the Eleventh
International Conference on Logic Programming, The MIT Press, Cambridge, MA, 1994: 23-37.

Faber W., Leone N. and Pfeifer G., 1999. Pushing Goal Derivation in DLP Computations, In: M.
Gelfond, N. Leone and G. Pfeifer (eds.), Logic Programming and Nonmonotonic Reasoning: Proc.
of 5th International Conference, LPNMR’99, LNAI 1730, Springer-Verlag, 1999: 117–191.

Fages, F., 1990. Consistency of Clark’s completion and existence of stable models. Technical Report
90-15, Ecole Normale Superieure, 1990.

Fages, F., 1994. Consistency of Clark’s Completion and Existence of Stable Models, Methods of
Logic in Computer Science, 1, 1994: 51-60.

Fitting, M. 1985. A Kreepke-Kleene Semantics Logic Programs, In: Journal of Logic Programming,2
(4): 295–312.

Gelfond, M. and Lifschitz, V., 1988. The Stable Model Semantics for Logic Programming, In: R.
Kowalski and K. Bowen (eds.) Logic Programming: Proc. of 5th International Conference and
Symposium: 1070–1080.

Gelfond, M. and Lifschitz, V., 1991. Classical Negation in Logic Programming and Disjunctive
Databases, New Generation Computing 9, 1991: 365–385.

Konczak, K., Schaub, T., and Linke, T., 2003. Graphs and colorings for answer set programming:
Abridged report In: M. De Vos and A. Provetti (eds.), Answer Set Programming: Advances in
Theory and Implementation, ASP03. Volume 78 of The CEUR Workshop Proceedings Series.
http://eur-ws.org/Vol-78/.

Konczak, K., Schaub, T., and Linke, T., 2003. Graphs and colorings for answer set programming
with preferences: Preliminary report In: M. De Vos and A. Provetti (eds.), Answer Set Program-
ming: Advances in Theory and Implementation, ASP03. Volume 78 of The CEUR Workshop
Proceedings Series. http://eur-ws.org/Vol-78/.

Liberatore P., 1999. Algorithms and Experiments on Finding Minimal Models. Technical Report,
University of Rome “La Sapienza”.

Lifschitz V., 1999. Answer Set Planning. in: D. De Schreye (ed.) Proc. of the 1999 International
Conference on Logic Programming (invited talk), The MIT Press: 23–37.

Linke, T., 2001. Graph Theoretical Characterization and Computation of Answer Sets, In: Proceed-
ings of IJCAI 2001.

Linke, T., 2003. Using nested logic programs for answer set programming In: M. De Vos and
A. Provetti (eds.), Answer Set Programming: Advances in Theory and Implementation, ASP03.
Volume 78 of The CEUR Workshop Proceedings Series. http://eur-ws.org/Vol-78/.

Linke, T., 2003. Suitable graphs for answer set programming In: M. De Vos and A. Provetti (eds.),
Answer Set Programming: Advances in Theory and Implementation, ASP03. Volume 78 of The
CEUR Workshop Proceedings Series. http://eur-ws.org/Vol-78/.

Marek, W., and Truszczyński, M., 1999. Stable Models and an Alternative Logic Programming
Paradigm, In: The Logic Programming Paradigm: a 25-Year Perspective, Springer-Verlag: 375–
398.

Niemelä, I. 1999. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm, Annals of Mathematics and Artificial Intelligence, 1999.

Przymusinska, H., and Przymusinski, T. C., Semantic Issues in Deductive Databases and Logic
Programs. R.B. Banerji (ed.) Formal Techniques in Artificial Intelligence, a Sourcebook, Elsevier
Sc. Publ. B.V. (North Holland), 1990.

CCALC: http://www.cs.utexas.edu/users/mcain/cc
DeReS: http://www.cs.engr.uky.edu/ lpnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
SMODELS: http://www.tcs.hut.fi/Software/smodels/



On the Existence of Stable Models of Non-stratified Logic Programs 41

H. Turner. Signed logic programs. In Proc. of the 1994 International Symposium on Logic Program-
ming, pages 61–75, 1994.

Van Gelder A., Ross K.A. and Schlipf J., 1990. The Well-Founded Semantics for General Logic
Programs, Journal of the ACM Vol. 38 N. 3.


