A Logic Programming Language
for Multi-Agent Systems*

Stefania Costantini Arianna Tocchio

Universita degli Studi di L’Aquila
Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost, tocchio}@di.univaq.it

Abstract. This paper presents a new logic programming language for
modelling Agents and Multi-Agent systems in computational logic. The
basic objective of the specification of this new language has been the
identification and the formalization of what we consider to be the basic
patterns for reactivity, proactivity, internal “thinking”, and “memory”.
The formalization models these concepts by introducing different kinds
of events, with a suitable treatment. We introduce a novel approach to
the language semantics, called the evolutionary semantics.

1 Introduction

This paper presents a new logic programming language for modelling Agents and
Multi-Agent systems in computational logic. Traditional logic programming has
proved over time to be a good knowledge representation language for rational
agents. Logical agents may possibly interact with an external environment by
means of a suitably defined observe-think—act cycle. Significant attempts have
been made in the last decade to integrate rationality with reactivity and proac-
tivity in logic programming (see for instance [3], [20], [19], [13], [14] and [9] for a
discussion). In [10] we have called logic programming augmented with reactive
and proactive features “Active Logic Programming”.

DALI is an Active Logic Programming language, designed for executable
specification of logical agents, without committing to any specific agent archi-
tecture. DALI allows the programmer to define one or more agents, interacting
among themselves, with an external environment, or with a user.

The basic objective of the specification of this new language has been the
identification and the formalization of what we consider to be the basic patterns
for reactivity, proactivity, internal “thinking”, and “memory”. The formalization

* Research funded by MIUR, 40% project Aggregate- and number-reasoning for com-
puting: from decision algorithms to constraint programming with multisets, sets, and
maps. Many thanks to Stefano Gentile, who has joined the DALI project, has coop-
erated to the implementation of DALI, has designed the language web site, and has
helped and supported the authors in many ways.



models these concepts by introducing different kinds of events, with a suitable
treatment. We introduce in particular the classes of external, present, past and
internal events (Sections 3— 5). Events are represented by special atoms, and are
managed by special rules. A limited treatment of time is provided: events are
time-stamped, so as internal events are considered at specified intervals and past
events are kept or “forgotten” according to suitable conditions.

An important aim in the definition of DALI has been that of introducing in
a declarative fashion all the essential features, keeping the language as close as
possible to the syntax and semantics of the plain Horn—clause language. DALI
inference engine is based on an extended resolution (Section 6).

We have devised a novel approach to the language semantics, called the
evolutionary semantics (Section 7) In this approach, the semantics of a given
DALI program P is defined in terms of a modified program P,, where reactive
and proactive rules are reinterpreted in terms of standard Horn Clause rules.
The agent reception of an event is formalized as a program transformation step.
The evolutionary semantics consists of a sequence of logic programs, resulting
from this subsequent transformations, together with the sequence of the Least
Herbrand Model of these programs. Therefore, this makes it possible to reason
about the “state”of an agent, without introducing explicitly such a notion, and
to reason about the conclusions reached and the actions performed at a certain
stage.

The semantic approach we propose in this paper is orthogonal, rather than
competing, to the approach of Updating Logic Programs (ULP for short) [2] [12]
[1]. The common underlying assumption is that of representing state evolution
as program evolution. In ULP, program evolution is explicit (and can even be
controlled by means of the special-purpose meta-language LUPS) and has the
objective of incorporating knowledge changes. In DALI, program evolution is
implicit (the program code does not actually change) and is determined by the
events. Then, the two approaches do not collide, and might be profitably com-
bined. This is also true for the EPI language [15], which is an extension of LUPS
that takes into account external events. There are interesting relationships and
similarities between the EPI semantics and the DALI evolutionary semantics,
that might lead in the future to a useful integration.

The DALI language was first presented in [10]. Since then, the treatment
of events has been extended and refined, the declarative semantics has been
properly defined (after a first sketch given in the aforementioned paper), and
the language has been implemented. What is completely new in this paper is:
(i) the treatment of time, and of the relations among different classes of events;
(ii) the approach to belief revision through internal events; (iii) the evolutionary
semantics.

A prototype implementation of the DALI language has been developed in
Sicstus Prolog by the authors of this paper at the University of L’Aquila.
The implementation, together with a set of examples, is available at the URL
http://gentile.dm.univaq.it/dali/dali.htm.



2 Syntactic Features of DALI

A DALI program is syntactically very close to a traditional Horn-clause pro-
gram. In particular, a Prolog program is a special case of a DALI program.
Specific syntactic features have been introduced to cope with the agent-oriented
capabilities of the language.

DALI agents cope with events, that are represented as special atoms, called
event atoms. In order to emphasize event atoms, the corresponding predicates
are indicated by a particular postfix.

Let us consider an event incoming into the agent from its “external world”,
like for instance alarm_clock_rings. From the agent’s perspective, this event can
be seen in different ways.

Initially, the agent has perceived the event, but she still have not reacted to
it. She can however reason about the event (for instance thinking that it is a
nuisance to be waked up so early). In this situation, the event is called present
event, and is written alarm_clock_ringsN, postfix N standing for “now”.

Later on, the agent decides to react to this event (for instance in order to
switch the alarm off ) At this stage, the event is called exzternal event, and written
alarm_clock_ringsE, postfix E standing for “external”.

After reaction, the agent is able to remember the event. An event that has
happened in the past will be called past event, and written alarm_clock_ringsP,
postfix P standing for “past”.

A special feature of DALI is the concept of internal event. An internal event
is a conclusion reached by the agent, to which the agent may want to react, in
the sense of triggering further inference. For instance, food_is_finished may be
such a conclusion, since the agent may want to react and go to buy other food.

Whenever a conclusion is intended to trigger a proactive behavior, it will
be called internal event, and written food_is_finishedl, postfix I standing for
“internal”. The agent is able to remember internal events as well, and then they
will become past events.

Some atoms denote actions that the agent performs in order to achieve an
effect on its environment. To point out actions, each action atom like for instance
buy_food will be written buy_foodA, postfix A standing for “action”. If the agent
wants to remember to have previously performed this action, it will be kept in
the form buy_foodPA, postfix PA standing for “past action”.

All rules are in the form of Horn clauses, but reactive rules that have an event
in their head are syntactically emphasized. If the head of a rule is an event, then
the body of the rule represents the agent’s reaction to the event: i.e., the event
“determines” the reaction. In order to make it visually evident, the connective
“-” is replaced by “:>”, where “:>” reads “determines”.

Notice that the conceptual distinction between the different kinds of events
and the introduction of reactive rules are fundamental features of the DALI
language. Instead, the above-mentioned syntactic notation is syntactic sugar,
and therefore it just suits the particular taste of the authors of the paper.



3 External and Present Events, and Actions: Reactivity

The rule below is an example of a reactive rule in DALI, modelling a waiter in
a cafeteria shop, when a customer approaches.

customer_entersE :> say_good_morningA, offer_helpA.

Predicate customer_entersE denotes an external event, i.e. something that
happens in the “external world” in which the agent is situated.

To make it recognizable that rules with an external event in the conclusion
are reactive rules, the token “:-” has been replaced by “:>”. In the declarative
semantics however, as discussed in Section 7 this rule is treated as a plain Horn
clause. The subgoals in the body are in this case actions (discussed below),
recognizable by the postfix A. The body of a reactive rule can consist of any
mixture of actions and other subgoals, since a reaction to an event can involve
rational activity. Formally, we associate to agent Ag a set of distinct predicates

PEag ={pE\,...,pEs}, s>0

representing external events, to which the agent is able to respond. An atom
of the form pF;(Args) is called an event atom. The set of all the event atoms,
which is a subset of the Herbrand Universe, is called E 4.

Events are recorded in a set EV C E,44. As soon as an event happens, it
is inserted into E'V, that represents the “input channel” of the agent. In the
declarative semantics, EV is represented by a list, indicating the order in which
the agent consumes the events. An event is consumed whenever the correspond-
ing reactive rule is activated, in the usual resolution style: when the event atom
is unified with the head of a reactive rule with mgu 6, Body# is added to the
current goal, and the event atom is removed from EV. For each event atom
pE;(Args), Ag may possibly provide only one rule of the form:

pE;(Fargs):=>Rj1,...,Rjq. q>1

where pE;(Args) and pE;(F Args) are unifiable.

In the implementation, events are time-stamped, and the order in which they
are “consumed ”corresponds to the arrival order. The time-stamp can be useful
for introducing into the language some (limited) possibility of reasoning about
time. It is for instance possible to write the following rule:

customer_entersE: T :> lunchtime(T), offer_appetizersA.
It is also possible to have a conjunction of events in the head of a reactive
rule, like in the following example.
raink, windE > close_windowA.
In order to trigger the reactive rule, all the events in the head must happen

within a certain amount of time. The length of the interval can be set by a
directive, and is checked on the time stamps.

An important feature of DALI is that each event atom in E'V is also available
to the agent as a present event (indicated with postfix N, for “Now”) and can
occur as a subgoal in the body of rules.



The introduction of present events establishes a distinction between reasoning
about events and reacting to events. In the following example, the bell at the
door is ringing, and the reaction is that of going to open the door. Before the
reaction however, the event is perceived as a present event, allowing the agent
to draw the conclusion that a visitor has arrived.

visitor_arrived - bell_ringsN.

bell_ringsE :> open_doorA.

Notice that the action subgoals previously seen in the above examples do
not occur in the head of any rule. In DALI, these action atoms represent actions
without preconditions, and always succeed. If however the action cannot properly
affect the environment, the interpreter might generate a “failure event”, to be
managed by a suitable rule. For actions with preconditions, action atoms are
defined by action rules. In the example below, the agent emits an order for a
product P of which she needs a supply. The order can be done either by phone
or by fax, in the latter case if a fax machine is available.

need_supplyE(P) :> emit_oder(P).
emit_oder(P) :- phone_orderA.
emit_oder(P) :- faz_orderA.

faz_orderA :- far_machine_available.

Action subgoals always succeed also for actions with precondi-
tions, since the implementation automatically adds a rule of the form:
ActionA :- emit_error_message so as to cope with potential failures.

External events and actions are used also for expressing communication acts.
An external event can be a message from another agent, and, symmetrically, an
action can consist in sending a message. In fact, current techniques for developing
the semantics of Agent Communication Languages trace their origin in speech
act theory (see [27] and the references therein), and in the interpretation of
speech acts as rational actions [6] [7].

We do not commit to any particular agent communication language, but we
attach to each event atom the indication of the agent that has originated the
event For events like rainsE there will be the default indication environment.
Then, an event atom can be more precisely seen as a triple:

Sender : Fvent_Atom : Timestamp

The Sender and Timestamp fields can be omitted whenever not needed.

4 Past Events: Memory

A DALI agent keeps track of the events that have happened in the past, and of
the actions that she has performed. As soon as an event is removed from EV
(and then the corresponding reactive rule is triggered), and whenever an action
subgoal succeeds (and then the action is performed), the corresponding atom is
recorded in the agent database. Past events are indicated by the postfix PFE,
and past actions by the postfix PA.



Past events are recorded in the form: Sender : Event_Atom : Timestamp
and past actions in the form: Action_Atom : Timestamp. The following rule for
instance says that Susan is arriving, since we know her to have left home.

is_arriving(susan) :- left_homePE(susan).

The following example illustrates how to exploit past actions. In particular,
the action of opening (resp. closing) a window can be performed only if the
window is closed (resp. open). The window is closed if the agent remembers to
have closed it previously. The window is open if the agent remembers to have
opened it previously.

sunny-weatherE :> open_the_windowA.

rainy-weatherE :> close_the_windowA.
open_the_windowA :- window_is_closed.

window_is_closed :- close_the_windowPA.
close_the_windowA :- window_is_open.

window_is_open :- open_the_windowPA.

It is important that an agent is able to remember, but it is also important to
be able to forget. In fact, an agent cannot keep track of every event and action
for an unlimited period of time. Moreover, sometimes subsequent events/actions
can make former ones no more valid. In the previous example, the agent will
remember to have opened the window. However, as soon as she closes the win-
dow this record becomes no longer valid and should be removed: the agent in
this case is interested to remember only the last action of the sequence. In the
implementation, past events and actions are kept for a certain default amount
of time, that can be modified by the user through a suitable directive. Also, the
user can express the conditions exemplified below:

keep shop_openPE until 19:30.

The information that the shop is open expires at closing time, and at that
time it will be removed. Alternatively, one can specify the terminating condition.
As soon as the condition is fulfilled (i.e. the corresponding subgoal is proved)
the event is removed.

keep shop_openPE until shop_closed.

keep open_the_windowPA wuntil close_the_windowA.

In particular cases, an event should never be dropped from the knowledge
base, as specified below:

keep born(daniele)PE : 27/Aug/1993 forever.

5 Internal Events: Proactivity

A DALI agent is now able to cope with external events, and to reason about the
past and the present. We want now to equip the agent with a sort of “conscious-
ness”, so as to determine an independent proactive behavior. The language does
not commit to a fixed infrastructure: rather, it provides a mechanism that a user
can program according to the application at hand.



The mechanism is that of the internal events. To the best of our knowledge,
this mechanism is an absolute novelty in the context of agent languages. Any
subgoal occurring in the head of a rule can play the role of an internal event,
provided that it also occurs in the head of a reactive rule, with postfix I. Consider
the following example, where the agent goes to buy food as soon as it is finished.
The conclusion finished(Food) is interpreted as an event. The internal event is
treated exactly like the external ones, i.e. can trigger a reactive rule.

finished(Food) :- eaten(Food).
finishedI(Food) :> go_to_buyA (Food, Where).
go-to_buyA (Food,bakery) :- bread_or_biscuit(Food).
go_to_buyA (Food,grocery_shop) :- dairy(Food).

Goals corresponding to internal events are automatically attempted from
time to time, so as to trigger the reaction as soon as they succeed. The imple-
mentation provides a default timing, and also gives the possibility of explicitly
stating the timing by means of directives.

The format of this directive is:
try Goal [Time_Interval] [Frequency] [until Condition]

Below in an example of a goal that should be tried often.

too_high(Temperature) :- threshold(Th), Temperature > Th.
too_high(Temperature)I :> start_emergencyA, alert_operatorA.

Like external events, internal events are recorded as past events, and are
kept according to user indication. Internal events can be also used for triggering
belief revision activities, so as to take past events into consideration, and decide
whether to take them, cancel them, or incorporate them as knowledge of the
agent. A declarative approach to belief revision based on meta-knowledge about
the information, that in our opinion might be well integrated in DALI is that
of [4], [5]. However, presently we do not commit to any specific belief revision
strategy. We are planning to provide a distinguished predicate ¢ncorporate that
might be either explicitly invoked, or, optionally, treated as an internal event.
The user should be in charge of providing a suitable definition for this predicate,
according to her own favorite approach to belief revision. When attempted, in-
corporate might return lists of facts or rules to be either added or removed by
the DALI interpreter.

6 Procedural Semantics

Procedural semantics of DALI consists of an extension to SLD-resolution. DALI
resolution is described in detail in [10]. Its basic features are summarized below.

We assume to associate the following sets to the goal which is being processed
by a DALI interpreter: (i) the set EV C Ej4,4 of the external events that are
available to the agent (stimuli to which the agent can possibly respond); (ii)
the set IV C I44 of subgoals corresponding to internal events which have been



proved up to now (internal stimuli to which the agent can possibly respond);
(iil) the set PV C E Py, of past events (both internal and external); (iv) the set
EVT of goals corresponding to internal events, to be tried from time to time.

A goal in DALI is a disjunction G';G?;...;G™ of component goals. Every
G* is a goal as usually defined in the Horn—clause language, i.e. a conjunction.
The meaning is that the computation fails only if all disjuncts fail.

The procedural behavior of a DALI agent consists of the interleaving of the
following steps. (i) Trying to answer a user’s query like in plain Horn—clause
language. (ii) Responding to either external or internal events. This means, the
interpreter picks up either an external event from EV or an internal event form
IV, and adds this event G*¥ as a new query, i.e. as a new disjunct in the present
goal. Thus, goal G'; G2;...;G" becomes G'; G?;...;G™; G*’, and G is inserted
into PV. (iii) Trying to prove a goal corresponding to an internal event. the
interpreter picks up an atom from EVT, and adds this atom G°*! as a new query,
i.e. as a new disjunct in the present goal. Thus, goal G';G?;...;G™ becomes
GY; G? ... G G,

The interleaving among these activities is specified in the basic cycle of the
interpreter. As mentioned before, the user can influence the behavior of the
interpreter by means of suitable directives included in an initialization file.

7 Evolutionary Semantics

We define the semantics of a given DALI program P starting from the stan-
dard declarative semantics (Least Herbrand Model ') of a modified program P,
obtained from P by means of syntactic transformations that specify how the
different classes of events are coped with. P is the basis for the evolutionary
semantics, that describes how the agent is affected by actual arrival of events.

For coping with external events, we have to specify that a reactive rule is
allowed to be applied only if the corresponding event has happened. We assume
that, as soon as an event has happened, it is recorded as a unit clause (this as-
sumption will be formally assessed later). Then, we reach our aim by adding, for
each event atom p(Args)E , the event atom itself in the body of its own reactive
rule. The meaning is that this rule can be applied by the immediate-consequence
operator only if p(Args)E is available as a fact. Precisely, we transform each
reactive rule for external events:

p(Args)E > Ri,...,R,.
into the standard rule:
p(Args)E - p(Args)E, Ri,...,Ry.

Similarly, we have to specify that the reactive rule corresponding to an in-
ternal event g(Args)I is allowed to be applied only if the subgoal ¢(Args) has
been proved. To this aim, we transform each reactive rule for internal events:

! The Least Herbrand Model is obtained as usual for the Horn-Clause language, i.e.,
by means of the immediate-consequence operator, iterated bottom-up.



q(Args)I > Ri,...,R,.
into the standard rule:
q(Args)I - q(Args),Ra,...,R,.

Now, we have to declaratively model actions, without or with an action rule.
Procedurally, an action A is performed by the agent as soon as A is executed as
a subgoal in a rule of the form

B - Dl,...,Dh,Al,...,Ak. th,k‘Zl
where the A;’s are actions and A € {Ay,..., A;}. Declaratively, whenever the
conditions Dy, ..., Dy of the above rule are true, the action atoms should become
true as well (given their preconditions, if any), so as the rule can be applied by
the immediate-consequence operator. To this aim, for every action atom A, with
action rule

A - Cp,...,Cq. s>1
we modify this rule into:

A - Dl,...,Dh,Cl,...,Cs.
If A has no defining clause, we instead add clause:

A - Dl,...,Dh.

We need to specify the agent evolution according to the events that happen.
We propose here an approach where the program P; is actually affected by the
events, by means of subsequent syntactic transformations. The declarative se-
mantics of agent program P at a certain stage then coincides with the declarative
semantics of the version of Ps at that stage.

Initially, many of the rules of P, are not applicable, since no external and
present events are available, and no past events are recorded. Later on, as soon
as external events arrive, the reactive behavior of the agent is put at work,
according to the order in which the events are received.

In order to obtain the evolutionary declarative semantics of P, as a first step
we explicitly associate to Ps the list of the events that we assume to have arrived
up to a certain point, in the order in which they are supposed to have been
received. We let Py = (Ps, []) to indicate that initially no event has happened.

Later on, we have P, = (Prog,, Event_list,), where Event_list, is the list
of the n events that have happened, and Prog, is the current program, that
has been obtained from P, step by step by means of a transition function X. In
particular, X' specifies that, at the n-th step, the current external event F,, (the
first one in the event list) is added to the program as a fact. E,, is also added
as a present event. Instead, the previous event F,_ 1 is removed as an external
and present event, and is added as a past event.

Precisely, the program snapshot at step n is P, = X(P,_1, E,) where

Definition 1. The transition function X is defined as follows.
X(Py—1,Ey) = (Xp(Pn-1, Epn), [En|Event list,_1])
where



Xp(Po, E1) = Xp((Ps,[]), F1) = PsUEL U E1
2P(<P7’09n—17 [En—1|T]>7En) =
{{Pr()gn—l U En U EnN U En—lpE} \ En—lN} \ En—l

It is easy to extend Xp so as to remove the past events that have expired
according to the conditions specified in keep directives.

Definition 2. Let P, be a DALI program, and L = [E,,...,E1] be a list of
events. Let Py = (Ps,[]) and P, = X(P;_1, E;) (we say that event E; determines
the transition from P;_q to P;). The list P(Ps, L) = [Py, ..., Py,] is the program
evolution of P, with respect to L.

Notice that P; = (Prog;, [E;, ..., E1]), where Prog; is the program as it has
been transformed after the ith application of X

Definition 3. Let Ps be a DALI program, L be a list of events, and PL be the
program evolution of Ps with respect to L. Let M; be the Least Herbrand Model
of Prog;. Then, the sequence M(Ps,L) = [My, ..., M,] is the model evolution
of Ps with respect to L, and M; the instant model at step 7 .

The evolutionary semantics of an agent represents the history of the events
received by the agents, and of the effect they have produced on it, without
introducing a concept of a “state”.

Definition 4. Let P; be a DALI program, L be a list of events. The evolutionary
semantics Ep, of Ps with respect to L is the couple (P(Ps, L), M(Ps, L)).

It is easy to see that, given event list [F,, ..., F1], DALI resolution simulates
standard SLD-Resolution on Prog,,.

Theorem 1. Let P; be a DALI program, L = [E,, ..., E1] be a list of events and
P,, be the program snapshot at step n. DALI resolution is correct and complete
with respect of Py,.

The evolutionary semantics allows standard model checking techniques to
be employed for verifying several interesting properties. By reasoning on the
program evolution, it is possible for instance to know whether a certain event
will be at a certain stage in the memory of the agent. By reasoning on the model
evolution, it will be possible for instance to know whether a certain action A has
been performed at stage k, which means that A belongs to M.

The evolutionary semantics can be extended to DALI multi-agent programs,
by considering the evolutionary semantics of all agents involved. A requirement is
that the sequence of incoming events for each agent must be somehow specified.

8 Related Work and Concluding Remarks

The main objective in the design of DALI has been that of understanding
whether modelling agents in logic programming was possible, and to which ex-
tent. We wanted this new language to be as simple and easy to understand as



the Horn clause language: therefore, both syntax and semantics are very close
to the Horn clause language, and so is the procedural semantics. Experiments
in practical applications will tell to which extent such a simple language can
be satisfactory. Clearly, in order to develop real-world examples, DALI can be
equipped with an agent communication language, and with primitives for coordi-
nation and cooperation among agents. Moreover, past experience of the authors
in the field of meta-logic programming has suggested to use a meta-programming
approach for coping with important aspects such as the ontology problem, and
management of incomplete information. For lack of space we cannot further
comment on these aspects here: a preliminary discussion can be found in [9)].
However, the examples that the reader will find on the DALI web page show
that nice multi-agent applications can be obtained with the simple features of
DALL

Presently, DALI does not includes specific features for planning. Our view
is that the planning features should constitute a separate module that an agent
can invoke on specific goal(s), so as to obtain possible plans and choose among
them. In this direction, we mean to integrate an Answer Set Solver ([21] and
references therein) into the implementation.

DALI is meant to be a logic general-purpose programming language like Pro-
log, aimed at programming agents. DALI does not commit to any specific agent
architecture, and also, as mentioned above, does not commit to any planning for-
malism. Then, DALI does not directly compare (at least for the moment) with
approaches that combine logic and imperative features, and that are mainly
aimed at planning. Two important such approaches are ConGolog [11], which
is a multi-agent Prolog-like language with imperative features based on situa-
tion calculus, and 3APL [18], [17], which is rule-based, planning-oriented, and
has no concept of event. Also, a comparison with very extensive approaches for
Multi-Agent-Systems like IMPACT [26] is premature, since IMPACT is not just
a language, but proposes a complex agent architecture.

A purely logic language for agents is METATEM [16] [22], where different
agents are logic programs which are executed asinchronously, and communicate
via message-passing. METATEM has a concept of time, and what happened
in the past determines what the agent will do in the future. Differently from
DALI, METATEM agents are purely reactive, and there are no different classes
of events.

In the BDI (Belief-Desire-Intention) approach [25] [24], agents are systems
that are situated in a changing environment, receive perceptual input, and take
actions to affect their environment, based on their internal mental state. Im-
plementations of BDI agents are being used successfully in real application do-
mains. An experiment that we want to make is to use DALI as an implemen-
tation language for the BDI approach. This experiment follows the example of
AgentSpeak(L) [23], a purely reactive logic language with external events and
actions, meant to (indirectly) model BDI features in a simple way. The internal
state of an AgentSpeak agent constitutes its beliefs, the goals its desires, and
plans for achieving goals its intentions. External events are interpreted as goals,



which are pursued in some order (according to a selection function) by means
of plans (selected by another special function). A plan can include new goals
that, when encountered during the execution of the plan, become the highest
in priority, i.e. the first ones that will be attempted. These goals are called in-
ternal events. However, apart from the name, DALI internal events are aimed
at triggering proactive behavior, while AgentSpeak internal events are aimed at
refining plans.

In conclusion, we claim that some of the features of DALI are really novel in
the field: in particular, the different classes of events (especially the internal and
present events), their interaction, the interleaving of different activities, and the
use of past events and past actions.

References

1. J. J. Alferes, P. DellAcqua, E. Lamma, J. A. Leite, L. M. Pereira, and F. Riguzzi.
A logic based approach to multi-agent systems. ALP Newsletter, 14(3), August
2001.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. J. Logic Programming,
45(1):43-70, September/October 2000.

3. J. Barklund, K. Boberg, P. Dell’Acqua, and M. Veanes. Meta-programming with
theory systems. In K.R. Apt and F. Turini, editors, Meta-Logics and Logic Pro-
gramming, pages 195-224. The MIT Press, Cambridge, Mass., 1995.

4. G. Brewka. Declarative representation of revision strategies. In C. Baral and
M. Truszczynski, editors, NMR’2000, Proc. Of the 8th Intl. Workshop on Non-
Monotonic Reasoning, 2000.

5. G. Brewka and T Eiter. Prioritizing default logic. In Festschrift 60th Anniversary
of W. Bibel. Kluwer Academic Publishers, 2000.

6. P. R. Cohen and H. J. Levesque. Rational interaction as the basis for commu-
nication. In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in
Communication, pages 221-256. MIT Press, 1990.

7. P. R. Cohen and H. J. Levesque. Communicative actions for artificial agents. In
V. Lesser, editor, Proc. 1st Intl. Conf. on Multi-agent Systems, AAAI Press, pages
65-72. MIT Press, 1995.

8. S. Costantini. Meta-reasoning: a survey. In A. Kakas and F. Sadri, editors, Compu-
tational Logic: From Logic Programming into the Future: Special volume in honour
of Bob Kowalski (in print). Springer-Verlag, Berlin. invited paper.

9. S. Costantini. Meta-reasoning: a survey. In Computational Logic: From Logic Pro-
gramming into the Future —Special volume in honour of Bob Kowalski(to appear).
Springer-Verlag. invited paper.

10. S. Costantini. Towards active logic programming. In A. Brogi and P. Hill, ed-
itors, Proc. of 2nd International Workshop on Component-based Software De-
velopment in Computational Logic (COCL’99), PLI’99, Paris, France, Septem-
ber 1999. http://www.di.unipi.it/ brogi/ ResearchActivity/COCL99/ proceed-
ings/index.html.



11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. G. De Giacomo, Y. Lespérance, and Levesque. H. J. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence,
(121):109-169, 2000.

P. Dell’Acqua and L. M. Pereira. Updating agents. In Procs. of the ICLP99
Workshop on Multi-Agent Systems in Logic (MASL99), Las Cruces, New Mexico,
1999.

P. Dell’Acqua, F. Sadri, and F. Toni. Combining introspection and communication
with rationality and reactivity in agents. In J. Dix, F.L. Del Cerro, and U. Furbach,
editors, Logics in Artificial Intelligence, LNCS 1489, Berlin, 1998. Springer-Verlag.
P. Dell’Acqua, F. Sadri, and F. Toni. Communicating agents. In Proc. Interna-
tional Workshop on Multi-Agent Systems in Logic Programming, in conjunction
with ICLP’99, Las Cruces, New Mexico, 1999.

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Bernhard Nebel, editor, Proc. 17th
Intl. Joint Conf. on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA,
2001. Morgan Kaufmann. ISBN 1-55860-777-3.

M. Fisher. A survey of concurrent METATEM — the language and its applications.
In Proceedings of First International Conference on Temporal Logic (ICTL), LNCS
827, Berlin, 1994. Springer Verlag.

K. Hindriks, F. de Boer, W. van der Hoek, and J. J. Meyer. A formal architecture
for the 3apl programming language. In Proceedings of the First International
Conference of B and Z Users, Berlin, 2000. Springer Verlag.

K. V. Hindriks, F. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Agent pro-
gramming in 3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357-401,
1999.

R. A. Kowalski and F. Sadri. From logic programming to multi-agent systems. In
Annals of Mathematics and Artificial Intelligence. (to appear).

R. A. Kowalski and F. Sadri. Towards a unified agent architecture that combines
rationality with reactivity. In Proc. International Workshop on Logic in Databases,
LNCS 1154, Berlin, 1996. Springer-Verlag.

V. Lifschitz. Answer set planning. In D. De Schreye, editor, Proc. of ICLP ’99
Conference, pages 23-37, Cambridge, Ma, 1999. MIT Press. Invited talk.

M. Mulder, J. Treur, and M. Fisher. Agent modelling in concurrent METATEM
and DESIRE. In Intelligent Agents IV, LNAI, Berlin, 1998. Springer Verlag.

A. S. Rao. AgentSpeak(L): BDI Agents speak out in a logical computable lan-
guage. In W. Van De Velde and J. W. Perram, editors, Agents Breaking Away:
Proceedings of the Seventh Furopean Workshop on Modelling Autonomous Agents
in a Multi-Agent World, LNAI, pages 42-55, Berlin, 1996. Springer Verlag.

A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95), pages
312-319, San Francisco, CA, June 1995.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge Representation
and Reasoning (KRE&R-91), pages 473-484. Morgan Kaufmann Publishers: San
Mateo, CA, April 1991.

V.S. Subrahmanian, Piero Bonatti, Jiirgen Dix, Thomas Eiter, Sarit Kraus, Fatma
Ozcan, and Robert Ross. Heterogenous Active Agents. MIT-Press, 2000. 580 pages.
M. Wooldridge. Semantic issues in the verification of agent communication lan-
guages. Autonomous Agents and Multi-Agent Systems, 3(1):9-32, 2000.



