Disjunctive Logic Programs with Inheritance Revisited
(A Preliminary Report)

Stefania Costantihi Ranbn P. Oterd Alessandro Provefti Tran C. SoA

! Universita degli Studi di LAquila
Dipartimento d’'Informatica
Via Vetoio, Loc. Coppito, I-67100 L'Aquila - Italy
stefcost@univagq.it

2 University of Corunna
Al Lab Dep. da Computacion
E-15071 Corunna, Galicia, Spain
otero@dc.fi.udc.es

3 Universita degli Studi di Messina
Dip. di Fisica
Salita Sperone 31, 1-98166 Messina - Italy
ale@unime.it

4 Department of Computer Science
New Mexico State University
PO Box 30001, MSC CS
Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

Abstract. We argue for a semantical modification of the language DL®/e
show by examples that the current DERepresentation in some cases does not
provide intuitive answers, in particular when applied to inheritance reasoning.
We present and discuss an initial modification of DLfhat yields the expected
answers in some examples that we consider significant

1 Introduction

The disjunctive logic program language DERvas introduced in [1] for knowledge
representation and non-monotonic reasoning. It has been advocated that inheritance
reasoning (see e.g. [2, 4]) can be dealt with under the DitBmework. Using DLF,
an inheritance network could be represented by a DpPogram and the answer set
semantics of this program specifies the entailment relation of the original network. We
demonstrate this by means of an example, written in the Diyhtax (precise defini-
tions are in the next section). Consider a taxonomy of animals with their locomotion
properties such asalks, swims, flies, or creeps. This can be described by the fol-
lowing DLP< rules:

animal{ walks(A) V swims(A) V flies(A) V creeps(A) « is_a(A, animal).

blood_circulation(A) «— is_.a(A, animal).}

is_a(pingu, animal).
According to the DLF semantics, this program has four answer sets [3], in each one
pinguhas exactly one locomotion method.

Let us consider a subclassaiimal saybird, specified by the following rules:

bird : animal{swims(B) V flies(B) V creeps(B) «— is.a(B,bird).}

is_a(pingu, bird).

Intuitively, the rule describing birds locomotion is more specific than that describing
animal locomotion. Thus, the combined theory should have only three answer sets,
wherepingueither swims or flies or creeps, exclusively. On the other hand, in all three
answer sets we havéood_circulation(pingu). The DLP< semantics also yields this
conclusion.

In this paper, we propose several semantically modifications for<Dttfat en-
hances its usability in inheritance reasoning. In this paper, however, we argue that, for
improving the usability of the language, some generalizations should be made, and
some unwanted behavior avoided. In particular, we propose some semantic modifica-
tions for DLP< that enhance its usability in inheritance reasoning. The proposed modi-
fications are motivated and illustrated by means of examples. We will begin with a short
overview of DLP<. Afterward, we discuss the weakness of DL knowledge repre-
sentation, especially in inheritance reasoning, and discuss our initial proposal semantic
fix for DLP<.

2 Syntax and Semantics of DLF-

In this section we review the basic definitions of DLIPL]. Let us assume a s#t of
variables,a setiT of predicatesa set/ of constantsand a finite partially ordered set
of symbols(O, <), whereQ is a set of strings, callesbject identifiersand< is a strict
partial order (i.e., the relation is irreflexive and transitive).

The definitions ofterm, atom and literal are the standard ones, where function
symbols are not considered, ands the stronghegationsymbol. A term, atom, literal,
rule, or program igroundif no variable appears in it. Two literals acemplementary
iff they are of the formp and—p, for some atonp. Given a literalL, — - L denote$ the
opposite literal. For a set of literals,— - £ denotes the s€t~- L| L € L}.

A rule r is an expression of the form:

a1 V...Vap < bi,...,bg, not by11,..., not by,
where ay ...a,,b1,...,b, are literals, andnot is the negation as failuresym-
bol. The disjunctiona; VvV ... V a, is the head of r, while the conjunction
b1,...,bg, mot bgy1,..., not b, is thebody by, ..., b, is called thepositivepart
of the body ofr, and not by41,..., not b, is called theNAF (negationasfailure)
part of the body of. We often denote the sets of literals appearing in the head, in the
body, in the positive part of the body, and in tNAF part of the body of a rule by
Head(r), Body(r) Body(r), andBody (r), respectively.

Let anobjecto be a pair{oid(o), X (o)) whereoid(o) is an object identifier irO
and X (o) is a (possibly empty) set of rules associated to it.

A knowledge basen O is a set of objects, one for each elementhfGiven a
knowledge bas& and an object identifies € O, the DLP< program foro on K is the
set of objects

P={(,2()eK|o=00oro<o}
The relation< induces a partial order dR in the standard way.

! Elsewhere the contrary literal is denoted

Informally, a knowledge base can be viewed as a sebfdctsembedding the def-
inition of their properties specified through disjunctive logic rules, organizedsrea
(inheritance) hierarchy (induced ky). A program’P for an objecto on a knowledge
basel consists of the subset &f reachable fronv in theis_a-net.

Thanks to the inheritance mechaniskincorporates the knowledge explicitly de-
fined foro plus the knowledge inherited from the higher objects. If a knowledge base
admits ebottomelement (i.e., an object less than all the other objects, by the refdtion
we call it aprogram,since it is equal to the program for the bottom element. In order
to represent the membership of a pair of objects (resp., object identifigrs)) to the
transitive reduction ok the notatioro, : o; is used, to signify thab, is asub-object
of o7.

2.1 The semantics of DLF<

Assume that a knowledge baksds given and an objed has been fixed. L&P be the
DLP< program foro on K. TheUniverseUp of P is the set of all constants appearing
in the rules. TheBaseBp of P is the set of all possible ground literals that can be
constructed from the predicates appearing in the rul§3 afid the constants occurring
in Up. Note that, unlike in traditional logic programming the baBe of a DLP<
program contains both positive and negative literals. Given arrolecurring inP, a
ground instanceof r is a rule obtained from by replacing every variabl& in r by
o(r) whereo is a mapping from the variables occurringrinio the constants ifVp.
ground(P) denotes the (finite) multi-set of all instances of the rules occurrirfg in

A function obj_of is defined, from ground instance of rulesground(P) onto the
setO of the object identifiers, associating with a ground instanoé r the (unique)
object ofr.

A subset of ground literals iBp is said to beconsistentf it does not contain a pair
of complementary literals. AmterpretationZ is a consistent subset &f». Under an
interpretatioriZ C Bp, a ground literaL is trueif L € Z, falseotherwise.

Given a ruler in ground(P), the head of is truein Z if at least one literal of the
head is true w.rT. The body ofr is true inZ if:

(i) every literal inBody* (r) is true w.r.t.Z, and
(ii) every literal inBody (r) is false v.r.tZ.

Ruler is satisfiedin Z if either the head of is true inZ or the body ofr is not true
inZ.

The semantics of overriding.To deal with explicit contradictions, the following defi-
nitions — taken from [1] — are needed.

Definition 1. Given two ground rules; andry, we will say thatr; threatensr; on
literal Lif1. L € Head(r1),2.— - L € Head(rz), and 3. objof(r,) < obj_of(rs).

Equivalently, one can say that andr, are conflicting or’. (orr; andry are in conflict
onL).

Definition 2. Given an interpretatior¥ and two ground rules; andr, such thatr,
threatens, on literal L, we say that r overridesr, on L in Z if:
1.—-- L € T and 2. the body ofy is true inZ.

A rule r in ground(P) is overridden inZ if for each L in Head(r) there exists in
ground(P) such that-; overrides ron L inZ.

The notion of overriding takes care of conflicts arising between conflicting rules. For
instance, suppose that betland—a are derivable irf from rulesr andr’, respectively.
If r is more specific tham' in the inheritance hierarchy, theh is overridden. As a
result,a should be preferred toa because it is derivable from a rulewhich is more
specific and therefonmore descriptivef the object itself tham'.

Definition 3. Let Z be an interpretation forP. Z is a model forP if every rule in
ground(P) is either satisfied or overridden ih. Moreover.Z is a minimal model fofP
if no (proper) subset df is a model forP.

Definition 4. Given an interpretatior for P, the reduction ofP w.r.t. Z, denoted
G(Z,P) , is the set of rules obtained from grouf®)(by removing 1. every rule over-
ridden inZ; 2. every ruler such that Body(r) # 0); 3. the negative part from the
bodies of the remaining rules.

The reduction of a program is simply a set of ground rules. Given & séground
rules,pos(S) denotes the positive disjunctive program (called plositive version of
S), obtained fromS by renaming each negative literap(X) asp’(X).

Definition 5. Let .M be a model fofP. We say thaiM is a DLP< answer set fofP if it
is a minimal model of the positive versipns(G(M, P)) of pos(G(M,P)). Clearly,
M is inconsistent if it contains both(X') asp’(X).

3 Knowledge Representation with DLP<

In [1] it has been argued that DEPis a suitable knowledge representation language

for default reasoning with exceptions. The usefulness of Dl different tasks in
knowledge representation and non-monotonic reasoning has been demonstrated by the
encoding of classical examples of non-monotonic reasoning. The most interesting fea-
ture of DLP<, as advocated in [1], is the addition of inheritance into the modeling

of knowledge. For example, the famous Bird-Penguin example can be represented in
DLP< without the conventionabnormality predicates follows.

Example 1.Consider the following prograr® with O(P) consisting of three objects
bird, penguinandtweety,such thapenguinis a sub-object obird andtweetyis a sub-
object ofpenguin:

bird{ flies} penguin : bird{—flies} tweety : penguin{}
The only model of the above DIPprogram contains flies.

Unlike in traditional logic programming, the DIEPlanguage supports two types of
negation, that istrong negatiorand negation as failureStrong negation is useful to
express negative pieces of information under the complete information assumption.
Hence, a negative fact (by strong negation) is true only if it is explicitly derived from
the rules of the program. As a consequence, the head of rules may contain also such
negative literals, and rules can be conflicting on some literals. According to the in-
heritance principles, the ordering relationship between objects can help us to assign
different levels of acceptance to the rules, allowing us to avoid the contradiction that
would otherwise arise.

3.1 Default inheritance in DLP<

As pointed out in [1], the syntax and semantics of DL&low us to capture forms of
non-monotonic reasoning and knowledge representation, including inertis-ats
in a rather straightforward way.

For improving its usability however, we believe that some generalization should
be made, and some unwanted behavior avoided. The modifications that we propose to
DLP< are illustrated by means of the following examples.

Consider again the knowledge base that defines animals and their possible ways
of motion. For birds, the possible ways of locomotion must be defined, which consti-
tute a subset of general ones. Following Buccafurri et al., [1] we define the following
knowledge base:

animal {l1 : walk V swim VrunV fly — }
P = .) ;
bird : animal { —swim — —run «— }

The two DLP° models of this program are{-swim,-run,walk} and
{—=swim, —run, fly} which implies that a bird either walks or flies but does not
swim and does not run. That is, in order to represent the fact that birds swim or fly, it
is necessary to state what birdis notdo, with respect to the general disjunctive rules.
Cases that are left, define implicitly what birds are allowed to do, i.e. walk or fly (or
maybe both).

We submit that an improvement is needed here, since:

— in many practical cases it is far more concise to list what the features of the object
at handare, rather than what they are not;

— a detailed knowledge of ancestor object definition should not be required;

— unwanted behavior arises if one formalizes the example in the intuitive way, as
shown by the first example below, and

— unwanted behavior arises in case of multiple inheritance, as illustrated by the sec-
ond example below.

To illustrate our point, let us consider the direct, intuitive encoding:

P animal {li r walk V swim VrunV fly — }
27 bird : animal {lz : walk \V fly — }

the latter formulation may appear conceptually equivalent to the former one, and one
would expect the semantics to be the same, which is not the case though. Under the
DLP< semantics,P; has two model§walk} and {fly} which indicate that a bird
either walks or flies. Notice that these two models can be obtained from the two models
of P; by removing the negative literals from them. We believe that given the hierarchical
property of objects one would prefé over P; for its intuitiveness and that it conforms
to the downward refinement technique one uses in software engineering. After all, we
are still able to conclude that a bird walks or fly, which is also the intuitive answer.

What happens if we follow the downward refinement technique in describing pen-
guins?Consider the addition of the following, more specific, definitions:

penguin : bird { -—fly «— . —walk — wounded. —walk < newborn }
pimpi : penguin { newborn «— }
pingu : penguin { }

Considelpingu, a penguin, who is neither newborn nor wounded. Framk Vv fly
in bird and—fly in penguin we concludevalk, which also satisfies . In this case, we
say that ruld; is de facto overridderby I,. Thus, forpingu DLP< concludes that it
walk and—fly, which is what we expected.

The fact that ruld, cannot overridd; (Definition 2) since they are not in conflict,
gives rise to some unwanted consequences, which we now discuss.

Consider the penguipimpi who is a newborn. From the rule penguin we can
conclude thapimpi does not walk and does not fly, i.exwalk and—fly. Thus, rule
l> is overridden by the rules ipenguin Rule; will not be overridden because there
exists no conflicting rule witth; on every literalL € head(l1) \ head(l2), which are
required to overridé; (Definition 2). This means that we will have answer sets where
pimpi runs or swims. Even though the semantics of BDLWould entail~walk and
= fly for pimpi, the existence of answer sets in whigimpi runs or swims seems not
reasonable in this situation.

As a result, we believe that in this example rideshould overridd;. In general,
disjunctive rules should override those rules in ancestors of which they are a special
case Moreover, when describing specializations, new knowledge may be added, which
is not present in the ancestor. l.e., ridecould for instance be:

walk V fly V run
assuming thatun is not included in;. Still, we think that/; should be overridden.

4 A semantics fix for default inheritance

The counter-intuitive results seen for the newborn penguin example above, can be
avoided by slight changes in the semantics of overriding. What is being enforced by the
new definition of overriding presented here is the fact #pcificity should never be
context-independentather, it should always be evaluated w.r.t. interpretations. Some
new definitions are in order now.

Definition 6. A ground ruler; is a specialization of rulery if 1. obj_of(r;) <
obj_of(r2), 2. Head(r1) N Head(rs) # 0, and 3.Body(r1) C Body(rs).

It is easy to see that if;, I is a specialization of; .

Definition 7. For an interpretationZ, and two conflicting ground rules;, ry in
ground(P) such thatl, € Head(rz) (and /.L € Head(r1l)) we say thatr; over-
ridesry on L in Z if: 1. obj_of(r1) < obj_of(r2), 2.—~ - L € Z, and 3. the body ofs is
trueinZ.

The definition below is a stricter version of the original definition of overriding pre-
sented earlier on. The second condition is new and disallows the newborn penguin
counterexample.

Definition 8. Arule rin ground) is overridden iriZ if one of the following conditions
holds:

(i) either for eachL € Head(r) there exists:; in ground(P) such that-; overrides r
onLinZ;
(i) or, there exists a specializatiori of r andr’ is overridden irnZ.

Going back tgpimpi's example, we see that rulgis overridden according to con-
dition (i) but under the new definition, algpis becausé, is a specialization of; and
I is overridden (Condition (ii)). Therefore, the new definition ensuresabatriding a
rule in an object implies overriding all its less specific ancestbiamely, sinceimpi
does not fly nor walks (which is what birds usually do), it won't any more be supposed
to perform any less specific form of locomotion (run, swim, etc.). The general conclu-
sion we draw from this example and discussion is that whenever we have two rules
whose relation is similar to that éf andl, above, which was called de facto overrid-
ing, we should make sure that overridinglgfalso causes overriding &f. Hence, no
redundant answer set should be generated.

4.1 Multiple inheritance

The knowledge representation style required by BL&s it is now, may yield
some unwanted behavior when multiple inheritance and updates are used. This sec-
tion provides another example of how weak DLRs in this task. Consider the
knowledge base of objects with their color and shapes with the following?rules
colored_object

{color(X,red) V color(X, yellow) V color(X, green) V color(X, blue) «— object(X)}
shaped_object

shape(X, cube) V shape(X, sphere) V shape(X, cone) «— object(X)
volume(X, V') « object(X), shape(X, S), formula(X,S,V).
formula(X, cube, V) «— edge(X,L),V =L x Lx L
formula(X, sphere, V) «— radius(X,R),V = (4 x L x L x L x IT)/3
formula(X, cone, V) «— radius(X, R), height(X,H),V = (H x Rx R x II)/3
}
colored_cube : colored_object, shaped_object
{object(c1). shape(ci,cube). edge(ci,4).}
green_object : colored_object {color(X, green)}
red_object : colored_object {color(X,red)}

At the top of this knowledge base, objects are defined in terms of their color, and the
definition of objects in terms of their shape. The shape of an object allows one to com-
pute its volume, by applying the appropriate formula. Then, as a particular case there is
a cube, denoted ag, defined in terms of its shape. In our view, as discussed above, the
specificationshape(cy, cube) should override the general disjunctive definition, while
the color is still one of those defined in the parent object. In this case, the object inherits
from parent objects both the (disjunctive) specification of the possible colors it might
assume, and the way of computing the volume.

Now, let us consider defining objects in terms of their color. The disjunctive
specification of color should no longer be applicable, while the various choices about
shape, and the corresponding formulas for computing the volume, are inherited.
However, in DLP* as it is now, this example should be defined as follows:

green_object:colored_object{—color(X,red)«— —color(X,yellow)— —color(X,blue)—}
red_object : colored_object{—color(X, green)— —color(X,yellow)— —color(X,blue)«—}

2 For the easy of reading, we use the formulas for computing the volume instead of representing
them in LP’s notation.

Not only is this definition longer and less readable, but it also yields counter
intuitive results when augmented for instance by the following definition:

redgreen_radius_object : green_object, red_object, shaped_object
{object(s1) «— shape(s1, sphere) «— radius(si,3) «—
object(p1) — shape(p1, cone) — radius(p1,2) «— height(p1,3) <}

Here, there is an object (calle@dgreen_radius_object) specifying instances of
spheres (namely,) and cones (namely;) which are either red or green. In our view,
the inheritance should lead to create, in this object, the disjunctive rule

color(X,red) V color(X, green).

In fact, inheriting the same attribute by multiple sources, means that the attribute may
have multiple values (provided they are not mutually inconsistent).

In DLP< as it is,redgreen_radius_object inherits all definitions from its parent
objects, i.e.:
{—color(X,red) «— —color(X,yellow) «— —color(X,blue) — —color(X, green) «—}
With respect to their union, the general disjunctive rule is completely overridden, and
thereforeredgreen_radius_object turns out to haveo color.

In the next section, we propose a semantic fix for this problem. We will show that
a knowledge base written in this more general and concise form can be transformed
into a DLP< knowledge base, so as to reuse the semantics and the implementation. The
difference is in the easier, more intuitive style for the programmer. Consistency and
adequacy of the resulting DEPknowledge base are guaranteed by the system.

4.2 Addressing multiple inheritance

In what follows we propose a strengthening of DL#hat allows us to deal with multi-
ple inheritance. We first define a concept cabdaling rulesas follows.

Definition 9. Two ground rules-, r, are siblings if:

1. objof(r;) £ obj_of(ry) and objof(r;) £ obj_of(r;),
2. ry andry are both the specialization of another ruleand
3. Body(r1) = Body(ra).

Intuitively, two rules are siblings if they describe the properties of two (possibly dis-
joint) sub-classes of an object.

Definition 10. Given programP, the corresponding enhanced progrd is defined
as follows. Given objects, 01, 02, 0; = (0id(0;), X (0;)) whereo < o; ando < o9
ando; £ oy and rulesry € X(o1), 1o € X(02) are siblings, add taP the rule:
Head(r) V Head(r) < Body(r1) (where, by definitionBody(r1) = Body(rs3))

In the above example, we would addéalgreenradius objectthe rulecolor (X, red)V
color(X, green) by merging the sibling rulesolor(X,red)and color(X,green)(each
one with empty body) as we wanted to do. Notice that an interpretatioh fealso an
interpretation forP’, since no new atoms are added. Then, a modePfizrobtained as
a model of the enhanced versigh.

Definition 11. LetZ be an interpretation fofP’. Z is a model forP if every rule in
ground(P’) is satisfied or overridden iff. Z is a minimal model fofP if no (proper)
subset off is a model forP.

Accordingly, we have to considé?’ instead ofP when performing the reduction.

Definition 12. Given an interpretatior? for P, the reduction ofP w.r.t. Z, denoted
G(Z,P) , is the set of rules obtained from grou} by removing 1. every rule over-
ridden inZ; 2. every ruler such that Body(r) # 0; 3. the negative part from the
bodies of the remaining rules.

5 Conclusions

In this paper we argued, mainly by examples, that to become a viable knowledge repre-
sentation language that combines the expressiveness of disjunctive logic programming
and the convenience of inheritance, DLReeds improvements. We showed that over-
riding in DLP< is too weak to accommodate a straightforward encoding of classical
examples of non-monotonic reasoning. The same is true for the treatment of multiple
inheritance. We proposed the strengthening of BIFy modifying the notion of over-

riding and introducing the concept of specialization. To deal with multiple inheritance,
we defined the concept of siblings and enhanced programs. The new semantics pro-
vides the correct answers in the discussed examples, but we need more work on the
actual range of application of DLP.

References

1. Buccafurri F., Faber W. and Leone N., 199sjunctive Logic Programs with Inheritance.
Proc. of ICLP’99, pp. 79-93. Long version submitted for publication.

2. Dung P.M. and Son T.C., 1998lonmonotonic inheritance , argumentation, and logic pro-
gramming.In Proc. of the 3th Int’l Conference on Logic Programming and Non-Monotonic
Reasoning (LPNMR’95), pp. 316-329.

3. Gelfond, M. and Lifschitz, V., 1991 Classical Negation in Logic Programming and Dis-
junctive DatabasedNew Generation Computing 9, 1991: 365-385.

4. Horty J.F., 1994. Some direct theories of non-monotonic inheritance. In D. Gabbay, C. Hog-
ger, and J. Robinson, editotdandbook of Logic and Atrtificial Intelligence and Logic Pro-
gramming pages 111-187. Oxford Uni., 1994.

