
Reflection Principles in Computational
Logic

JONAS BARKLUND, PIERANGELO DELL’ACQUA,Uppsala University,
Computing Science Department, Box 311, S-751 05 Uppsala, Sweden.
E-mail: jonas@csd.uu.se, pier@csd.uu.se

STEFANIA COSTANTINI,Department of Pure and Applied Mathematics,
University of L’Aquila, via Vetoio Loc. Coppito, I-67100 L’Aquila, Italy.
E-mail: stefcost@univaq.it

GAETANO A. LANZARONE, Center of Information Sciences, Faculty of
Sciences at Varese, Insubria University,
via Ravasi, 2 I-21100 Varese, Italy.
E-mail: lanzarone@mail.varbio.unimi.it

Abstract
We introduce the concept of reflection principle as a knowledge representation paradigm in a computational logic
setting. Reflection principles are expressed as certain kinds of logic schemata intended to capture the basic properties
of the domain knowledge to be modelled. Reflection is then used to instantiate these schemata to answer specific
queries about the domain. This differs from other approaches to reflection mainly in the following three ways. First,
it uses logical instead of procedural reflection. Second, it aims at a cognitively adequate declarative representation
of various forms of knowledge and reasoning, as opposed to reflection as a means for controlling computation or
deduction. Third, it facilitates the building of a complex theory by allowing a simpler theory to be enhanced by a
compact metatheory, contrary to the construction of metatheories that are only conservative extensions of the basic
theory. A computational logic system for embedding reflection principles, calledRCL(for Reflective Computational
Logic), is presented in full detail. The system is an extension of Horn clause resolution-based logic, and is devised
in a way that makes important features of reflection parametric as much as possible, so that they can be tailored
according to specific needs of different application domains. Declarative and procedural semantics of the logic are
described and correctness and completeness of reflection as logical inference are proved. Examples of reflection
principles for three different application areas are shown. Relationship with a variety of distinct sources within the
literature on relevant topics is discussed.

Keywords: Reflection, computational logic, knowledge represenation paradigms, logical frameworks, logic program-

ming.

1 Introduction

Reflective (or introspective, or self-referencing) systems have long been considered in many
branches of logic and computer science, and more recently in their intersection area named
computational logic or logic programming. Their importance and usefulness in logic [55, 56]
and in theorem proving [38], in computer science [30, 51, 60], and in logic programming [7,
40, 47] has been generally recognized (see also [1, 11, 13, 32, 57] for snapshots of research).

The common intuitive notion of reflection in such different areas is that of an access re-

J. Logic Computat., Vol. 10 No. 6, pp. 743–786 2000 c Oxford University Press

744 Reflection Principles in Computational Logic

lationship between theories or programs at the object level and theories or programs at the
metalevel. The object level is intended to represent knowledge about some domain, whereas
the metalevel is intended to represent knowledge about the object level itself.

Though this basic notion manifests itself in a variety of degrees, forms and purposes in the
work referenced above, in most cases the aim of the metalevel has been viewed as a guide
for the object level inference or computation, i.e. ‘for expressing “properties of control” in
the same way as “properties of the domain” ’ [62]. In this paper instead we take a different
view, as we are concerned with expressing the abstract features and properties of a problem
domain via (a general and powerful form of) reflection.

We present a logical system whose main objective is to allow its users to specify and
experiment with a variety of deductive systems, given through axioms and rules of inference.
The system is calledRCL, standing for ‘Reflective Computational Logic’.

The syntax of the language (of the deductive systems that can be specified inRCL) is based
on an enhanced Horn clause language, containing names for the expressions of the language
itself. This makes it possible to specify deductive systems able to perform metareasoning
and to represent knowledge and metaknowledge about a problem domain. The specification
process is accomplished through the following four steps.

Step I In RCL, the first step for specifying a deductive system (DS) is that of defining its
naming device (encoding). Encodings are formalized through equational theories (name
theories).RCLleaves significant freedom in the representation of names. Therefore, users
of RCLcan explicitly make (to some extent) their own decisions about critical issues such
as the representation of variables at the metalevel, or the choice of what syntactic entities
to represent at the metalevel.

Step II After having defined (whenever necessary) a suitable naming convention, the user of
RCL has to provide a corresponding unification algorithm that is able to handle names
and to relate names to what is named.

Step III The third step is to represent the axioms defining the deductive system,DS, under
consideration in the form of enhanced Horn clauses.

Step IV The last step for specifyingDS is to represent the inference procedure.

In RCL, the specification ofDSwith its inference rules isexecutable, i.e. it can be directly
used for deduction inDS. Moreover, the model-theoretic and fixed point semantics ofDSare
obtained as a side effect of the specification. Although reflection as a mean for extending
logical theories has long been studied in the literature, the interpretation given here to this
notion leads to a novel approach to defining and using new inference rules. In particular, the
user is required to express an inference ruleR as a functionR, called areflection principle,
from clauses, which constitute the antecedent of the rule, to sets of clauses, which constitute
the consequent. Then, given a theoryT consisting of a set of initial axiomsA (enhanced
Horn clauses) and of its deductive closure, and given a reflection principleR, a theoryT 0

containingT is obtained as the deductive closure ofA [A0, whereA0 is the set of additional
axioms generated byR. Consequently, the model-theoretic and fixed point semantics ofT
underR are obtained as the model-theoretic and fixed point semantics ofT 0. RCL, however,
does not generateT 0 in the first place. Rather, when queried aboutDS, RCL queries itself
to generate the specific additional axioms usable to answer the query, according to the given
reflection principles (i.e. according to the inference rules ofDS). In Section 2, after a review
of the relevant literature, we introduce the definition of reflection principle.

Reflection Principles in Computational Logic745

In order to exhibit this intended behaviour,RCL is built as a self-referential, reflective
system, procedurally based on an extended resolution principle that implements reflection.
TheRCLsystem that we present falls within the logic programming approach. In fact, it ex-
tends the language of Horn clauses with the kind of facilities mentioned above, and extends
the well-established semantics and proof theory of Horn clauses accordingly. We believe,
however, that the underlying ideas could find application also in in the context of other for-
malisms.

We intend to show that the proposed system is a practical, principled and powerful compu-
tational logic system.

The system ispractical in that it gives its users two flexible tools to construct their own
representation and deduction forms rather than providing specific ones.

For representation, as mentioned above, specific encoding and substitution facilities are
not predefined and built into the system; rather, the system allows them to be user-defined by
means of name theories, i.e. sets of equational axioms with associated rewrite systems. The
expressive power of encodings can therefore be traded against (computational and semantic)
properties enjoyed by the associated rewrite systems in a maximally flexible fashion, in order
to tailor the system to the application domain at hand. This is introduced and discussed in
Section 3.

Then, the integration of reflection principles into the declarative and procedural semantics
of Horn clause theories is discussed in Sections 4.1 and 4.2.

The system isprincipledbecause its semantics and proof theory are formally defined in a
way that is not a departure from classical Horn clause logic, as shown in Sections 4.1 and 4.2.
Results of soundness and completeness of the proof theory with respect to the model theory
are given in Section 5.

The system ispowerful in a twofold sense. First, it is usually easier to represent domain
knowledge by first considering an initial core theory and then reflectively extending it by
means of reflection principles, than to consider the whole theory all at once from the be-
ginning. Second, and perhaps more important, reflection principles are epistemologically
suitable for representing basic abstract properties of a problem domain, especially for some
complex domains and sophisticated application areas. We argue in favour of this view in
Section 6, where three domains are exemplified and treated as case studies.

The first deductive system that we define (Section 6.1) is a metalogic programming lan-
guage, Reflective Prolog, that provides: (i) names, (ii) the possibility of defining knowledge
on multiple levels, and (iii) the possibility of exchanging knowledge between levels by means
of a distinguished reflective predicate. Precisely, there is a certain predicatep in the language
such that, for a class of formulaef of the language itself, the formulapx(pfq)!f is true
(wherepfq denotes the encoding off , andpx denotes predicatep in the context of a substi-
tution facility to replace variablesx of f). p is called a reflective predicate, and is to be defined
as an approximation of a truth or proof predicate. The approximation has to be such that the
intended useful features of self-reference are obtained, without running into the well-known
paradoxes (see Perlis [55] for a discussion). We will show that two reflection principles are
able to model the behaviour of a reflective predicate.

The second deductive system is able to represent agents and cooperation between multiple
agents (Section 6.2). In particular, we consider rational agents that are introspective and
communicative. A simple reflection principle models a quite general form of inter-agent
communication.

The third deductive system (Section 6.3) is aimed at performing analogical reasoning. It

746 Reflection Principles in Computational Logic

is able to model asourcedomain representing knowledge which is certain and complete, and
a target domain where knowledge is either uncertain or incomplete. Assuming that it can
find in the target domain some knowledge which is analogous to corresponding knowledge
in the source domain, this deductive system is able (via a simple reflection principle) to apply
analogy in performing deduction, thus drawing conclusions in the target domain which would
have been impossible and incorrect to derive without the analogy.

A main aim of this research is that of defining a well-founded theoretical framework, but
also a foundation for a practically implemented system: practical feasibility has been taken
into account while defining all the aspects of the approach. Currently, an actual implemen-
tation is being designed, written in Reflective Prolog (of which a complete implementation
exists, based on a Prolog meta-circular interpreter). The implementation is planned to have
the following features: a default encoding device and some default reflection principles are
included. The system however is intended to be parametrical w.r.t. these two components.
Thus, the implementation will be adaptable to a specific application domain by replacing the
encoding device, and/or adding new reflection principles. In this case however, the implemen-
tation of these components is to be provided (in most cases by modifying the default one),
along the lines specified in the paper (rewriting system for the encoding, extended resolution
reflection principles). The system and its implementation are devised so that the components
to be modified/extended are suitably encapsulated, in order to be easily managed, with lim-
ited risk of introducing unintended malfunctioning. We can say that, from a theoretical point
of view, RCL is a framework for defining new deductive systems, and from a practical point
of view, its basic implementation should be a ‘toolkit’ for easily obtaining the construction
of these new systems.

The paper is concluded in Section 7, where we discuss the scope of the proposed approach
and its limitations, examine areas of possible applications, and review previous work in the
literature and possible relationships to ours. Proofs of theorems are given in the Appendix.

2 Reflection and reflection principles

2.1 Background

In this section we recall the concepts we will be introducing and discussing, giving a basic
historical background and perspective of the state of the art on these topics (the reader may
also refer to [1, 3, 13, 32, 50, 57] for an overview.)

A computational systemis a system that reasons and acts upon some domain. The system
represents (some of the features of) its domain under the form of data, and prescribes how
these data should be manipulated. The system iscausally connected(to its domain) if the
system and the domain are linked in such a way that any change in one of the two leads
to some effect upon the other. A system controlling a robot arm is a typical example of a
causally connected system. This system may incorporate data representing the position of
the arm. This data changes whenever the arm is moved by some external force; vice versa, if
the system changes this data, then the robot arm changes to the corresponding position.

A metasystemis a system that has as domain another computational system, calledobject
system, and has a representation (at the metalevel) of the features of the object system as
data. Many examples of metasystems can be mentioned; an example is a compiler that is able
to compile itself. Another well-known example is the notion of meta-interpreter and partial
evaluation, as used in Lisp and Prolog. A Prolog program, for instance, may incorporate a de-

Reflection Principles in Computational Logic747

fault meta-interpreter that simulates at the metalevel (some of) the features of the underlying
interpreter. Note that meta-interpreters are written in the same language as the program they
interpret. The default meta-interpreter can be used as a basis for building a special-purpose
meta-interpreter. Meta-interpreters can be used, for instance, in implementing: (i) variants
of the language; (ii) enhanced control strategies; (iii) analysis and debugging tools; and (iv)
auxiliary inference strategies, related to the application domain of the program at hand. The
meta-interpreter can then be partially evaluated and compiled together with the program it is
designed for, thereby producing a special-purpose interpreter.

In the development of artificial intelligence systems, metalevel formulations are ubiqui-
tous, in that they have been used in a number of domains and with a wide variety of purposes
and architectures (see [3, 70] for a comprehensive overview and classification). Recognized
advantages of metalevel representations are in the possibility of separation between domain
knowledge and control knowledge and of better mastering inference by explicit treatment
of control. Metatheoretic concepts are suitable to express knowledge about how to perform
generalizations, or about problem reformulation, or about inductive biases. More generally,
they permit the concise statement of generalizations that are useful in problem-solving.

If a metasystem which acts on a representation of its own features is causally connected (to
itself), then it is able toreflector introspect, i.e. it is able to manipulate data representing itself
in compliance with its semantics. Causal connection in this case means that the representation
is linked in a consistent way to the represented objects.

The first reflective system to appear in the literature is (to the best of our knowledge)
the FOL system by Weyrauch [73]. In FOL, knowledge and metaknowledge are expressed
in different contexts, and the user can access them both for expressing and inferring new
facts. A FOL context consists of a languageL (which is a first-order language with sorts and
conditional expressions) and asimulation structureS, which is a partial finite representation
of some model. Causal connection is guaranteed by means ofattachments, which are user-
defined explicit definitions relating symbols inL with their interpretation inS. A special
context named META describes the proof theory and some of the model theory of a FOL
contextC whose metatheory is META. The connection betweenC and META is established
by the attachments and by a special linking rule that is applicable in both directions:

Theorem(pWq)

W

whereW is any formula in the theory,pWq is a representation (aname) for W and
Theorem(pWq) is a fact in the metatheory. By means of a special primitive, called Re-
flect, the linking rule can be explicitly applied by the user. Its effect is either ofreflecting up
a formulaW to the metatheory, so as to derive metatheorems involvingpWq, or of reflecting
downa metatheorempWq, so thatW becomes a theorem of the theory. Metatheorems can
therefore be used as subsidiary deduction rules. The consistency and correctness of the appli-
cation of Reflect is left to the user, as is the whole mechanism of contexts with attachments.

A seminal approach to reflection in the context of Horn clause language is MetaProlog,
proposed by Bowen and Kowalski [12]. They propose to describe Horn clause syntax and
provability in the logic itself by means of a careful version of the default meta-interpreter
(specified via a predicateDemothat is defined by a set of axiomsPr), where all these aspects
are made explicit. Also in this case, the connection between the object level and the metalevel

748 Reflection Principles in Computational Logic

is provided by linking rules for up and down reflection:

T `LA

Pr `M Demo(pTq; pAq)
Pr `M Demo(pTq; pAq)

T `LA

where`M and`L mean provability at the metalevel and at the object level, respectively,
T is a Horn clause theory andA is an object level formula. As this approach is based on
meta-interpretation, the object language and the metalanguage are of course the same or,
according to a popular terminology, they areamalgamated. In fact, the approach allows
mixed object level and metalevel rules. Again, the application of the linking rules (which
coincides, in practice, with the invocation ofDemo) is left to the user, i.e. reflection isexplicit.
The semantics of this approach is, however, not easy to define [41, 26, 48, 53, 64], and
holds only if the metatheory and the linking rules provide an extension to the basic Horn
clause language which isconservative, i.e. only if Demois a faithful representation of Horn
clause provability. Although the amalgamated language is far more expressive than the object
language alone, enhanced meta-interpreters are (semantically) ruled out, since in that case
the extension is non-conservative. This excludes the possibility of usingDemofor expressing
auxiliary deduction rules in a semantically sound way.

The amalgamated approach has also been experimented by Attardi and Simi in Omega
[5]. Omega is an object-oriented formalism for knowledge representation, which can deal
with metatheoretical notions by including objects that describe Omega objects themselves
and derivability in Omega.

3-Lisp [61] is another important example of an amalgamated reflective architecture. 3-Lisp
is a meta-interpreter for Lisp, or, more precisely, a metacircular interpreter that represents ex-
plicitly not only the control aspects, but also the data structures of the underlying interpreter.
Here, the metalevel is accessible from the object level at run-time through areflection act.
The program is able to interrupt its computation, to change something with its interpretation,
and to continue with a modified interpretation process. This kind of mechanism is called
computational reflection. The semantics of computational reflection is procedural, however,
rather than declarative. A reflective architecture conceptually similar to 3-Lisp has been pro-
posed for the Horn clause language and has been fully implemented [15].

A non-amalgamated approach in logic programming is G¨odel [42] (object theory and meta-
theory are distinct). G¨odel also provides a (conservative) provability predicate, a partial eval-
uation facility and an explicit form of reflection.

A project that extends and builds on both FOL and 3-Lisp is Getfol [34, 36]. It is devel-
oped on top of a reimplementation of FOL (therefore the approach is not amalgamated: the
object theory and metatheory are distinct). Getfol is able to introspect its own code (lifting),
to reason deductively about it in a declarative metatheory and, as a result, to produce new
executable code that can be pushed back to the underlying interpretation (flattening). The ar-
chitecture is based on a sharp distinction between deduction (FOL style) and computation (3-
Lisp style). The main objective of Getfol seems to be that of implementing theorem-provers,
given its ability of implementing flexible control strategies to be adapted (via reflection) to the
particular situation. Similarly to FOL, the kind of reasoning performed in GETFOL consists
in : (i) performing some reasoning at the metalevel; (ii) using the results of this reasoning
to assert facts in the object level. An interesting extension is, however, that of applying this
concept to a system with multiple theories and multiple languages (each theory formulated
in its own language) [35], where the two steps are reinterpreted as (i) doing some reasoning
in one theory and (ii) jumping into another theory to do some more reasoning on the basis

Reflection Principles in Computational Logic749

of what has been derived in the previous theory. These two deductions are concatenated by
the application ofbridge rules,which are inference rules where the premisses belong to the
language of the former theory, and the conclusion belongs to the language of the latter.

From the point of view of semantics, we may notice that an explicit reflection that ex-
tends the inference relation of the object level disturbs the (classical) object level semantics:
by downward reflection, facts and/or formulas are added that are not logically entailed by
the available object level knowledge. In order to face this problem, Hoeket al. [68] and
Treuer [67] adopt temporal logics and epistemic states of knowledge. Moreover, metalevel
computation may in general be costly [69], and explicit reflection certainly is a potential
source of inefficiency (especially whenever it is based on some form of meta-interpretation).
With explicit reflection and inefficient metalevel computation, metalevel knowledge will most
often play a secondary role w.r.t. object level knowledge.

To overcome these problems, a different concept of reflection has been incorporated into
Reflective Prolog [19, 22], a self-referential Horn clause language with logical reflection. The
objective of this approach was that of developing a more expressive and powerful language,
while preserving the essential features of logic programming: Horn clause syntax, model-
theoretic semantics, resolution via unification as procedural semantics, correctness and com-
pleteness properties. To investigate the relation between this kind of logical reflection and
the corresponding model-theoretic semantics, an interpreter of Reflective Prolog has been
fully implemented [27]. In Reflective Prolog, Horn clauses are extended with self-reference
and resolution is extended with logical reflection, in order to achieve greater expressive and
inference power. The reflection mechanism isimplicit, i.e. the interpreter of the language
automatically reflects upwards and downwards. This allows reasoning and metareasoning to
interleave without the user’s intervention, so as to exploit both knowledge and metaknowl-
edge in proofs (in most of the other approaches, instead, there is one level which is ‘first–
class’, where deduction is actually performed and the other level which plays a secondary
role). The reflection mechanism is embedded in both the procedural and the declarative se-
mantics of the language, that is, in the extended resolution procedure which is used by the
interpreter and in the construction of the models which give meanings to programs. Proce-
durally, this implies that there is no need to axiomatize provability in the metatheory. Object
level reasoning is not simulated by meta-interpreters but directly executed by the language
interpreter, thus avoiding unnecessary inefficiency. The formal semantics is defined in cor-
respondence to the behaviour of the interpreter: a theory composed of an object level and
(one or more) metalevels is semantically regarded as an enhanced theory, enriched by new
axioms which are entailed by the given theory and by the linking rules interpreted as axiom
schemata. Therefore, in Reflective Prolog, language and metalanguage are amalgamated in a
non-conservative extension, though avoiding semantic problems. Reflective Prolog has been
proposed as an enhanced knowledge-representation language [24].

In order to compare Getfol and Reflective Prolog, as recent fully implemented systems, we
may note that:

� reflection in Getfol gives access to a metatheory where many features of the system are
made explicit, even the code that implements the system itself. In contrast, reflection in
Reflective Prolog gives access to a metatheory where various kinds of metaknowledge can
be expressed, either about the application domain or about the behaviour of the system;

� deduction in GETFOL consists in performing some reasoning at the metalevel and then
asserting facts at the object level. Deduction in Reflective Prolog means using at each step
either metalevel or object level knowledge, in a continuous interleaving between levels:

750 Reflection Principles in Computational Logic

i.e. both levels are ‘first–class’ in the deductive process;

� metareasoning in Getfol implies defining explicit syntactic manipulation of descriptions,
while metareasoning in Reflective Prolog implies a declarative definition of metaknowl-
edge, which is automatically integrated into deductions. This corresponds to the different
aims of the two systems: theorem-proving for Getfol and knowledge representation for
Reflective Prolog.

2.2 The concept of reflection principle

The idea of reflection in logic dates back to work by Feferman [31]. He introduced the
concept of a reflection principle defined as:

‘a description of a procedure for adding to any set of axiomsA certain new axioms
whose validity follow from the validity of the axiomsA and which formally express
within the language ofA evident consequences of the assumption that all the theorems
of A are valid.’

Thus, in Feferman’s view, reflection principles do not generate arbitrary consequences, but
rather a transposition of the original ones. InRCL, we reinterpret the concept of a reflection
principle as:

‘a description of a procedure for adding to any set of axiomsA certain new axioms
whose validity follow from some user-defined inference rules.’

We use reflection principles to integrate into the (declarative and procedural) semantics of
the Horn clause theories the inference rules of a deductive systemDS that a user wants to
define. Inference rules are, by definition, decidable relations between formulae of a language
L, and can be expressed in the form of axiom schemata. These schemata need however
to be given a role in the theory, both semantically (obtaining a semantics for the resulting
theory) and syntactically (making them usable in deduction). We choose to interpret them
as procedures, more precisely as functions that transform Horn clauses into (sets of) Horn
clauses. These new Horn clauses are called ‘reflection axioms’. Thus, the difference with
respect to Feferman’s notion of reflection principles is that the validity of the reflection ax-
ioms is not necessarily aformal consequence of the validity of the given axioms. In fact, a
user could define also non-standard inference rules, to encode various forms of uncertain or
plausible reasoning. Nevertheless, in a given application context, where a new inference rule
is introduced to capture some specific aspects of the domain under consideration, the validity
of reflection axioms should followconceptually, according to the intended meaning of the
extension.

The advantage of representing inference rules in the form of reflection principles is that the
model-theoretic and fixed point semantics of the given theory under the new inference rule
coincides with the corresponding semantics [44] of the plain Horn clause theory obtained
from the given theory, augmented by the reflection axioms.

The advantage of applying reflection principles on a single clause is that the reflection
axioms need not be generated in the beginning, but can be generated dynamically, whenever
a reflection principle is applicable to the input clause of any resolution step.

In this and the following sections, we present a formalization of the proposed concept
of reflection which should constitute a simple way of understanding reflective programs as
well as a description of how reflection allows one to uniformly treat different application

Reflection Principles in Computational Logic751

areas. The applications of reflection that we have previously studied (and reported in detail
elsewhere [20, 24, 25]) are instances of the new formalization. Thus we are able to present
them as case studies and show howRCL can constitute a uniform framework for several
problem domains.

For each of those areas, we present the reflection principles suitable to capture the speci-
ficity of the problem domain. Given a basic theory expressing a particular problem in that do-
main, its extension determined by the chosen reflection principle contains the consequences
intended by that principle, but not entailed by the basic theory alone. Thus, this use of reflec-
tion is different in essence from previous use of reflection rules in logic programming, such as
in [12]. Our conception and use of reflection principles are precisely aimed at making the set
of theorems that are provable from the basic theory, augmented with reflection axioms,differ
from the set of theorems that are provable from the basic theory alone. This capability allows
one to model several forms of reasoning within the same formal framework. The version of
RCLpresented in this paper is monotonic, in the sense that reflection principlesenlargethe
set of consequences of the basic theory. The use of reflection in non-monotonic reasoning is
discussed by Costantini and Lanzarone [23]. Their approach can be integrated inRCL(at the
expense of some semantic complications).

Notice that reflection principles allow one to formalize how conclusions follow one from
the other, not necessarily between an object theory and a metatheory (in the latter case you
need an encoding device). Reflection principles express inference rules to be applied within
the same theory, or even to link different theories (similarly to the bridge rules of Giunchiglia
and Serafini [35]).

DEFINITION 2.1
Let C be a definite clause. Areflection principleR is a mapping from definite clauses to
(finite) sets of definite clauses. The clauses inR(C) are calledreflection axioms.

Given a definite programP = fC1; : : : ; Cng, we writeR(P) forR(C1)[: : :[R(Cn). The
following example, although very simple, informally illustrates the main idea.

EXAMPLE 2.2
Suppose we want to incorporate into a theoryT the ability to reason about ‘provability’ in
the theory itself. To do this, we can introduce a predicatedemodefined over representations
of propositions inT itself, such thatdemoholds for all those representations for which the
corresponding propositions are provable. This can be formalized as:

�i
demo(p�iq)

wherep�iq indicates the name of�i. Thus,demo(p�iq) is provable in the theory whenever
proposition�i is. In RCL, the inference rule above can be incorporated by means of the
following reflection principleR:

R(�i) = fdemo(p�iq) �ig:

Assume thatT contains the following initial set of axioms:

A = f�1; �2; �3 demo(p�2q)g:

Then, the setA0 of reflection axioms generated byR is:

A0 = R(A) = fdemo(p�1q) �1; demo(p�2q) �2; demo(p�3q) �3g:

752 Reflection Principles in Computational Logic

The deductive closure ofA [A0 is the theory:

T 0 = f�1; �2; �3; demo(p�1q); demo(p�2q); demo(p�3q)g:

Notice that several reflection principles can co-exist in the same framework. This is the
case of the application outlined in Section 6.1.

Reflection principles allow extensions to be made to the language of Horn clauses by mod-
ifying the program but leaving the underlying logic unchanged. A potential drawback is that
the resulting program(P [R(P); E) may have, in general, a large number of clauses, which
is allowed in principle but difficult to manage in practice. To avoid this problem, reflection
principles are applied in the inference process only as necessary, thus computing the reflec-
tion axioms ‘on the fly’. (This means that we do not createA0 orA [A0 explicitly.)

Given a reflection principleR, we hereafter write�R to indicate any procedure that is able
to computeR. It is important to notice that�R can be any suitable formal system for the
application at hand. In particular,�R may be a metaprogram in some metalogic language.
In RCL, whenever its users define a reflection principleR, they must provide�R, and they
are responsible for it being a correct implementation ofR.

The antecedent of the inference rule expressed as a reflection principle being a single Horn
clause is not really a limitation. In fact, by defining a suitable name theory, the given clause
may encode any set of formulae. The consequent being a set of Horn clausesis an actual
limitation. In fact, in this senseRCLis not a departure from the traditional logic programming
approach, as user-defined inference rules can express only what can be expressed (either at
the object level or at the metalevel) by means of Horn clauses.

3 The enhanced Horn clause language

The distinction between use and mention of a term, or between language and metalanguage,
and the technique of giving names to language expressions in order to be able to talk about
their properties, both belong to the tradition of philosophical and mathematical logic.

Since our aim is to devise a language that is both cognitively adequate and practically
usable, in this section we first motivate the use of names and then introduce the technicalities
by which they can be defined in a suitable and flexible way.

Notice that giving names to language expressions is the only way to have both language and
metalanguage while staying within first-order logic, which is a strongly desirable property in
a computational setting.

In the following, a ‘ground term’ is a term not containing variables. Consequently, different
approaches to giving names to expressions can be divided into ‘ground’ naming approaches,
where names are ground terms, and ‘non-ground’ naming approaches, where names are terms
that may contain variables.

3.1 Use and mention

In a language there is a clear distinction between a thing and its name: we use names to
talk about things. However, when we want tomentionexpressions, rather thanusingthem,
confusion can arise (see Suppes [65] for a discussion on this topic). Consider the following
statements:

California is a state. (3.1)

Reflection Principles in Computational Logic753

California has ten letters. (3.2)

‘California’ is a state. (3.3)

‘California’ has ten letters. (3.4)

The statements (3.1) and (3.4) are true, while (3.2) and (3.3) are false. To say that the state-
name in question has ten letters we must use not the name itself, but a name of it. The name
of an expression is commonly formed by putting the named expression between quotation
marks. The whole, called aquotation, denotes its internal content. This device is used, for
example, in statement (3.3). Every name denotes a thing. For example,California denotes the
well-known american state. Names of things can also be seen as things themselves denoted
by other names (i.e. quotations), like ‘California’. The reading of statement (3.3) can be
clarified by rephrasing it as:

The word ‘California’ is a state.

(3.3) is about a word which (3.1) contains, and (3.1) is about no word at all, but a state. In (3.1)
the state-name isused, while in (3.4) a quotation is used and the state-name ismentioned. To
mention California we use ‘California’ or a synonym, and to mention ‘California’ we use
‘ ‘California’ ’ or a synonym.

We could also baptise the word ‘California’ with a personal name. Let

Jeremiah = ‘California’. (3.5)

Then the following statements could be true,

Jeremiah is a name of a state. (3.6)

Jeremiah has ten letters. (3.7)

‘Jeremiah’ has eight letters. (3.8)

while the next is false

‘Jeremiah’ is a name of a state. (3.9)

Statement (3.9) could be rendered true by inserting another ‘name of’ in it

‘Jeremiah’ is a name of a name of a state.

Thus, by quoting an expression we can ascribe different kinds of properties to it: for exam-
ple, morphological properties as in statement (3.4) or phonetic and grammatical properties as
in the following.

‘Boston’ is disyllabic. (3.10)

‘Boston’ is a noun. (3.11)

We can also ascribesemantic properties, that is, properties that arise from the meaning of the
expression.

‘Boston’ designates the capital of Massachusetts. (3.12)

‘Boston’ is synonymous with ‘the capital of Massachusetts’. (3.13)

754 Reflection Principles in Computational Logic

Notice that in (3.13) quotations can be synonymous, while places cannot.
As Quine points out [59], the use of quotation marks is the main practical measure against

confusing objects with their names. Frege was the first logician to use quotation marks for-
mally to distinguish use and mention of expressions (see Carnap [14] for further discussion).

Quotations can also be applied to non-atomic expressions. For example, to say that a
statement has a given property, e.g. the semantic property of truth or falsehood, we attach the
appropriate predicate to the name of the statement in question, and not to the statement itself.
Thus, we may write:

‘Margus is Estonian’ is true. (3.14)

but never

Margus is Estonian is true. (3.15)

(3.14) is a statement, while (3.15) is not. Notice that in (3.14) we use a predicate to speak
about another statement, therefore we mention it. In contrast, logical connectives attach
to statements (and not to names of statements) to form more complex statements, and this
application can be iterated.

Quantifiers standing outside of quotes cannot bind variables occurring inside quotes be-
cause by quoting a variable we mention it. Consider the following statement:

For everyp, ‘p’ is the sixteenth letter of the alphabet. (3.16)

This sentence can be considered to be true, and the quantifierFor every pto be redundant
and not binding the occurrence ofp inside the quotes. In contrast, if we were to regard the
quantifier as binding the occurrence ofp in quotes, we would obtain, replacingp by Margus
is Estonian, the false assertion:

‘Margus is Estonian’ is the sixteenth letter of the alphabet. (3.17)

Tarski [66], for example, defines names as variable-free terms. He discusses two kinds of
names:quotation-mark(or primitive) andstructural descriptivenames. The former category
associates with a formula a ‘monolithic’ term as its name (G¨odel’s encoding is an example of
this kind of naming). The latter category associates with a formula a structured ground term
that reflects the structure of the sentence it names. The advantage of structural descriptive
names over quotation-mark names is that they allow us to quantify over parts of expressions.

Names have been widely used in computational logic. In a formal language, we can have
names of formulae, but also, more generally, names of elements of the language that we can
call expressions. The association between expressions and names is usually called anaming
relation. The domain of a naming relation is a subset of the set of all language expressions,
and possibly includes predicate, function and variable symbols, terms, atoms, single formulae
as well as sets of formulae. Theories in the language may also have names. Some expressions
may have primitive names, some others structural descriptive ones. In principle, an expres-
sion may have more than one name. In practice, however, naming relations are typically
functional and injective (see van Harmelen [71] for a discussion on the properties of naming
relations).

A name is itself an expression in a formal language. The operation which results in obtain-
ing the name of an expression (or, more generally, in relating a name with what it names) has

Reflection Principles in Computational Logic755

been calledquotation, or referentiation, or reification, or encoding. The converse operation
is usually calledunquotationor de-referentiation. When expressions that define names are
terms of a language, they are calledname terms. Whenever names of expressions in a given
formal language are expressed in the language itself, i.e. whenever a language is capable of
self-reference, we call it ametalogic language. A theory expressed in a metalogic language
therefore consists of theobject level, composed ofobjectformulae not containing name terms
and of themetalevel, consisting of formulae containing name terms. Formulae of the meta-
level express some kind of syntactic or semantic properties of object formulae (as outlined
in the simple examples above), and thus express some kind ofmetaknowledge, that can be
used in deduction in various ways, thus performingmetareasoning. The reader may refer to
[2, 3, 24] for a discussion about possible uses of metaknowledge and metareasoning.

Notice that it is somewhat controversial whether a language should be capable of self–
reference, or if names should be encoded in a separate metalanguage. As discussed in Sec-
tion 2.1, the two points of view have led to systems where the object and the metalevels are
separated (e.g. FOL, GETFOL, G¨odel) or amalgamated (e.g. 3-Lisp, MetaProlog, Reflective
Prolog). In our opinion, and in our experience, amalgamated approaches are in order for ap-
plications in knowledge representation, where expressing knowledge about a domain means
also expressing properties which can be seen in one perspective as properties of the domain,
and in another perspective as (syntactic metalevel) properties of knowledge itself.

In the next section, we will first extend the Horn clause language to a more general lan-
guage able to express name terms. Then, we will show how user-defined naming relations
can be expressed by means of the axioms of an equality theory. With this aim, we will con-
sider some examples taken from the recent literature; in fact, we will show how to define the
encoding used in some existing metalogic languages. Finally, we will consider how to extend
unification so as to accommodate names. In this direction, we consider the formalization
of the unification algorithm in terms of a rewrite system and then show how to extend this
rewrite system to cope with equality theories defining names.

3.2 A metalanguage

We extend the languageHC of Horn clauses to an enhanced languageHC
+ containing names

of the expressions of the language itself. As we will see,HC
+ allows significant freedom in

the choice of names: we only require that names of compound expressions becompositional,
i.e. that the name of a compound expression must be obtained from the names of its compo-
nents. In this language, it is possible to express various forms of encoding, bothgroundand
non-ground, each of them with an associated rewrite system. We remind the reader that in
a groundrepresentation each syntactic expression is represented by means of a ground term.
In contrast,non-groundrepresentations do not require groundness of names.

The language is that of definite programs, as defined by Lloyd [49], except that terms
are defined differently, in order to includenames(calledname terms) that are intended to
represent the symbols and the expressions of the language itself.

The alphabet ofHC+ differs from the usual alphabet of definite programs by making a
distinction between variables andmetavariablesand through the presence ofmetaconstants.
Only names ofHC+ can be substituted for metavariables. Metaconstants are intended as
names for constants, function symbols, predicate symbols and metaconstants themselves. If
c is a constant, a function or a predicate symbol inHC+, then we writec1 as a convenient
notation for the metaconstant that namesc in HC+. Similarly, if cn, with n > 0, is a

756 Reflection Principles in Computational Logic

metaconstant (i.e.cn is c namedn times), then its name is written ascn+1. Furthermore,
the alphabet ofHC+ contains two operators," and#, and a distinguished predicate symbol,
=. The operators" and# are intended to denote the operations of quoting and unquoting,
respectively. The symbols", #, and= play a special role in the extended SLD-resolution and
we assume that there are no symbols naming them.

Where not otherwise stated, the lower-case charactersx, y andz (possibly indexed) are
used for variables, while the upper-case charactersX , Y andZ (possibly indexed) are used
for metavariables. Thusx andy3, for example, are variables, andZ andX3 are metavari-
ables. Sometimes, to abbreviate the notation of expressions we use the notation reserved for
variables to indicate both variables and metavariables, and we explicitly state this use.

The definition ofterms(T) in HC+ extends the usual one to containname terms(NT) as a
subset. Name terms contain metaconstants and metavariables, as well as names of compound
expressions. We write the name of a compound expression of the form�0(�1; : : : ; �n) in
HC

+ as [�0; �1; : : : ; �n], where each�i is the name of�i, with 0 � i � n. Furthermore,
the name of the name of�0(�1; : : : ; �n) is the name term[0; 1; : : : ; n], where eachi
is the name of�i, with 0 � i � n, etc. Requiring names of compound expressions to be
compositional allows us to use unification for constructing name terms and accessing their
components. Given a termt and a name terms, we write"t to indicate the result of quoting
t and#s to indicate the result of unquotings.

If we want to express properties (metaknowledge) of an expression of the object language
(that expresses knowledge) such asp(a; b), we have to employ a name of that expression,
represented here as[p1; a1; b1], wherep1 is the metaconstant that names the predicate symbol
p, while the metaconstantsa1 andb1 name the constantsa andb, respectively. We may, for
example, express thatp is a binary predicate symbol asbinary pred(p1). Notice that we have
employed the name ofp and notp itself because we express something about the predicate
symbolp (and a predicate symbol cannot appear in a term position).

We now present the definitions of definite programs, equality theories and logic programs.
Let p be ann-ary predicate symbol distinct from=, and lett1; : : : ; tn be terms. Then
p(t1; : : : ; tn) is anatomandt1 = t2 is anequation. A name equationis an equation that
contains at least one occurrence of" or #. Observe that atoms and equations are distinct.
An equality theoryis a (possibly infinite) set of equations. LetA andA1; : : : ; Am (m � 0)
be atoms not containing any occurrence of" and#, and lete1; : : : ; eq (q � 0) be equations.
ThenA e1; : : : ; eq; A1; : : : ; Am is adefinite clause. If m = 0, then the clause is called a
unit clause. A definite programis a finite set of definite clauses. Adefinite goalis a clause of
the form A1; : : : ; Ak, with k > 0.1 If P is a definite program andE an equality theory,
then(P;E) is a logic program. E contains axioms characterizing= (for example the usual
equality interpretation of= [16]), andP defines the meaning of the non-logical symbols.

1All our clauses and goals will be definite and so we will omit ‘definite’ from now on.

Reflection Principles in Computational Logic757

NameTerm ::= Metaconstant j
Metavariable j
[Metaconstant,NameTerm+] j
[Metavariable,NameTerm+] j
"Term

Term ::= Constant j
Variable j
Function(Term+) j
#NameTermj
NameTerm

Atom ::= Predicate(Term�)
Equation ::= Term=Term
DefiniteClause ::= Atom Equation�,Atom�

DefiniteGoal ::= Atom+

DefiniteProgram ::= set of DefiniteClauses
EqualityTheory ::= set of Equations
LogicProgram ::= (DefiniteProgram,EqualityTheory)

The languageHC+

In the figure above,�� denotes a (possibly empty) sequence of�s and�+ denotes a non-
empty sequence of�s.

What we need now is a way to formalize the relation between terms and the corresponding
name terms. We do this by formalizing the intended role of the operators" and# through
equational theories that are a parameter ofRCL.

EXAMPLE 3.1
Often it is useful to access information as a sequence of characters, represented in the program
as a constant. In Prolog, for example, there is a built-in predicate,name, that relates constants
and their ASCII encodings.

There are two typical uses ofname: (i) given a constant, break it down into single charac-
ters, (ii) given a list of characters, combine them into a constant. An example of a first kind
of application would be a predicate that is true when a constant starts with a certain character.
This may be defined inHC+ as:

P =
�

starts(x; y) X = "x; Y = "y; first element(X;Y)
	

E =

8>>>><
>>>>:

"a = 97
"b = 98
: : :
"z = 122
"c1 � � � cn = ["c1; : : : ; "cn] for every constantc1 � � � cn

9>>>>=
>>>>;

where starts(x; y) holds if the constantx starts with the charactery and the atom
first element(X;Y) holds if Y is the first element of the listX . The equality theoryE for-
malizes the relation between constants and their ASCII encodings. The axiom"c1 � � � cn =
["c1; : : : ; "cn] in E is an axiom schema for any constant of the formc1 � � � cn.

758 Reflection Principles in Computational Logic

3.3 Formalizing encodings

In order to name inHC+ expressions of the language itself we employ anencoding. En-
codings can represent various kinds of information: syntactic information, computational
information, epistemological information, etc. (for an overview of encodings, cf. van Harme-
len [72]). In general it is not possible to find an encoding that is optimal for all metalevel
theories. This is because the syntactic richness of the encoding determines not only the
expressivity of the metatheory, but also its complexity. Therefore, the encoding should be
adapted to the particular requirements of a given metatheory, and/or to the application do-
main at hand. This motivates the choice, made in our formal framework, to provide the
encoding as a separately definable component.

With this aim, encodings can be expressed by means of equational theories, and the related
substitution facility by means of a rewrite system. There are some formal properties that the
associated rewrite systems must satisfy when integrated into a computational framework. We
have defined a comprehensive methodology for formalizing encodings in this way [8, 28].

The following examples show the formalization of some encodings appearing in the liter-
ature. This in order to show the applicability of the approach, and to see how the axiomat-
ization can constitute a basis for investigating properties, advantages and disadvantages of a
given naming device.

EXAMPLE 3.2
Various encodings can be axiomatized by an equality theory: for example, a simple one where
no information at all is included in any name. The encoding axiomatized by the following
axiom corresponds to the non-ground encoding (identity function) typically used in Prolog
meta-interpreters [63].

8x "x = x: (3.18)

This encoding seems to have the advantage of simplicity, but, unfortunately, strongly reduces
the expressive power of the metatheory. It is not possible, for example, to use a unification
procedure for constructing names of expressions and accessing parts of them, as the name of
the function symbol of a term is again a function symbol. A possible solution to this problem
could be that of replacing axiom (3.18) above with the following two axioms.

For every constantc, (3.19)

"c = c:

For every function symbolf of arity k, (3.20)

8x1 : : :8xk "(f(x1; : : : ; xk)) = [f; "x1; : : : ; "xk]:

In (3.20) the symbolf appearing to the left of equality is a function symbol, while thef
appearing to the right of equality is a metaconstant. One advantage of using such overloading
of names is that the rewrite system for such axioms can be very simple and efficient, but,
on the other hand, ambiguous cases arise. Suppose, for example, that we want to find what
the name term[f; t1; : : : ; tk] names. Then we have an ambiguity because it could be either a
name term of the form[f; s1; : : : ; sk] or a term of the formf(s1; : : : ; sk). (Jiang introduces
an ambivalent logic [45] where he tackles this problem by making no distinction between
sentences and terms.) For many metaprograms, however, such a representation is inadequate
for other reasons: it does not allow us to investigate the instantiation of variables in queries.
Actually, many kinds of metaprograms need to reason about the computational behaviour of
the object program. In this case, a ground encoding appears to be more suitable.

Reflection Principles in Computational Logic759

The next example shows a simple form of ground encoding defined similarly to the G¨odel
numbering.

EXAMPLE 3.3
Define first anexponentto be any natural number of the form2n, for somen � 0, and
an assignmentto be any injective mapping from a finite subset of the set of variables and
metavariables into the set of all exponents. We write assignments asfx1=n1; : : : ; xk=nkg,
and by using this notation we assume that all variables and metavariablesxi are distinct and
all exponentsni are also distinct.

Let t be a term andx1; : : : ; xn be all variables and metavariables oft. Let � be an as-
signment. The G¨odel number�(t) of t under� is defined similarly to the G¨odel numbering
:

�(xi) = ni
�(ci) = 3i

�(fj(t1; : : : ; tm)) = 3j � 5�(t1) � : : :� p
�(tm)
m+2 ;

where eachpi is theith prime number and the indexes of constants and function symbols are
assumed to be distinct. We can formalize this encoding as follows.

" 2n = 2n:

For every constantci,

"ci = 3i:

For every function symbolfj of arity k,

8x1 : : :8xk "(fj(x1; : : : ; xk)) = 3j5"x1 � : : :� p"xkk+2:

Then, given an assignment�, the ground representation oft under� is "(t�).

Although simple and sound, the above encoding is inadequate for most knowledge-
representation and computational purposes. A main property that a naming device should
in fact in our opinion exhibit is compositionality: i.e. since a term is constructed (and decon-
structed) by composing (decomposing) subterms, its name should correspondingly be con-
structed (and deconstructed) by composing (decomposing) names of subterms. The axioms
below for the operators" and# are the basis of the formalization of the relationship between
terms and the corresponding name terms. These axioms form a part of the equality theory
for any ground encoding which is meant to be compositional. They just say that there exist
names of names (each term can be referencedn times, for anyn � 0) and that the name of a
compound term must be a function of the names of its components.

The axioms of the following equality theory, calledNT and first defined in [28], character-
ize name terms and compositional names forHC

+.

DEFINITION 3.4
Let NT be the following equality theory.

� For every constant or metaconstantcn, n � 0,
"cn = cn+1.

� For every function symbolf of arity k,
8x1 : : :8xk "(f(x1; : : : ; xk)) = [f1; "x1; : : : ; "xk].

� For every compound name term[X0; X1; : : : ; Xk]
8X0 : : :8Xk "[X0; X1; : : : ; Xk] = ["X0; "X1; : : : ; "Xk].

760 Reflection Principles in Computational Logic

� 8x #"x = x.

� 8X "#X = X .

The simple examples above illustrate that an encoding directly determines the expressivity
of the metatheory. If we consider an encoding that provides little information to the metalevel,
then we can design efficient rewrite systems for that encoding; but, on the other hand, the
expressivity of the metatheory is low (this is the case for an encoding along the lines of
Example 3.2).

When an encoding has been established as being suitable for an application, its proper-
ties for sound and complete inference should be investigated. (In Section 5 we study what
properties are required of a rewrite system for a suitable integration into a computational me-
chanism.) For example, encodings employing variable names result in a loss of completeness
(see example below). However, such encodings allow the state of the computation (e.g. the
instantiation of variables in queries) to be inspected. This capability is needed, for example,
in applications that are mainly aimed atsyntacticmetaprogramming, like program manipula-
tion and transformation via metaprograms. Thus, one may choose this last kind of encoding
if these capabilities are important, provided that one is aware that certain other properties are
lost.

EXAMPLE 3.5
Consider any encoding providing names for variables and letP be the following definite
program:

p(x) Y = "x; q(Y)
q(a1):

The goal p(a) succeeds by first instantiatingY to a1 and then proving q(a1). In
contrast, the goal p(x) fails, asY is instantiated to the name ofx, sayx1, and the goal
 q(x1) fails,x1 anda1 being distinct.

Furthermore, we observe that encodings influence the semantics of metalogic languages. In
fact, metalanguages that are based on formally defined encodings have clear and well-defined
declarative semantics. In contrast, giving a semantic account of a metalogic programming
language that employs a trivial encoding is remarkably more difficult. This is easy to see
for meta-interpreters, whose encoding mechanism has been outlined in Example 3.2. The
difficulties associated with providing them with a reasonable semantics have been discussed
in length by Barklundet al. [9].

TheRCL system provides a default encoding which is compositional, and does not provide
names for variables. The default encoding is in particular the one described in Definition 3.4.
The system is, however, intended to be parametrical w.r.t. the naming device, i.e. the imple-
mentation can be adapted to the application domain at hand by replacing the default encoding
with a new one. The new encoding should be defined along the lines given in this section,
and implemented as specified in the next section (in most cases the new implementation will
result in a modification of the existing one). Notice that we allow names, names of names,
and so on. It is not easy to understand whether this could give problems such as circularity
or unsoundness. This question is, however, solved by studying the properties of the rewrite
system associated with the encoding, as illustrated in the following section.

Reflection Principles in Computational Logic761

3.4 An E-unification algorithm

In the context of equational logic programming, unification algorithms are usually expressed
in terms of transformation systems based on sets of equations rather than on substitutions.
In order to take into account names of the metalanguageHC

+, we define anE-unification
algorithm based on a rewrite system for a given equality theoryE. To do this, we need
some definitions (in the rest of the paper we will use the terminology of Dershowitz and
Jouannaud [29]).

A rewrite ruleover a set of terms is an ordered pairhl; ri of terms, which we write asl!r.
The idea of rewriting is to impose directionality on the use of equations in proofs. A (finite)
setR of rewrite rules is called arewrite system.

We write the subterm oft rooted at positionp as tjp. The termt with its subtermtjp
replaced by a terms is written ast[s]p. Given a rewrite systemR, a terms rewrites to a
term t, written ass !

R
t, if sjp = l� andt = s[r�]p, for some rulel!r in R, positionp

in s, and substitution�. In that case, we say thats is reducible. A subtermsjp at which a
rewrite can take place is calledredex; we say thats is in normal formif s� has no redex for
any substitution�. A terms is irreducible if it is not in normal form and it is not reducible.
That is, a termt is irreducible ift contains names that cannot be computed. For example,t
might be"x if the chosen encoding does not provide names for variables. Aderivationin R
is any (finite or infinite) sequencet0 !

R
t1 !

R
t2 !

R
: : : of applications of rewrite rules in

R. The derivability relation
�
!

R
is the reflexive, transitive closure of!

R
. We writes

!
!

R
t if

s
�
!

R
t andt is in normal form. We write the symmetric closure of!

R
as$

R
. A rewrite system

is terminatingif there are no infinite derivationst0 !
R
t1 !

R
t2 !

R
: : : of terms. A rewrite

system isconvergentif all sequences of applications of rewrite rules lead to a unique normal
form.

Given an equality theoryE, a rewrite systemR is adequate forE if (i) R is terminating
and (ii) s

�
$

R
t if and only if E j= s = t. Hereafter, we writeRE to indicate any rewrite

system adequate forE.
A binding is an equation either of the formx = t if x is a variable that does not occur in

the termt, or of the formY = s if Y is a metavariable that does not occur in the name term
s. A Herbrand assignmentH = fx1 = t1; : : : ; xk = tkg is a set of bindings such that the
variables and metavariablexi are pairwise distinct, noxi is in anytj , and the termst1; : : : ; tk
are in normal form.

The intuition is that Herbrand assignments do not contain name equations, i.e. they do not
contain equations with names that still have to be computed. This requirement allows us to
have for each Herbrand assignmentH an equivalent substitutionfx1=t1; : : : ; xk=tkg, which
we indicate withbH .

A transformation rule, written as), is a rule that operates on triples of the formhH;F; Si,
whereH is a Herbrand assignment,F is a set of name equations andS is a set of equations.
We can seeH andF as the solved and unsolved part, andS as the set of equations still to be
processed.H consists of all the bindings that have been computed, whileF consists of name
equations containing irreducible terms. Atransformation systemis a finite set of transforma-
tion rules. A transformation system isconvergentif all sequences of transformations lead to
a unique normal form.

Below we sketch a transformation system that extends Martelli and Montanari’s transfor-

762 Reflection Principles in Computational Logic

mation system [52] to take into consideration metavariables and name equations (see [28] for
a full treatment of it). Below we indicate withV the set of variables and withM the set of

metavariables ofHC+. Let e be an equation. Equations yet to be solved are written ass
?
= t

and terms of the formf(t1; : : : ; tn) are abbreviated asf(~t).

Delete: hH;F;S [ft
?
= tgi) hH;F;Si

Decompose: hH;F;S [ff(~t)
?
= f(~s)gi) hH;F;S [ft1

?
= s1; : : : ; tn

?
= sngi

Switch: hH;F;S [ft
?
= xgi) hH;F;S [fx

?
= tgi

if x 2 (V [M) andt =2 (V [M).

Eliminate: hH;F;S [fx
?
= tgi) hH� [fx = tg; F �; S�i

if x = t is a binding andt is in normal form.� is fx=tg.

Swap Variables: hH;F;S [fy
?
= xgi) hH;F;S [fx

?
= ygi

if x 2 V andy 2M .
Mutate: hH;F;S [fegi) hH;F;S [fe[t]pgi

if ejp !
R
t

Freeze: hH;F;S [fx
?
= tgi) hH;F� [fx = tg; S�i

if x = t is a binding andt is irreducible.� is fx=tg.

Unfreeze: hH;F [fx = tg; Si) hH;F;S [fx
?
= tgi

if t is reducible.

Martelli and Montanari’s transformation system is extended here with four new rules. The

first new rule,swap variables, is needed to swap the terms of an equation of the formy
?
= x

wherey is a metavariable andx is a variable. By swapping those variables, we get an equation

x
?
= y that is a binding and can therefore be processed byeliminate. The second,mutate,

allows us to compute names with respect to a given rewrite systemR. If a name equatione
contains a redexejp reducible tot, i.e.ejp !

R
t, thenmutatereplacesejp in e with t. Finally,

the rulesfreezeandunfreezemove name equations fromS to F , and vice versa. If a name
equationx = t is irreducible, that is,t is not in normal form and contains names that cannot
be computed, thenfreezemovesx = t to the setF . Such an equation remains inF until
it becomes reducible, which is eventually allowed by means of a substitution applied toF
by eliminate. At this point,unfreezemovesx = t back toS, where it can subsequently be
reduced.

DEFINITION 3.6
Given a rewrite systemR, anE-unification algorithm, written as=)

R
, is any procedure that

takes a finite setS0 of equations, and uses the above transformation system to generate se-
quences of tuples fromhfg; fg; S0i.

Starting with hfg; fg; S0i and using the rules above until none is applicable results in
hH;F; Si, whereS 6= fg, if and only if S0 has no solution, or otherwise it results in a
solved formhH;F; fgi, whereH is a Herbrand assignment andF is a solvable set of irre-
ducible name equations. Since the application of any of these rules preserves all solutions,
the former situation corresponds to failure, while in the latter case a most general unifier can
be extracted fromH . For the sake of simplicity, we have not specified the transformation
rules needed to transform irreducible name equations inF to a solvable form. In any case,
such a solvable form forF exists [28] which guarantees thathH;F; fgi is solvable.

Reflection Principles in Computational Logic763

DEFINITION 3.7
LetE be an equality theory. AnE-solutionof an equations = t is a Herbrand assignmentH

such thatE j= s bH = t bH . An E-solution of a setS of equations is a Herbrand assignment
that is anE-solution of every equation inS.

DEFINITION 3.8
LetE be an equality theory. A system of rules issound forE if every rule in it preserves the
set of allE-solutions.

The following four results are proved in [28].

PROPOSITION3.9
Given an equality theoryE and a rewrite systemRE adequate forE, theE-unification algo-
rithm=)

RE

is sound forE and terminating.

PROPOSITION3.10
Let R be a rewrite system. IfR is convergent, then theE-unification algorithm=)

R
con-

verges.

We present now a rewrite system based on the equality theoryNT of Definition 3.4. Recall
that we writecn to indicate a constantc namedn times; thus,c may be written asc0, its name
asc1, and so on.

DEFINITION 3.11
Let UN be the following rewrite system. Letn � 0.

"cn ! cn+1

"f(x1; : : : ; xn) ! [f1; "x1; : : : ; "xn]

" [X0; : : : ;Xn] ! ["X0; : : : ; "Xn]

"#X ! X

#cn+1 ! cn

[f1;X1; : : : ;Xn] ! f(#X1; : : : ; #Xn)

[fn+2;X1; : : : ;Xn] ! [#fn+2; #X1; : : : ; #Xn]

[X0;X1; : : : ;Xn] ! # [#X0; #X1; : : : ; #Xn]

#"x ! x

The rewrite systemUN

EXAMPLE 3.12
With respect toUN, theE-unification algorithmrewrites

hfg; fg; ff(X;Y; "X)
?
= f("a; #Z;Z)gi =)

UN
hfX = a1; Z = a2; Y = a1g; fg; fgi

in the following steps:

764 Reflection Principles in Computational Logic

hfg; fg; ff(X;Y; "X)
?
= f("a; #Z;Z)gi)

UN
hfg; fg; fX

?
= "a; Y

?
= #Z; "X

?
= Zgi)

UN

hfg; fY
?
= #Zg; fX

?
= "a; "X

?
= Zgi)

UN
hfg; fY

?
= #Zg; fX

?
= a1; "X

?
= Zgi)

UN

hfX = a1g; fY
?
= #Zg; f"a1

?
= Zgi)

UN
hfX = a1g; fY

?
= #Zg; fa2

?
= Zgi)

UN

hfX = a1g; fY
?
= #Zg; fZ

?
= a2gi)

UN
hfX = a1; Z = a2g; fY

?
= #a2g; fgi)

UN

hfX = a1; Z = a2g; fg; fY
?
= #a2gi)

UN
hfX = a1; Z = a2g; fg; fY

?
= a1gi)

UN

hfX = a1; Z = a2; Y = a1g; fg; fgi

PROPOSITION3.13
The rewrite systemUN is adequate forNT.

PROPOSITION3.14
TheE-unification algorithm=)

UN
is sound forNT, terminates and converges.

3.5 E-interpretations

In this section we parametrize the semantics of the traditional Horn clause language w.r.t. an
equality theoryE. To this aim the problem is that, whenever a semantics is defined over the
Herbrand universeU , equality is interpreted by default as syntactic identity. To overcome
this restriction, Jaffaret al. [43] proposed the use of quotient universes. Here we adapt this
technique to our context.

DEFINITION 3.15
Let R be a congruence relation. Thequotient universeof U with respect toR, indicated as
U=R, is the set of the equivalence classes ofU underR, i.e. the partition given byR in U .

Given an equality theoryE, there is an infinite number of models ofE. ForE to have a
canonical model, there must exist a congruence relationR such that

E j= s = t iff dseR = dteR

wheredseR anddteR denote theR-equivalence classes of the ground terms andt, i.e.dseR =
fx j xR sg. This can be achieved only if the equality theory has a ‘finest’ congruence relation
(in the sense of set inclusion). Jaffaret al. showed that each consistent (Horn clause) equality
theory generates a finest congruence relationR0 (the intersection of all congruence relations
that are models ofE). As a consequence, it holds that

(P;E) j= A iff P j=U=R0
A

where(P;E) is a logic program,A is a ground atom andj=U=R0
denotes logical implication

in the context ofU=R0. Thus we can work in a fixed domain which is the canonical domain
for (P;E).

In the following, we writeU=E for U=R0, dse for the element inU=E assigned to the
ground terms and, for any predicate symbolp, we writedp(t1; : : : ; tn)e as a shorthand for
p(dt1e; : : : ; dtne).

We can now introduce the definitions ofE-base,E-interpretation andE-model of a logic
program(P;E).

Reflection Principles in Computational Logic765

DEFINITION 3.16
The E-baseB(P;E) of a logic program(P;E) is the set of all atoms which can be formed
by using predicate symbols from the language of(P;E) with elements from the quotient
universeU=E as arguments.

DEFINITION 3.17
An E-interpretationof a logic program(P;E) is any subset ofB(P;E).

DEFINITION 3.18
Let I be anE-interpretation. ThenI E-satisfiesa ground definite clauseA e1; : : : ; eq;
A1; : : : ; Am if and only if at least one of the following conditions hold:

1.E 6j= ei, for somei, 1 � i � q,

2. dAje 62 I , for somej, 1 � j � m, or

3. dAe 2 I .

DEFINITION 3.19
Let I be anE-interpretation of a logic program(P;E). ThenI E-satisfies(P;E) if and only
if I E-satisfies each ground instance of every clause inP . If there exists anE-interpretation
I whichE-satisfies(P;E), then(P;E) is E-satisfiable, otherwise(P;E) is E-unsatisfiable.

DEFINITION 3.20
Let I be anE-interpretation of a logic program(P;E). ThenI is anE-modelof (P;E) if
and only ifI E-satisfies(P;E).

DEFINITION 3.21
A ground atomA is a logical E-consequenceof a logic program(P;E) if, for every E-
interpretationI , I is anE-model of(P;E) implies thatdAe 2 I .

The leastE-model of a logic program(P;E) can be characterized as the least fixed point of
a mappingT(P;E) overE-interpretations [43], written aslfp(T(P;E)). Let ground(P) be the
set of all ground instances of clauses inP .

DEFINITION 3.22
Let I be anE-interpretation of a logic program(P;E). ThenT(P;E) is defined as follows:

T(P;E)(I) = f dAe : (A e1; : : : ; eq ; A1; : : : ; Am) 2 ground(P);
E j= ei for 1 � i � q;
dAje 2 I for 1 � j � m g:

The following result is proved by Jaffaret al. [43].

THEOREM 3.23
M(P;E) = lfp(T(P;E)) = T(P;E) " !.

In summary, we have defined an enhanced Horn clause languageHC
+ which allows users

to introduce their own naming convention by means of an equality theoryE. The semantics
of HC+ is, up to now, just the semantics of the traditional Horn clause language, which has
been made parametrical w.r.t.E by means of the technique of quotient universes. This is the
first step of the definition ofRCL, in which we have provided users with a language powerful
enough to represent knowledge and metaknowledge in a deductive systemDS.

Then, we have to provide the possibility of defining the inference rules ofDS and per-
forming deductions inDS. With this aim, in Section 2 we have introduced a formal device,

766 Reflection Principles in Computational Logic

that we have called reflection, for defining new inference rules and integrating them into
SLD-resolution. The novelty of the approach is precisely that newly defined inference rules
are immediately ‘executable’, in the context of a declarative and procedural semantics which
do not depart from the usual ones. In fact, the following sections give a model-theoretic
and functional characterization of logic programs with naming and reflection, and present an
extension to SLD-resolution that takes reflection principles into consideration.

4 Reflective semantics

4.1 ReflectiveE-models and fixed point semantics

We use the following definitions.

DEFINITION 4.1
LetR be a reflection principle andI anE-interpretation of a logic program(P;E). ThenI
reflectivelyE-satisfies(P;E) (with respect toR) if and only if I E-satisfies(P [R(P); E).

DEFINITION 4.2
If there exists anE-interpretationI that reflectivelyE-satisfies a logic program(P;E), then
(P;E) is reflectivelyE-satisfiable, otherwise(P;E) is reflectivelyE-unsatisfiable.

DEFINITION 4.3
Let I be anE-interpretation of a logic program(P;E). ThenI is a reflectiveE-modelof
(P;E) if and only if I reflectivelyE-satisfies(P;E).

ReflectiveE-models are clearly models in the usual sense [44], as they are obtained by ex-
tending a given logic program(P;E) with a set of definite clauses. Therefore the model
intersection property still holds and there exists a least reflectiveE-model of(P;E), indi-
cated asMR

(P;E). It entails the consequences of(P;E), the additional consequences drawn

by means of the reflection axioms, and the further consequences obtained from both.MR
(P;E)

is in general not minimal as anE-model of(P;E), but it is minimal with respect to the set of
consequences which can be drawn from both the logic program and the reflection axioms.

DEFINITION 4.4
A ground atomA is areflective logical E-consequenceof a logic program(P;E) if, for every
E-interpretationI , I is a reflectiveE-model for(P;E) implies thatdAe 2 I .

Given a logic program(P;E) and a definite goalG, we hereafter write(P;E) [fGg for
(P [fGg; E) to enhance readability.

PROPOSITION4.5
Let (P;E) be a logic program and A1; : : : ; Ak a ground definite goal. Then(P;E) [f
A1; : : : ; Akg is reflectivelyE-unsatisfiable if and only ifA1 ^ : : :^Ak is a reflective logical
E-consequence of(P;E).

The least reflectiveE-model of a logic program(P;E) can be characterized as the least fixed
point of a mappingTR(P;E) that extendsT(P;E) [43]. The extension is based on the presence
of reflection axioms.

DEFINITION 4.6
LetR be a reflection principle andI anE-interpretation of a logic program(P;E). TR(P;E)
is defined as follows:

Reflection Principles in Computational Logic767

TR(P;E)(I) = f dAe : (A e1; : : : ; eq; A1; : : : ; Am) 2 ground(P [R(P));
E j= ei for 1 � i � q;
dAje 2 I for 1 � j � m g:

Next we give a fixed point characterization of the least reflectiveE-model of a logic program.

PROPOSITION4.7
Let R be a reflection principle andI anE-interpretation of a logic program(P;E). The
mappingTR(P;E) is continuous.

The class of reflectiveE-models can be characterized in terms ofTR(P;E).

PROPOSITION4.8
LetR be a reflection principle andI anE-interpretation of a logic program(P;E). I is a
reflectiveE-model of(P;E) if and only if TR(P;E)(I) � I .

As the class ofE-interpretations forms a complete lattice under the inclusion order [43],
TR(P;E) is continuous over this class, and the class of reflectiveE-models is given byfI j

TR(P;E)(I) � Ig. The result of Jaffaret al. [43] is thus applicable, and provides a fixed point
characterization of the least reflectiveE-model of a logic program(P;E).

THEOREM 4.9
LetR be a reflection principle and(P;E) a logic program. Then,MR

(P;E) = lfp(TR(P;E)) =

TR(P;E) " !.

Next we introduce the definitions of answer and correct answer.

DEFINITION 4.10
Let (P;E) be a logic program andG a definite goal. Ananswerfor (P;E) [fGg is a pair
hH;F i consisting of a Herbrand assignmentH and a setF of irreducible name equations.

DEFINITION 4.11
Let (P;E) be a logic program,G a definite goal A1; : : : ; Ak, andhH;F i an answer for
(P;E) [fGg. hH;F i is acorrect answerfor (P;E) [fGg if, for everyE-solutionH 0 of
F , 8((A1 ^ : : : ^ Ak) bHcH 0) is a reflective logicalE-consequence of(P;E).

THEOREM 4.12
Let (P;E) be a logic program and A1; : : : ; Ak a definite goal. Suppose thathH;F i is an

answer for(P;E)[f A1; : : : ; Akg andH 0 is anE-solution ofF . If (A1 ^ : : :^Ak) bHcH 0

is ground, then the following are equivalent:

(a) hH;F i is a correct answer.

(b) (A1 ^ : : : ^ Ak) bHcH 0 is true w.r.t. every reflectiveE-model of(P;E).

(c) (A1 ^ : : : ^Ak) bHcH 0 is true w.r.t. the least reflectiveE-model of(P;E).

4.2 SLDR-resolution

It is well known how to reformulate SLD-resolution over definite programs in terms of sets
of equations rather than substitutions (see Clark [17]). A computation state is a pairhM;Hi,

768 Reflection Principles in Computational Logic

whereM is a set of atoms that have to be proved andH is a Herbrand assignment. Unification
can in this process be seen as a rewrite system that takes a set of equations to an equivalent
Herbrand assignment [52].

The assumption that unification rewrites the whole set of equations to a Herbrand assign-
ment can be relaxed. Let astateinstead consist of a triplehM;H;F i, whereM is a set of
atoms,H is a Herbrand assignment, andF is a set of irreducible name equations. We can see
H andF as the solved and unsolved part of a single equation system.

Givenn equationse1; : : : ; en, an equality theoryE and a rewrite systemR adequate for
E, a transformation system for unification takes a triplehH;F; fe1; : : : ; engi either to a triple
hH 0; F 0; S0i, whereS0 6= fg, if fe1; : : : ; eng is not solvable, or to a solved formhH 0; F 0; fgi
such thatH � H 0 andH [F [fe1; : : : ; eng is equivalent toH 0 [F 0 underE.

Let (P;E) be a logic program andG a definite goal B1; : : : ; Br. An initial state
for refuting (P;E) [fGg is a triplehfB1; : : : ; Brg; fg; fgi and asuccess stateis a triple
hfg; H; F i, whereF is a solvable set of irreducible name equations, i.e. there exists a Her-
brand assignmentH 0 such thatE j= FcH 0.

Now we can extend SLD-resolution to take into consideration a reflection principleR. We
call the extended SLD-resolution SLDR-resolution.

Given a reflection principleR and an equality theoryE, we write�R to indicate any
procedure that computesR, andRE to indicate any rewrite system adequate forE.

DEFINITION 4.13
LetR be a reflection principle and(P;E) a logic program. LethM [fp(t1; : : : ; tn)g; H; F i
be a state. Given a variantC of a definite clause inP , the statehM [fA1; : : : ; Amg; H

0; F 0i
is derived fromhM [fp(t1; : : : ; tn)g; H; F i andC by using�R andRE if either

(a)C is p(t01; : : : ; t
0
n) e1; : : : ; eq; A1; : : : ; Am or

(b) (p(t01; : : : ; t
0
n) e1; : : : ; eq; A1; : : : ; Am) 2 �R(C),

andhH;F; ft1 = t01; : : : ; tn = t0n; e1; : : : ; eqgi =)
RE

hH 0; F 0; fgi.

The first case (a) corresponds to the operations of the modified SLD-resolution discussed
above. The second case (b) is based on the use of reflection axioms obtained by means of
�R.

The additional inference rule could also be added to other inference systems for definite
programs that have provisions for delaying computation.

An SLDR-derivation is a (finite or infinite) path in the tree of states above. An SLDR-
refutation is a finite path in the tree ending with a success state.

DEFINITION 4.14
Let R be a reflection principle,(P;E) a logic program andG a definite goal. AnSLDR-
derivationof (P;E) [fGg consists of a (finite or infinite) sequence of stateshM; fg; fgi,
hM1; H1; F1i; : : : and a sequenceC1; C2; : : : of variants of definite clauses ofP , such that
eachhMi+1; Hi+1; Fi+1i is derived fromhMi; Hi; Fii andCi+1 by using�R andRE .

DEFINITION 4.15
Let R be a reflection principle,(P;E) a logic program andG a definite goal. AnSLDR-
refutationof (P;E) [fGg is a finite SLDR-derivation of(P;E) [fGg which has a success
state as last state in the derivation. If the success state is of the formhfg; Hn; Fni, we say
that the refutation has lengthn.

Reflection Principles in Computational Logic769

5 Properties of SLDR-resolution

In this section we present the results of soundness and completeness of SLDR-resolution with
respect to the least reflectiveE-model.

5.1 Soundness

To prove soundness of SLDR-resolution we use the following definition.

DEFINITION 5.1
Let (P;E) be a logic program andG a definite goal. Suppose thathfg; H; F i is the success
state of an SLDR-refutation of(P;E)[fGg. ThenhH;F i is acomputed answerfor (P;E)[
fGg.

The next theorem states the main soundness result, i.e. that computed answers are correct.

THEOREM 5.2
(Soundness of SLDR-resolution)Let (P;E) be a logic program andG a definite goal. Every
computed answer for(P;E) [fGg is a correct answer for(P;E) [fGg.

Furthermore, the following result is an immediate consequence.

COROLLARY 5.3
Let (P;E) be a logic program andG a definite goal. Suppose that there exists an SLDR-
refutation of(P;E) [fGg. Then(P;E) [fGg is reflectivelyE-unsatisfiable.

DEFINITION 5.4
Thesuccess setof a logic program(P;E) is the set of all ground atomsA such that(P;E)[

f Ag has an SLDR-refutation.

Notice that atoms in the success set need not be in normal form, that is, they may contain
occurrences of the operators" and#.

As ground atoms may contain occurrences of" and #, while reflectiveE-models only
contain representative forms of such atoms, the success set of a logic program is in general
not contained in its least reflectiveE-model. However, this property holds if we consider the
representative forms of ground atoms. (Recall that the representative form of a ground atom
A is written asdAe.)

COROLLARY 5.5
If a ground atomA belongs to the success set of a logic program(P;E), thendAe is contained
in the least reflectiveE-model of(P;E).

Now we strengthen Corollary 5.5 by showing that, if a ground atomA has an SLDR-refutation
of lengthn, thendAe 2 TR(P;E)"n. This is an extension of the result due to Apt and van Em-
den [4]. We use the following definition.

DEFINITION 5.6
The closureof an atomA, indicated as	(A), is the set of representative elements of all
ground instances ofA,

	(A) = fdBe j for every ground instanceB of Ag:

THEOREM 5.7
Let (P;E) be a logic program andG a definite goal A1; : : : ; Ak. Suppose(P;E) [fGg

has an SLDR-refutation of lengthn with computed answerhHn; Fni.
Then,

Sk
j=1 	(Aj

cHn
cH 0) � TR(P;E)"n, for everyE-solutionH 0 of Fn.

770 Reflection Principles in Computational Logic

5.2 Completeness

The main result of this section is the completeness of SLDR-resolution. This result holds if
the transformation system that is the parameter of SLDR-resolution converges.

We begin our argument for completeness by appropriately rephrasing the Lifting lemma
[49]. This lemma essentially states that, if we can prove a goalG bH from a logic program,
then we can also prove the less instantiated goalG. The two proofs have the same length and
are such that the computed answer ofG bH can be obtained from the one ofG by taking into
consideration the bindings contained inbH.

LEMMA 5.8
(Lifting lemma) Let (P;E) be a logic program,H a Herbrand assignment andG a defi-

nite goal. Suppose there exists an SLDR-refutation of(P;E) [fG bHg with success state
hfg; Hn; Fni. If RE is convergent, then there exists an SLDR-refutation of(P;E) [fGg of
the same length with success statehfg; H 0

n; F
0
ni such thathH 0

n; F
0
n; Hi =)

RE

hHn; Fn; fgi.

The first completeness result gives the converse of Corollary 5.5.

THEOREM 5.9
Let (P;E) be a logic program. A ground atomA belongs to the success set of(P;E) if and
only if dAe is contained in the least reflectiveE-model of(P;E).

THEOREM 5.10
Let (P;E) be a logic program andG a definite goal. Suppose that(P;E)[fGg is reflectively
E-unsatisfiable. Then there exists an SLDR-refutation of(P;E) [fGg.

Next we turn attention to correct answers. It is not possible to prove the exact converse
of Theorem 5.2 because computed answers are always more ‘general’ than correct answers
with respect to the variables and the metavariablesx1; : : : ; xn contained in the definite goal.
However, we can prove that every correct answer is an instance of a computed answer with
respect tox1; : : : ; xn. To do this, we use the following result.

LEMMA 5.11
Let (P;E) be a logic program andA an atom. Suppose thatx1; : : : ; xn are all the vari-
ables and the metavariables occurring inA and that8x1 : : :8xnA is a reflective logicalE-
consequence of(P;E). Then, there exists an SLDR-refutation of(P;E) [f Ag with
computed answerhH;F i such thatE j= 8x1 : : :8xn9(H [F).

EXAMPLE 5.12
Consider the equality theoryNT. Let (P;E) be the logic program:

(fp(x) Y = "xg ;NT) ;

wherex is a variable andY a metavariable. Then,8z(p(z)) is a reflective logicalE-
consequence of(P;E). In fact, the name equationY = "x is satisfied for every value
of x. A computed answer for the goal p(z) is hfz = xg; fY = "xgi. It holds that
UN j= 8z9x9Y (z = x ^ Y = "x).

Now we are in the position to state the main completeness result.

THEOREM 5.13
(Completeness of SLDR-resolution)Let (P;E) be a logic program andG a definite goal.
If RE is convergent, then for every correct answerhH;F i for (P;E) [fGg, there ex-
ists a computed answerhH 0; F 0i for (P;E) [fGg. Furthermore, there exists a Herbrand

Reflection Principles in Computational Logic771

assignmentH 00 such that, for everyE-solutionHF andHF 0 of F andF 0, respectively,
(GcH 0dHF 0)cH 00 = G bHdHF holds.

6 Applications

The main proposal of the present paper is the novel use of reflection principles as a paradigm
for the representation of knowledge in a computational logic setting. The claim is that in
many cases well-chosen reflection principles can adequately, clearly and concisely represent
the basic features and properties of a domain. Though some technical developments shown
in this paper are quite intricate, they serve as the behind-the-scenes sound definition and
operation of the proposed system. Users will not be concerned with most of them, except for
those which are aimed at helping users to tailor the system to their specific needs.

To substantiate this claim, in this section we offer examples of how to use the system
capabilities in three different representation problems. Overall, we hope that this section
also shows how one concept and tool (i.e. reflection principles) can be used in such different
application areas, that they would otherwise be (and in the literature are) handled by different
formalisms and techniques; in other words, reflection principles actually work as a knowledge
representation paradigm.

On purpose, we recall some of the application domains we have studied in the past, so as
to show how the previousad hocformulations can be rephrased as particular instances of the
new framework that we propose in this paper.

6.1 Reflective Prolog

The first example of application of RCL to the definition of an actual deductive system con-
cerns a metalogic Horn clause language with an extended resolution principle. This language
is called Reflective Prolog, and is described in detail in [24]. Reflective Prolog (RP for short)
has been defined and implemented by (some of) the authors of this papers: for them it has
been the seminal work which stimulated the first intuition of the concepts that, with time and
thought, have led to the formalization of RCL. Then, turning back, it is interesting to see how
the new general framework we are now presenting is able to express that language that is, in
a sense, its ancestor.

The axiomatization of the naming mechanism of Reflective Prolog as an equality theory
(computationally characterized by a rewrite system), which is the first step for defining Re-
flective Prolog inRCL, is described in [9].

As concerns the Reflective Prolog inference rule, i.e. RSLD-resolution, we may notice that
it can be seen as a form of SLDR-resolution which uses reflection axioms implicitly present
in the program. Thus, RSLD-resolution can be expressed in RCL by two reflection principles:
reflection downandreflection up.

Reflection down makes any conclusion drawn at the metaevaluation level available (re-
flected down) to the object level. Reflection down can be represented by the following reflec-
tion principleD. LetC be a definite clause.

� If C is of the formsolve([p1; t1; : : : ; tn]) e1; : : : ; eq; A1; : : : ; Am, then

D(C) = fp(x1; : : : ; xn) x1 = #t1; : : : ; xn = #tn; e1; : : : ; eq ; A1; : : : ; Amg.

772 Reflection Principles in Computational Logic

� If C takes the formsolve([X; t1; : : : ; tn]) e1; : : : ; eq; A1; : : : ; Am, then

D(C) =

8<
:

p(x1; : : : ; xn) x1 = #t1; : : : ; xn = #tn;
X = p1;
e1; : : : ; eq; A1; : : : ; Am

������
for everyn-ary
predicate sym-
bol p 6= solve

9=
; :

� If C is of the formsolve(X) e1; : : : ; eq ; A1; : : : ; Am, then

D(C) =

8<
:

p(y1; : : : ; yn) y1 = #X1; : : : ; yn = #Xn;
X = [p1; X1; : : : ; Xn];
e1; : : : ; eq; A1; : : : ; Am

������
for every pred-
icate symbol
p 6= solve

9=
; :

Reflection up makes any conclusion drawn at the object level available (reflected up) to the
metaevaluation level. Reflection up can be represented by the following reflection principle
calledU .

� If C is of the formp(t1; : : : ; tn) e1; : : : ; eq; A1; : : : ; Am, with p 6= solve, then

U(C) =
�

solve([p1; X1; : : : ; Xn]) X1 = "t1; : : : ; Xn = "tn; e1; : : : ; eq ; A1; : : : ; Am

	
.

RSLD-resolution can then be defined by the following reflection principleRP .

RP(C) =

�
U(C) if C is an object level clause
D(C) if C is a metaevaluation clause:

Thus, SLDRP -resolution is able to use clauses with conclusionsolve(X) to resolve a
goalA (downward reflection), and, vice versa, clauses with conclusionA to resolve a goal
solve(X) (upward reflection).

Below we reformulate in RCL an old example, which shows how metaevaluation clauses
can play the role of additional clauses for object level predicates.

EXAMPLE 6.1
Let (P;E) be the following logic program:0

@
8<
:

solve([X;Y; Z]) symmetric(X); solve([X;Z; Y])
symmetric(p1)
p(a; b)

9=
; ;NT

1
A

whereNT is the equality theory defined in Definition 3.4. The first clause inP defines the
usual concept of symmetry of a relation: the objects with namesY andZ are in the relation
with nameX , provided that the relation denoted byX is asserted to be symmetric and that
the objects denoted byZ andY are in the relation denoted byX . The second clause states
that the relationp is symmetric, and the last clause partially defines the relationp.

As p is the only binary predicate symbol inP , the reflection axioms ofP are the following:

RP(P) =

8>>><
>>>:

p(y1; z1) y1 = #Y; z1 = #Z;X = p1;
symmetric(X); solve([X;Z; Y])

solve([symmetric1; X]) X = "p1

solve([p1; X; Y]) X = "a; Y = "b

9>>>=
>>>;.

Reflection Principles in Computational Logic773

Now we can provep(b; a) fromP by applying SLDRP -resolution.
Notice thatp(b; a) does not logically follow from(P;E) without reflection principles. In

fact, the leastE-model and reflectiveE-model of(P;E) are respectively:

M(P;E) =
�
dp(a; b)e; dsymmetric(p1)e

	

MRP
(P;E) = M(P;E) [

�
dp(b; a)e; dsolve([p1; a1; b1])e;
dsolve([symmetric1; p2])e; dsolve([p1; b1; a1])e

�
:

Thus, by means of reflection up and reflection down, the first clause ofP becomes an
axiomatization of symmetry, which can be applied whenever necessary.

In summary, it can be useful to explicitly state the difference between Reflective Prolog as
it was originally defined, and its formalization inRCL.

� RP had anad hocextended unification treating a fixed naming, while in RCL the naming
is axiomatized and treated by means of rewrite rules.

� RP had a unique hard-wired reflection principle, while inRCL any reflection principle
most appropriate to the domain can be expressed; this also implies that the above re-
flection principle could coexist in the same system with other reflection principles, for
instance those introduced in the following subsections.

� RP semantics was defined in a specific way, while its reformulation inRCL is given a
semantics as an instance of the general schema given in previous sections. Precisely, the
concepts of extended Herbrand base and extended interpretation were absolutelyad hoc;
the concept of a reflective model for RP can be considered as a rough first sketch which,
in time, has evolved into the more general concept presented in this paper.

6.2 Communication-based reasoning

Another problem that we have discussed in a previous paper [20] concerns the ability to
represent agents and multi-agent cooperation, which is central to many AI applications. In
the context of communication-based reasoning, the interaction among agents is based on
communication acts.

Communication actsare formalized by means of the predicate symbolstell andtold. They
both take as first argument the name of a theory symbol and as second argument the name of
an expression of the language. Let! and� be theory symbols andA an atom. The intended
meaning of!:tell(�1; A1) is: the agent! tells agent� thatA, and of�:told(!1; A1) is: � is
told by! thatA. These two predicates are intended to model the simplest and most neutral
form of communication among agents, with no implication about provability (or truth, or
whatever) of what is communicated, and no commitment about how much of its information
an agent communicates and to whom.

The intended connection betweentell and told is formalized by the following reflection
principleC.

� If C is a clause of the form!:tell(�1; Z) !:e1; : : : ; !:eq; !:B1; : : : ; !:Bn), then

C(C) =

�
x:told(Y; Z) !:(x = #�1); x:(Y = "!);

!:e1; : : : ; !:eq; !:B1; : : : ; !:Bn)

�
:

774 Reflection Principles in Computational Logic

Its intuitive meaning is that every time an atom of the formtell(�1; Z) can be derived from
a theory! (which means that agent! wants to communicate propositionZ to agent�), the
atomtold(Y; Z) is consequently derived also in the theory� (which means that proposition
Z becomes available to agent�).

We propose an example to show in some detail what is the declarative semantics of a program,
and how SLDR-resolution works.

EXAMPLE 6.2
Consider the equality theoryNT. Let (P;E) be the logic program:0

@
8<
:

!:tell(�1; ciao1) !:friend(�1)
!:friend(�1)
�:hate(!1)

9=
; ;NT

1
A

The reflection axioms ofP are the following:

C(P) =
n

x:told(Y; ciao1) ! :(x = #�1); x :(Y = "!); !:friend(�1)
o
:

The leastE-model and reflectiveE-model of(P;E) are respectively:

M(P;E) =
�
d!:friend(�1)e; d�:hate(!1)e; d!:tell(�1; ciao1)e

	
MC

(P;E) =M(P;E) [
�
d�:told(!1; ciao1)e

	
:

The goal �:told(!1; Z) can be proved with the following steps.

- The initial state ishf�:told(!1; Z)g; fg; fgi.

- By applying the second case (b) of Definition 4.13 with respect toC, we obtain the state
hf!:friend(�1)g; fx = �; Y = !1; Z = ciao1g; fgi.

- Finally, by considering the second clause inP , we obtain the final state
hfg; fx = �; Y = !1; Z = ciao1g; fgi.

6.3 Plausible reasoning

Plausible reasoning is a suitable realm of application of reflection principles. In fact, most
forms of plausible reasoning reinterpret available premisses to draw plausible conclusions.

In logic programming, given a programP , viewed as divided into two subprogramsPs
andPt (which play the role of the source and the target domain, respectively), analogy can be
procedurally performed by transforming rules inPs into analogous rules inPt. The analogous
rules can be computed by means ofpartial identitybetween terms of the two domains [37],
or by means ofpredicate analogiesandterm correspondence[25].

In particular, let us assume that predicates with the same name inPs andPt are in anal-
ogy by default. Let us also assume an explicit declaration is provided of analogy between
predicates or, more generally, between terms of the two programs (this declaration is called
term correspondence). Then, given a goal which is not provable inPt, this goal may possibly
be provable by analogy, and in particular by adapting a suitably selected rule of the source
programPs. Given a term correspondence, this rule can be transformed into an analogous
rule, composed of predicates and terms of the target program, to be used in proving the given

Reflection Principles in Computational Logic775

goal. Notice that the new rule is not actually added toPt, but just constructed and used ‘on
the fly’.

A deductive system which acts in this way can be easily formalized inRCL.
In this case no encoding device is needed (this is not a metaprogramming application).

Nevertheless, the machinery for defining encodings can be ‘recycled’ for defining term analo-
gies. In particular, substitutions used for unification can be seen as particular cases of corre-
spondences. Thus, term correspondences can be composed with substitutions, giving a new
term correspondence as a result.

The inference rule implementing this kind of analogical reasoning can be expressed in
terms of a reflection principleA defined below. Given a setS of predicate analogies and a
term correspondence�, define a relationr as:

1. r(p(t1; : : : ; tn); q(t1�; : : : ; tn�)) holds for every(p; q) 2 S,

2. r(A0 A1; : : : ; Am; B0 B1; : : : ; Bm) holds if r(Ai; Bi) holds for everyi, 0 � i �
m.

Now we can defineA as:
A(x) = fy j r(x; y) holdsg:

The reflective semantics of this kind of analogical reasoning can be defined as follows.
Given a logic program(P;E), it can be divided into two subprograms,(Ps; E) and(Pt; E),
as mentioned above. LetUPs ,BPs andpred(Ps) (resp.,UPt ,BPt , pred(Pt)) be the Herbrand
universe, theE-base and the set of predicate symbols ofPs (resp.,Pt). The mappingTA(P;E),
which allows the derivation of analogical consequences as outlined above, characterizes the
consequences ofPt with respect to the clauses ofPt itself and the clauses ofPs.

7 Related work and concluding remarks

In Section 1 we gave general references to the ample subject of metalevel architectures and
reflection and in Section 2 we reviewed the basic literature on this matter. In this section,
we make an attempt to more specifically relate our approach to other proposals advanced in
several contexts, since we wish to emphasize that it might be helpful, at least conceptually, to
fulfil the needs arising in diverse problem domains such as software engineering, automated
reasoning and theorem proving, knowledge representation and machine learning. Though the
novelty of the proposed paradigm does not allow a direct comparison with other work, we
will try to highlight possible commonalities with approaches having similar objectives put
forward in different fields.

Several authors, especially in the logic programming community, have considered the util-
ity of building program schemata that may represent a whole class of specific programs hav-
ing a similar structure.

Kwok and Sergot [46] suggest ‘to write a logic program implicitly by stating the defining
property which characterises it’ and show that ‘implicitly-defined programs may be used to
simulate higher-order functions, define programs containing an infinite number of clauses and
reuse existing programs’. They, however, ‘do not give specific proposals on how to extend
existing languages by utilising this technique’.

Barker-Plummer [6] proposes an extension to the Prolog language to write commonly oc-
curring program forms (calledcliches) just once but to reuse them in a variety of ways, and
implements this method by means of Prolog metaprograms.

776 Reflection Principles in Computational Logic

Fuchs and Fromher [33] observe that ‘since the beginning of logic programming it has
been recognized that many logic programs ... are structured similarly, and can be understood
as instances of program schemata’. The objective is to transform an instance of one program
schema into an instance of another, to get a transformed program that is more efficient than
the original. The paper deals with transformation schemata which represent specific transfor-
mation strategies. Transformations generate equivalent programs in that the least Herbrand
model and the computed answers are preserved.

Yokomori [74] proposes logic program forms as sets of Horn clauses whose atoms may
have uninstantiated predicate name variables. An instantiation (called interpretation) of a
logic program form F is obtained by mapping the predicate name variables appearing in F to
predicate names, and from the variables appearing in F to terms, under suitable restrictions.
Instead ofn programs having the same structure, one logic form can thus be given, together
with n interpretations. This is therefore a rather static approach, where neither a proof theory
nor a model theory is involved.

All of the above-mentioned approaches can be represented in Reflective Prolog, which in
turn is a particular instantiation ofRCLas shown in Section 6.1.

Pfenning [58] calls ‘logical frameworks’ a metalanguage for the specification of deduc-
tive systems, and argues that: ‘Logical frameworks are subject to the same general design
principles as other programming or specification languages. They should be as simple and
uniform as possible, yet they should provide concise means to express the concepts and meth-
ods of the intended application domain’. While surveying several frameworks, he remarks
that ‘research in logical framework is still in its infancy’.

We refer the reader to the literature mentioned in the introduction for many other meta-
level architectures, systems and languages that have been proposed, in particular those not
involving reflection that therefore we have not explicitly mentioned. The approach discussed
in the present paper differs from all of this work in that it is intended to show that, instead
of defining different architectures and languages for different knowledge representation, rea-
soning and learning tasks, it suffices to represent the latter as reflection principles in one and
the same single language, as we have attempted to show in the examples of Section 6.

Considering in particular the application of the general framework presented in this paper
to the field of metalogic languages, Reflective Prolog (Section 6.1) has been compared to
the other main approaches in [24]. A more recent approach, not considered there, is that of
[39], which is very similar to [24] about the treatment of naming and unification, except for
providing multiple theories, and names for theories. Theories are able to exchange formulae
that they can prove, by means of a distinguished binary predicatedemo, appearing explicitly
in the body of clauses, and having the name of a theory as the first argument, and the name of
a formula as the second argument. It is interesting to notice that this approach could be easily
modelled inRCL: theory communication could be modelled as in Section 6.2, usingdemoon
both sides (instead oftell/told), anddemocould be forced to convey provable formulae by
means of the reflection principleU (Reflection up) of Section 6.1, withdemoinstead ofsolve.

Finally, let us review how the present paper relates to our own previous work on the matter.
A language for building reflective, non-conservative extensions of Horn clause theories

was first proposed in [22] and fully defined formally in [24]. The system was then aug-
mented with a reflective, non-monotonic negation apt to represent non-monotonic reasoning
[23]. A formalization of analogical reasoning in this reflective logic was elaborated in [25].
Reflection was used to represent communication among different theories/agents in [10, 20].
The very idea that a common view underlying such diverse contexts could be systematized in

Reflection Principles in Computational Logic777

the unifying framework of reflection principles was first advanced in [21].
In order to achieve a more language-independent formulation of reflection principles, the

system’s syntactical apparatus (language and proof theory) was then parametrized, using
equational name theories for encoding facilities, and associated rewriting systems for sub-
stitution facilities [8, 9]. The present paper represents a new attempt to both clarify the role
of reflection principles at the knowledge level and to formalize it at this enhanced technical
level.

To summarize, the RCL system proposed in this paper is intended to be a logical frame-
work:

� theoretically well founded with proved semantic properties;

� carefully designed in both the basic features and the flexible parametrical ones;

� fully worked out in all the technical details;

� practically implementable with known state-of-the art techniques;

� wide in scope with respect to the set of tasks representable with it (from software engi-
neering to knowledge representation, from common-sense reasoning to theorem proving);

� based on a single concept (the proposed form of reflection principles) for uniformly ad-
dressing these different tasks and domains;

� aimed at two classes of potential users: (i) those who may find its basic default features
sufficient for their applications and by sticking to them are guaranteed with respect to
soundness and completeness and (ii) those who may wish to exploit its constructive para-
metrical features to experiment with tailored forms of encodings and resolution reflection
principles for more sophisticated applications and accept the burden of checking the hold-
ing of the required semantic properties.

We now wish to conclude the paper with a disclaimer. We believe reflection to be a pow-
erful concept, yet a difficult one both theoretically and for practical implementations. Our
system is limited to the extent that it is based on enhanced Horn clauses (not full first-order
logic) for both language and metalanguage, with the same inference rule (SLD-resolution),
which is different from other approaches that use distinct languages and/or inference systems.
We are aware that the system we have proposed is just one single point in a huge space of
possibilities, largely still to be explored. Some steps have been taken very recently towards
establishing a groundwork for comparing different kinds of reflection and for studying their
underlying theoretical properties [18, 54]. Our contribution is an effort to include reflection
in the reconciliation of logic and computation that we feel is very much to be in the spirit and
(we may say by now) the tradition of computational logic and logic programming.

In the next future,RCL will be fully implemented, taking as a starting point the existing
implementation of Reflective Prolog, which is fully working, and has been used in several
applications.

References
[1] H. Abramson and M. H. Rogers, eds.Meta-Programming in Logic Programming, The MIT Press, Cambridge,

MA, 1989.
[2] L. Aiello and G. Levi. The uses of metaknowledge in AI systems. InProceedings of the European Conference

on Artificial Intelligence, pp. 705–717, 1984.
[3] L. C. Aiello, C. Cecchi and D. Sartini. Representation and use of metaknowledge.Proceedings of the IEEE,

74, 1304–1321, 1986.

778 Reflection Principles in Computational Logic

[4] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.Journal of the ACM, 29,
841–862, 1982.

[5] G. Attardi and M. Simi. Meta–level reasoning across viewpoints. InProceedings of the European Conference
on Artificial Intelligence, T. O’Shea, ed., pp. 315–325, North-Holland, Amsterdam, 1984.

[6] D. Barker-Plummer. Cliche programming in Prolog. InProceedings of the Second Workshop on Meta-
Programming in Logic, M. Bruynooghe, ed. pp. 247–256. Department of Computer Science, Katholieke Uni-
versity Leuven, 1990.

[7] J. Barklund. Metaprogramming in logic. InEncyclopedia of Computer Science and Technology, Vol. 33,
A. Kent and J. G. Williams, eds. pp. 205–227. M. Dekker, New York, 1995.

[8] J. Barklund, S. Costantini, P. Dell’Acqua and G. A. Lanzarone. SLD-resolution with reflection. InLogic
Programming – Proceedings of the 1994 International Symposium, M. Bruynooghe, ed. pp. 554–568. The MIT
Press, Cambridge, MA, 1994.

[9] J. Barklund, S. Costantini, P. Dell’Acqua and G. A. Lanzarone. Semantical properties of encodings in logic
programming. InLogic Programming – Proceedings of the 1995 Internationl Symposium, J. W. Lloyd, ed. pp.
288–302, The MIT Press, Cambridge, MA, 1995.

[10] J. Barklund, S. Costantini, P. Dell’Acqua and G. A. Lanzarone. Metareasoning agents for query-answering
systems. InFlexible Query-Answering Systems, T. Andreasen, H. Christiansen and H. Legind Larsen, eds. pp.
103–122. Kluwer Academic Publishers, Boston, MA, 1997.

[11] J. Barklund, S. Costantini and F. van Harmelen, eds.Proceedings of the Workshop on Meta Programming and
Metareasonong in Logic, post-JICSLP96 workshop, Bonn (Germany), 1996. UPMAIL technical Report No.
127 (Sept. 2, 1996), Computing Science Department, Uppsala University.

[12] K. A. Bowen and R. A. Kowalski. Amalgamating language and metalanguage in logic programming. InLogic
Programming, K. L. Clark and S.-̊A. T̃ärnlund, eds. pp. 153–172. Academic Press, London, 1982.

[13] M. Bruynooghe, ed.Proceedings of the Second Workshop on Meta-Programming in Logic, Leuven (Belgium),
1990. Department of Computer Science, Katholieke University, Leuven.

[14] R. Carnap.The Logical Syntax of Language. Kegan Trench Trubner, London, 1937.
[15] G. Casaschi, S. Costantini and G. A. Lanzarone. Realizzazione di un interprete riflessivo per clausole di Horn.

In Gulp89, Proceedings of the 4th Italian National Symposium on Logic Programming, P. Mello, ed. pp. 227–
241, Bologna, 1989 (in Italian).

[16] K. L. Clark. Negation as failure. InLogic and Data Bases. H. Gallaire and J. Minker, eds. Plenum Press, New
York, 1978.

[17] K. L. Clark. Logic-programming schemes and their implementations. InComputational Logic: Essays in
Honor of Alan Robinson, J.-L. Lassez and G. Plotkin, eds. pp. 487–541. The MIT Press, Cambridge, MA,
1991.

[18] M. G. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. InProceedings of the Reflection
’96, G. Kiczales, ed. pp. 263–288, Xerox PARC, 1996.

[19] S. Costantini. Semantics of a metalogic programming language.International Journal of Foundation of Com-
puter Science, 1, 1990.

[20] S. Costantini, P. Dell’Acqua and G. A. Lanzarone. Reflective agents in metalogic programming. InMeta-
Programming in Logic, LNCS 649, A. Pettorossi, ed. pp. 135–147, Springer-Verlag, Berlin, 1992.

[21] S. Costantini, P. Dell’Acqua and G. A. Lanzarone. Extending Horn clause theories by reflection principles. In
Logics in Artificial Intelligence, LNAI 838, C. MacNish, D. Pearce and L. M. Pereira, eds. Springer-Verlag,
Berlin, 1994.

[22] S. Costantini and G. A. Lanzarone. A metalogic programming language. InProceedings of the 6th International
Conference on Logic Programming, G. Levi and M. Martelli, eds. pp. 218–233, The MIT Press, Cambridge,
MA, 1989.

[23] S. Costantini and G. A. Lanzarone. Metalevel negation in non-monotonic reasoning.International Journal of
Methods of Logic in Computer Science, 1, 111–140, 1994.

[24] S. Costantini and G. A. Lanzarone. A metalogic programming approach: language, semantics and applications.
International Journal of Experimental and Theoretical Artificial Intelligence, 6, 239–287, 1994.

[25] S. Costantini, G. A. Lanzarone and L. Sbarbaro. A formal definition and a sound implementation of analogical
reasoning in logic programming.Annals of Mathematics and Artificial Intelligence, 14, 17–36, 1995.

[26] D. De Schreye and B. Martens. A sensible least Herbrand semantics for untyped vanilla meta-programming
and its extension to a limited form of amalgamation. InMeta-Programming in Logic, LNCS 649, A. Pettorossi,
ed. pp. 192–204, Springer-Verlag, Berlin, 1992.

Reflection Principles in Computational Logic779

[27] P. Dell’Acqua. Development of the Interpreter for a Metalogic Programming Language. Degree thesis, Uni-
versita degli Studi di Milano, Milano, 1989 (in italian).

[28] P. Dell’Acqua.SLD–Resolution with Reflection. PhL Thesis, Uppsala University, Uppsala, 1995.
[29] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. InHandbook of Theoretical Computer Science, Vol. B:

Formal Models and Semantics. J. van Leeuwen, ed. Elsevier, Amsterdam, 1990.
[30] Pierre Cointe E. and des Mines de Nanteset al., eds. OOPSLA 1993 Workshop on Reflection and Meta-level

Architectures, Washington DC, 1993.

[31] S. Feferman. Transfinite recursive progressions of axiomatic theories.Journal of Symbolic Logic, 27, 259–316,
1962.

[32] L. Fribourg and F. Turini, eds.Logic Program Synthesis and Transformation – Meta-Programming in Logic,
LNCS 883. Springer-Verlag, 1994.

[33] N. E. Fuchs and M. P. J. Fromherz. Schema-based transformations of logic programs. InProceedings of the
Workshop Logic Program Synthesis and Transformation, 1992.

[34] F. Giunchiglia and A. Cimatti. Introspective metatheoretic reasoning. InLogic Program Synthesis and Trans-
formation – Meta-Programming in Logic, LNCS 883, pp. 425–439, 1994.

[35] F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics, or: how we can do without modal logics.
Artificial Intelligence, 65, 29–70, 1994.

[36] F. Giunchiglia and A. Traverso. A metatheory of a mechanized object theory.Artificial Intelligence, 80, 197–
241, 1996.

[37] M. Haraguchi and S. Arikawa. Reasoning by analogy as a partial identity between models. InAnalogical and
Inductive Inference, K. P. Jantke, ed. pp. 61–87, LNCS 265, Springer-Verlag, Berlin, 1987.

[38] J. Harrison. Metatheory and reflection in theorem proving: a survey and critique. Technical report, University
of Cambridge Computer Laboratory, 1995.

[39] C. Higgins. On the declarative and procedural semantics of definite metalogic programs.Journal of Logic and
Computation, 6, 363–407, 1996.

[40] P. M. Hill and J. Gallagher. Meta-programming in logic programming. InHandbook of Logic in Artificial Intel-
ligence and Logic Programming, Vol. 5. D. Gabbay, C. J. Hogger and J. A. Robinson, eds. Oxford University
Press, 1995.

[41] P. M. Hill and J. W. Lloyd. Analysis of metaprograms. InMeta-Programming in Logic Programming,
H. Abramson and M. H. Rogers, eds. pp. 23–51, The MIT Press, Cambridge, MA. 1988.

[42] P. M. Hill and J. W. Lloyd.The Gödel Programming Language. The MIT Press, Cambridge, MA, 1994.

[43] J. Jaffar, J.-L. Lassez and M. J. Maher. A theory of complete logic programs with equality.Journal of Logic
Programming, 3, 211–223, 1984.

[44] J. Jaffar, J.-L. Lassez and M. J. Maher. A logic programming language scheme. InLogic Programming–
Functions, Relations, and Equations, D. DeGroot and G. Lindstrom, eds. pp. 441–467. Prentice-Hall, Engle-
wood Cliffs, NJ, 1986.

[45] Y. J. Jiang. Ambivalent logic as the semantic basis of metalogic programming: I. InProceedings of the
11th International Conference on Logic Programming, P. Van Hentenryck, ed. pp. 387–401, The MIT Press,
Cambridge, MA, 1994.

[46] C. S. Kwok and M. Sergot. Implicit definition of logic programs. InProceedings of the 5th International
Conference Symposium on Logic Programming, R. A. Kowalski and J. A. Bowen, eds. pp. 374–385, The MIT
Press, Cambridge, MA, 1988.

[47] G. A. Lanzarone. Metalogic programming. In1985–1995 Ten Years of Logic Programming in Italy, M. I.
Sessa, ed. pp. 29–70. Palladio, 1995.

[48] G. Levi and D. Ramundo. A formalization of metaprogramming for real. InLogic Programming – Proceedings
of the 10th International Conference on Logic Programming, D. S. Warren, ed. pp. 354–373, The MIT Press,
Cambridge, MA, 1993.

[49] J. W. Lloyd. Foundations of Logic Programming, second edition. Springer-Verlag, Berlin, 1987.
[50] P. Maes.Computational Reflection. PhD thesis, Vrije Universiteit Brussel, Faculteit Wetenschappen, Dienst

Artificiele Intelligentie, Brussles, 1986.
[51] P. Maes and D. Nardi, eds.Meta-Level Architectures and Reflection. North-Holland, Amsterdam, 1988.

[52] A. Martelli and U. Montanari. An efficient unification algorithm.ACM TOPLAS, 4, 258–282, 1982.
[53] B. Martens and D. De Schreye. Why untyped nonground metaprogramming is not (much of) a problem.Journal

of Logic Programming, 22, 1995.

780 Reflection Principles in Computational Logic

[54] A. Mendhekar and D. Friedman. An exploration of relationships between reflective theories. InProceedings of
the Reflection ’96. G. Kiczales, ed. Xerox PARC, 1996.

[55] D. Perlis. Languages with self-reference I: foundations (or: we can have everything in first-order logic!).
Artificial Intelligence, 25, 301–322, 1985.

[56] D. Perlis and V. S. Subrahmanian. Meta-languages, reflection principles, and self-reference. InHandbook of
Logic in Artificial Intelligence and Logic Programming, Vol. II: Deduction Methodologies. D. M. Gabbay, C.
J. Hogger and J. A. Robinson, eds. Oxford University Press, 1994.

[57] A. Pettorossi, ed.Meta-Programming in Logic, LNCS 649, Springer-Verlag, Berlin, 1992.
[58] F. Pfenning. The practice of logical frameworks. InTrees in Algebra and Programming - CAAP ’96, Linkoping,

Sweden, H. Kirchner, ed. pp. 119–134. LNCS 1059, Springer–Verlag, Berlin, 1996.
[59] W. V. O. Quine.Mathematical Logic. Harvard University Press, Cambridge, MA, 1947.
[60] B. Smith and A. Yonezawa, eds.Proceedings of the of the IMSA’92 International Workshop on Reflection and

Meta-level Architectures. Research Institute of Software Engineering, Tokyo. 1992.
[61] B. C. Smith. Reflection and semantics in Lisp. Technical report, Xerox Parc ISL-5, Palo Alto, CA, 1984.
[62] B. C. Smith. Varieties of self-reference. InTheoretical Aspects of Reasoning about Knowledge, pp. 19–43.

Morgan Kaufmann, 1986.
[63] L. Sterling and E. Y. Shapiro, eds.The Art of Prolog. The MIT Press, Cambridge, MA, 1986.
[64] V. S. Subrahmanian. Foundations of metalogic programming. InMeta-Programming in Logic Programming,

H. Abramson and M. H. Rogers, eds. pp. 1–14, The MIT Press, Cambridge, MA, 1988.
[65] P. Suppes.Introduction to Logic. Van Nostrand Reinhold Company, New York, 1957.
[66] A. Tarski. The concept of truth in formalized languages. InLogic, Semantics, Metamathematics, pp. 152–278.

Clarendon Press, Oxford, 1956.
[67] J. Treuer. Temporal semantics of meta–level architectures for dymanic control of reasoning. InLogic Program

Synthesis and Transformation – Meta-Programming in Logic, LNCS 883, pp. 353–376, 1994.
[68] W. van der Hoek, J.-J. Meyer, and J. Treuer. Formal semantics of temporal epistemic reflection. InLogic

Program Synthesis and Transformation – Meta-Programming in Logic, LNCS 883, pp. 332–352, 1994.
[69] F. van Harmeleen. A model of costs and benefits of meta-level computation. InLogic Program Synthesis and

Transformation – Meta-Programming in Logic, LNCS 883, pp. 248–261, 1994.
[70] F. van Harmelen. A classification of meta-level architectures. InProceedings of the Second Workshop on Meta-

Programming in Logic, Leuven, M. Bruynooghe, ed. Department of Computer Science, Katholieke University
Leuven, 1990.

[71] F. van Harmelen. Meaningful names: formal properties of meta-level naming relations. Deliverable of ESPRIT
Basic Research Project 3178 (REFLECT), 1990.

[72] F. van Harmelen. Definable naming relations in meta-level systems. InMeta-Programming in Logic, A. Pet-
torossi, ed. pp. 89–104, LNCS 649, Springer-Verlag, Berlin, 1992.

[73] R. W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning.Artificial Intelligence, 13, 133–
170, 1980.

[74] T. Yokomori. Logic program forms.New Generation Computing, 4, 305–309, 1986.

Appendix
Proposition 4.5 Let (P;E) be a logic program and A1; : : : ; Ak be a ground definite goal. Then(P;E) [f
A1; : : : ; Akg is reflectivelyE-unsatisfiable if and only ifA1 ^ : : : ^ Ak is a reflective logicalE-consequence of
(P;E).

PROOF. Suppose that(P;E) [f A1; : : : ; Akg is reflectivelyE-unsatisfiable. LetI be anyE-interpretation
of (P;E). Assume thatI is a reflectiveE-model of(P;E). As (P;E) [f A1; : : : ; Akg is reflectivelyE-
unsatisfiable,I cannot be a reflectiveE-model of:(A1 ^ : : : ^ Ak). Hence, each atomAi, 1 � i � k, is true
underI, i.e.I is a reflectiveE-model for everyAi. ConsequentlyA1^: : :^Ak is a reflective logicalE-consequence
of (P;E).

Conversely, suppose thatA1 ^ : : : ^ Ak is a reflective logicalE-consequence of(P;E). Let I be anE-
interpretation of(P;E) and assume thatI is a reflectiveE-model of(P;E). ThenI is also a reflectiveE-model of
A1^: : :^Ak. Hence,I is not a reflectiveE-model of:(A1^: : :^Ak). Consequently,(P;E)[f A1; : : : ; Akg

is reflectivelyE-unsatisfiable.

Reflection Principles in Computational Logic781

Proposition 4.7 LetR be a reflection principle andI anE-interpretation of a logic program(P;E). The mapping
TR
(P;E)

is continuous.

PROOF. LetX be a subset of2B(P;E) . Notice first thatfdA1e; : : : ; dAmeg � lub(X) iff fdA1e; : : : ; dAmeg �
I, for someI 2 X. In order to show thatTR

(P;E)
is continuous, we have to show thatTR

(P;E)
(lub(X)) =

lub(TR
(P;E)

(X)), for each directed subsetX of 2B(P;E) . Now we have that

dAe 2 TR
(P;E)

(lub(X))

iff (A e1; : : : ; eq; A1; : : : ; Am) 2 ground(P[R(P)),E j= ei for all i, 1 � i � q, andfdA1e; : : : ; dAmeg �
lub(X),

iff (A e1; : : : ; eq; A1; : : : ; Am) 2 ground(P[R(P)),E j= ei for all i, 1 � i � q, andfdA1e; : : : ; dAmeg �
I, for someI 2 X,

iff dAe 2 TR
(P;E)

(I), for someI 2 X,

iff dAe 2 lub(TR
(P;E)

(X)).

Proposition 4.8 LetR be a reflection principle andI anE-interpretation of a logic program(P;E). ThenI is a
reflectiveE-model of(P;E) if and only ifTR

(P;E)
(I) � I.

PROOF. I is a reflectiveE-model for(P;E) iff the following two cases hold.

Case 1

For every(A e1; : : : ; eq ; A1; : : : ; Am) 2 ground(P), we have thatE j= ei for all i, 1 � i � q,
andfdA1e; : : : ; dAmeg � I implies thatdAe 2 I becauseI is anE-model of each clause inP ;

iff TR
(P;E)

(I) � I.

Case 2

For every(A e1; : : : ; eq ; A1; : : : ; Am) 2 ground(R(P)), we have thatE j= ei for all i,
1 � i � q, andfdA1e; : : : ; dAmeg � I implies thatdAe 2 I because, by the definition of reflective
E-model,I is anE-model of each reflective axiom inR(P);

iff TR
(P;E)

(I) � I.

Theorem 4.12 Let (P;E) be a logic program and A1; : : : ; Ak a definite goal. Suppose thathH;F i is an

answer for(P;E)[f A1; : : : ; Akg andH0 is anE-solution ofF . If (A1 ^ : : :^Ak)bHcH0 is ground, then the
following are equivalent:

(a) hH;F i is a correct answer.

(b) (A1 ^ : : : ^ Ak)bHcH0 is true w.r.t. every reflectiveE-model of(P;E).

(c) (A1 ^ : : : ^Ak)bHcH0 is true w.r.t. the least reflectiveE-model of(P;E).

PROOF. (a)) (c)
By the definition of correct answer.

(c)) (b)) (a)

(A1 ^ : : : ^ Ak)bHcH0 is true w.r.t. the least reflectiveE-model of(P;E)

implies(A1 ^ : : : ^ Ak)bHcH0 is true w.r.t. all reflectiveE-models of(P;E)

implies:(A1 ^ : : : ^ Ak)bHcH0 is false w.r.t. all reflectiveE-models of(P;E)

implies(P;E) [f:(A1 ^ : : : ^ Ak)bHcH0g has no reflectiveE-models

implies(P;E) [f:(A1 ^ : : : ^ Ak)bHcH0g is reflectivelyE-unsatisfiable

implies(A1 ^ : : : ^ Ak)bHcH0 is a reflective logicalE-consequence of(P;E) by Proposition 4.5 since

(A1 ^ : : : ^ Ak)bHcH0 is ground
implieshH;F i is correct becauseH0 is anE-solution ofF .

782 Reflection Principles in Computational Logic

Theorem 5.2 (Soundness of SLDR-resolution)Let (P;E) be a logic program andG a definite goal. Every com-
puted answer for(P;E) [fGg is a correct answer for(P;E) [fGg.

PROOF. Let G be a goal of the form A1; : : : ; Ak, and lethHn; Fni be the pair containing the Herbrand
assignment and the set of name equations of thenth step of the SLDR-refutation of(P;E) [fGg. In order

to prove our theorem, we have to show that, for everyE-solutionH0 of Fn, 8(GcHncH0) is a reflective logical
E-consequence of(P;E). The result is proved by induction on the lengthn of the SLDR-refutation.

Base case(n = 1)
This means thatG is a goal of the form A1. The initial state ishfA1g; fg; fgi. We distinguish between two

cases.

Case 1

A1 is an atom of the formp(t1; : : : ; th). P has a unit clause of the formp(t01; : : : ; t
0

h
) and

hfg; fg; ft1 = t01; : : : ; th = t0
h
gi =)

RE

hH1; fg; fgi. Note that, as unit clauses do not contain occurrences

of " and#, the setF1 of name equations is the empty set. As=)
RE

is sound forE, p(t1; : : : ; th)cH1 is an

instance ofp(t01; : : : ; t
0

h
). Thus,8(p(t1; : : : ; th)cH1) is a logicalE-consequence of(P;E) and, therefore,

also a reflective logicalE-consequence of(P;E).

Case 2

A1 is an atom of the formp(t1; : : : ; th). C is a clause inP , R(C) contains a unit clause of the form
p(t01; : : : ; t

0

h
) and hfg; fg; ft1 = t01; : : : ; th = t0

h
gi =)

RE

hH1; fg; fgi. As =)
RE

is sound forE,

p(t1; : : : ; th)cH1 is an instance ofp(t01; : : : ; t
0

h
). Thus,8(p(t1; : : : ; th)cH1) is a reflective logicalE-

consequence of(P;E).

Inductive step
Suppose that the result holds for computed answers coming from SLDR-refutations of lengthn�1, and consider

a refutation of lengthn. LetAm be the selected atom inG andH0 be anE-solution ofFn. We distinguish between
two cases.

Case 1

Am is p(t1; : : : ; th), p(t01; : : : ; t
0

h
) e1; : : : ; eq ; B1; : : : ; Br (q � 0; r � 0) is a clause inP and

hHn�1; Fn�1; ft1 = t01; : : : ; th = t0
h
; e1; : : : ; eqgi =)

RE

hHn; Fn; fgi. By soundness of=)
RE

and by the

induction hypothesis,8((A1 ^ : : :^Am�1 ^B1 ^ : : : ^Br ^Am+1 ^ : : :^Ak)cHncH0) is a reflective
logical E-consequence of(P;E). We prove our claim by considering two distinct subcases depending on
whetherr = 0 or r > 0.

Subcase(r = 0)

Since by soundness of=)
RE

E j= 8((e1^: : :^eq)cHncH0),8(p(t01; : : : ; t
0

h
)cHncH0) is a reflective logical

E-consequence of(P;E). Thus, also8(p(t1; : : : ; th)cHncH0) is a reflective logicalE-consequence of

(P;E), and consequently8((A1 ^ : : : ^Ak)cHncH0) is a reflective logicalE-consequence of(P;E).

Subcase(r > 0)

Since by soundness of=)
RE

E j= 8((e1 ^ : : :^ eq)cHncH0), and8((B1 ^ : : :^Br)cHncH0) is a reflec-

tive logicalE-consequence of(P;E), 8(p(t1; : : : ; th)cHncH0) is a reflective logicalE-consequence of

(P;E). Hence,8((A1 ^ : : : ^ Ak)cHncH0) is also a reflective logicalE-consequence of(P;E).

Case 2

Am is of the formp(t1; : : : ; th). C is a clause inP ,R(C) contains a clause of the formp(t01; : : : ; t
0

h
)

e1; : : : ; eq; B1; : : : ; Br (q � 0; r � 0), andhHn�1; Fn�1; ft1 = t01; : : : ; th = t0
h
; e1; : : : ; eqgi =)

RE

hHn; Fn; fgi. The proof of this case is similar to the proof of the previous case.

Reflection Principles in Computational Logic783

Corollary 5.3 Let (P;E) be a logic program andG a definite goal. Suppose that there exists an SLDR-refutation
of (P;E) [fGg. Then(P;E) [fGg is reflectivelyE-unsatisfiable.

PROOF. Let G be a goal of the form A1; : : : ; Ak. As =)
RE

is sound forE, by Theorem 5.2, every computed

answerhH;F i of (P;E) [fGg is correct. Thus, for everyE-solutionH0 of F , 8((A1 ^ : : : ^ Ak)bHcH0) is a
reflective logicalE-consequence of(P;E). It follows that(P;E) [fGg is reflectivelyE-unsatisfiable.

Corollary 5.5 If a ground atomA belongs to the success set of a logic program(P;E), thendAe is contained in
the least reflectiveE-model of(P;E).

PROOF. Suppose that(P;E) [f Ag has an SLDR-refutation with computed answerhH;F i. As=)
RE

is sound

for E andA is ground, by Theorem 5.2,A is a reflective logicalE-consequence of(P;E). HencedAe is in the
least reflectiveE-model of(P;E).

Theorem 5.7 Let (P;E) be a logic program andG a definite goal A1; : : : ; Ak. Suppose(P;E) [fGg has

an SLDR-refutation of lengthn with computed answerhHn; Fni. Then,
Sk

j=1
	(AjcHncH0) � TR

(P;E)
"n, for

everyE-solutionH0 of Fn.

PROOF. The result is proved by induction on the lengthn of the SLDR-refutation.

Base case(n = 1)
This means thatG is a goal of the form A1. We distinguish between two cases.

Case 1

A1 is p(t1; : : : ; th). P has a unit clause of the formp(t01; : : : ; t
0

h
) andhfg; fg; ft1 = t01; : : : ; th =

t0
h
gi =)

RE

hH1; fg; fgi. As =)
RE

is sound forE, p(t1; : : : ; th)cH1 is an instance ofp(t01; : : : ; t
0

h
). Note

that, as unit clauses do not contain any occurrences of" and#, the setF1 of name equations is the empty set.

Clearly,	(p(t01; : : : ; t
0

h
)) � TR

(P;E)
"1 and so does	(p(t1; : : : ; th)cH1).

Case 2

A1 is p(t1; : : : ; th). C is a clause inP , R(C) contains a unit clause of the formp(t01; : : : ; t
0

h
) and

hfg; fg; ft1 = t01; : : : ; th = t0
h
gi =)

RE

hH1; fg; fgi. As =)
RE

is sound forE, p(t1; : : : ; th)cH1 is

an instance ofp(t01; : : : ; t
0

h
). 	(p(t01; : : : ; t

0

h
)) � TR

(P;E)
"1 by the definition ofTR

(P;E)
and so does

	(p(t1; : : : ; th)cH1).

Inductive step
Suppose that the result holds for SLDR-refutations of lengthn� 1 and consider a refutation of lengthn. LetAj

be an atom inG. We distinguish between two cases depending on whether or notAj is the selected atom inG.

Case 1(Aj is not the selected atom inG)

ThenAjcH1 is an atom ofG1, the second goal of the SLDR-refutation. The induction hypothesis implies

that	(AjcHncH0) � TR
(P;E)

"(n� 1) for everyE-solutionH0 of Fn. By the monotonicity ofTR
(P;E)

, we

have thatTR
(P;E)

"(n� 1) � TR
(P;E)

"n.

Case 2(Aj is the selected atom inG)

784 Reflection Principles in Computational Logic

LetC be the selected clause inP . We have two subcases. (In the remaining part of the proof letH0 be an
E-solution ofFn.)

Subcase(i)

Aj is p(t1; : : : ; th). C is p(t01; : : : ; t
0

h
) e1; : : : ; eq; B1; : : : ; Br (q � 0; r � 0), and

hHn�1; Fn�1; ft1 = t01; : : : ; th = t0
h
; e1; : : : ; eqgi =)

RE

hHn; Fn; fgi. By the soundness of=)
RE

,

p(t1; : : : ; th)cHncH0 is an instance ofp(t01; : : : ; t
0

h
).

If r = 0, we have	(p(t01; : : : ; t
0

h
)cHncH0) � TR

(P;E)
"1.

Thus	(p(t1; : : : ; th)cHncH0) = 	(p(t01; : : : ; t
0

h
)cHncH0) � TR

(P;E)
"1 � TR

(P;E)
"n.

If r > 0, by the induction hypothesis,	(BicHncH0) � TR
(P;E)

"(n � 1) for all i, 1 � i � r. By the

definition ofTR
(P;E)

, we have that

	(p(t1; : : : ; th)cHncH0) � TR
(P;E)

"n.

Subcase(ii)

Aj is p(t1; : : : ; th). p(t01; : : : ; t
0

h
) e1; : : : ; eq ; B1; : : : ; Br (q � 0; r � 0) is a clause inR(C),

and hHn�1; Fn�1; ft1 = t01; : : : ; th = t0
h
; e1; : : : ; eqgi =)

RE

hHn; Fn; fgi. The proof of this

subcase is similar to the proof of subcase (i).

Lemma 5.8 (Lifting lemma) Let (P;E) be a logic program,H a Herbrand assignment andG a definite goal.

Suppose there exists an SLDR-refutation of(P;E)[fGbHg with success statehfg; Hn; Fni. If RE is convergent,
then there exists an SLDR-refutation of(P;E)[fGg of the same length with success statehfg; H0

n; F
0
ni such that

hH0
n; F

0
n;Hi =)

RE

hHn; Fn; fgi.

PROOF. SinceRE is convergent, by Proposition 3.10=)
RE

converges.

Note first that by the definition of convergent system, if

hH;F;A [Bi
�
)
R
hH1; F1; Bi

!
)
R
hH2; F2; fgi

then

hH;F;A [Bi
�
)
R
hH0

1; F
0

1; Ai
!
)
R
hH2; F2; fgi:

Equivalently,
hH;F;Ai =)

R
hH1; F1; fgi andhH1; F1; Bi =)

R
hH2; F2; fgi:

Now consider an SLDR-refutation of(P;E)[fGbHg. Instead of applying the substitutionbH toG, we, equivalently,
consider as initial state the statehG;H; fgi. In the following, letCi andSi be the selected clause inP and the
set of equations needed to perform thei-th refutation step as defined in Definition 4.13. Thus, at thei + 1 step of
the SLDR-refutation of(P;E) [fGbHg the statehGi+1;Hi+1; Fi+1i is obtained fromhGi; Hi; Fii andCi if
hHi; Fi; Si+1i =)

RE

hHi+1; Fi+1; fgi. Hence we have that:

hH; fg; S1i =)
RE

hH1; F1; fgi

hH1; F1; S2i =)
RE

hH2; F2; fgi

: : :
hHn�1; Fn�1; Sni =)

RE

hHn; Fn; fgi:

AsH is a Herbrand assignment, i.e. a set of equations in solved form,

hfg; fg; Hi =)
RE

hH; fg; fgi:

Reflection Principles in Computational Logic785

Finally, by convergency ofRE

hfg; fg; S1 [: : : [Sn [Hi =)
RE

hHn; Fn; fgi

or, equivalently,

hfg; fg; S1 [: : : [Sni =)
RE

hH0

n; F
0

n; fgi andhH0

n; F
0

n; Hi =)
RE

hHn; Fn; fgi:

Theorem 5.9 Let (P;E) be a logic program. A ground atomA belongs to the success set of(P;E) if and only if
dAe is contained in the least reflectiveE-model of(P;E).

PROOF. By Corollary 5.5, it suffices to show that, ifdAe belongs to the least reflectiveE-model of(P;E), then
A is contained in the success set of(P;E). Suppose thatdAe is in the least reflectiveE-model of(P;E). Then
by Theorem 4.9,dAe 2 TR

(P;E)
"n, for somen 2 !. We prove by induction onn that if dAe 2 TR

(P;E)
"n, then

(P;E) [f Ag has a SLDR-refutation and henceA is in the success set of(P;E).

Base case(n = 1)
This means thatdAe 2 TR

(P;E)
"1. We distinguish between two cases.

Case 1

A is a ground atom of the formp(t1; : : : ; th) and there exists a unit clause inP , sayp(t01; : : : ; t
0

h
) ,

such thatE j= 9(t1 = t01 ^ : : : ^ th = t0
h
). By soundness of=)

RE

, hfg; fg; ft1 = t01; : : : ; th =

t0
h
gi =)

RE

hH; fg; fgi, for some Herbrand assignmentH. Then, by the definition of SLDR-resolution (case

1), (P;E) [f p(t1; : : : ; th)g has an SLDR-refutation.

Case 2

A is a ground atom of the formp(t1; : : : ; th) and there exists a clauseC in P such thatR(C) contains
a unit clause of the formp(t01; : : : ; t

0

h
) andE j= 9(t1 = t01 ^ : : : ^ th = t0

h
). By soundness of

=)
RE

, hfg; fg; ft1 = t01; : : : ; th = t0
h
gi =)

RE

hH; fg; fgi, for some Herbrand assignmentH. Then, by the

definition of SLDR-resolution (case 2),(P;E) [f p(t1; : : : ; th)g has an SLDR-refutation.

Inductive step
Suppose that the result holds forn� 1. Assume thatdAe 2 TR

(P;E)
"n, then by the definition ofTR

(P;E)
one of

the following cases holds.

Case 1

A is a ground atom of the formp(t1; : : : ; th) and there exists a ground instance(p(t01 ; : : : ; t
0

h
)

e1; : : : ; eq; B1; : : : ; Bm)bH (q � 0;m � 0) of a clause inP such thatE j= (t1 = t01 ^ : : : ^ th =

t0
h
; e1; : : : ; eq)bH andfdB1 bHe; : : : ; dBm bHeg � TR

(P;E)
"(n� 1), for some Herbrand assignmentH.

Case 2

A is a ground atom of the formp(t1; : : : ; th), C is a clause inP and there exists a ground instance

(p(t01; : : : ; t
0

h
) e1; : : : ; eq ; B1; : : : ; Bm)bH (q � 0;m � 0) of a clause inR(C) such that

E j= (t1 = t01 ^ : : : ^ th = t0
h
; e1; : : : ; eq)bH andfdB1 bHe; : : : ; dBm bHeg � TR

(P;E)
"(n � 1), for

some Herbrand assignmentH.

Thus, by the induction hypothesis,(P;E) [f Bi bHg, 1 � i � m, has an SLDR-refutation. Because each

Bi bH is ground, these refutations can be combined into a refutation of(P;E) [f (B1; : : : ; Bm)bHg. Hence

(P;E) [f AbHg has an SLDR-refutation and we can apply the Lifting lemma to obtain an SLDR-refutation of
(P;E) [f Ag.

Theorem 5.10 Let (P;E) be a logic program andG a definite goal. Suppose that(P;E) [fGg is reflectively
E-unsatisfiable. Then there exists an SLDR-refutation of(P;E) [fGg.

786 Reflection Principles in Computational Logic

PROOF. LetG be the goal A1; : : : ; Ak. As (P;E) [fGg is reflectivelyE-unsatisfiable,G is false w.r.t. the

least reflectiveE-modelMR

(P;E)
. Hence there exists some ground instanceGbH of G such that:(dA1 bHe ^ : : : ^

dAk bHe) is false w.r.t.MR

(P;E)
. ThusfdA1 bHe; : : : ; dAk bHeg � MR

(P;E)
. By Theorem 5.9, there is an SLDR-

refutation for(P;E) [f Ai bHg for eachi, 1 � i � k. As eachAi bH is ground, its computed answerhHi; Fii
contains variables that are distinct from the variables of the remaining computed answers. Thus we can combine
these refutations into a refutation for(P;E) [fGbHg. Finally, we apply the Lifting lemma.

Lemma 5.11 Let (P;E) be a logic program andA an atom. Suppose thatx1; : : : ; xn are all the variables and the
metavariables occurring inA and that8x1 : : :8xnA is a reflective logicalE-consequence of(P;E). Then, there
exists an SLDR-refutation of(P;E) [f Ag with computed answerhH;F i such thatE j= 8x1 : : :8xn9(H [
F).

PROOF. Let a1; : : : ; an be distinct constants or metaconstants not appearing in(P;E) or A, and letH be the
Herbrand assignmentfx1 = a1; : : : ; xn = ang (we assume that for alli, 1 � i � n, if ai is a constant, then

xi is a variable, and vice versa, ifai is a metaconstant, thenxi is a metavariable). ThenAbH is a reflective logical
E-consequence of(P;E). AsAbH is ground, Theorem 5.9 states that(P;E)[f AbHg has an SLDR-refutation.
As theai do not appear in(P;E) orA, by replacingai by xi for all i, 1 � i � n, in this refutation, we obtain an
SLDR-refutation of(P;E)[f Agwith computed answerhH;F i such that the bindings inH for x1; : : : ; xn are
variable-pure. Furthermore, the equations inF are always satisfied independently from the values ofx1; : : : ; xn,

as they are satisfied in the SLDR-refutation for(P;E) [f AbHg when substituted by arbitrary constants, i.e.
a1; : : : ; an. Hence, it holds thatE j= 8x1; : : : ; xn9(H [F).

Theorem 5.13 (Completeness of SLDR-resolution)Let (P;E) be a logic program andG a definite goal. IfRE is
convergent, then for every correct answerhH;F i for (P;E) [fGg, there exists a computed answerhH0; F 0i for
(P;E)[fGg. Furthermore, there exists a Herbrand assignmentH00 such that, for everyE-solutionHF andHF 0

ofF andF 0, respectively,(GcH0dHF 0)cH00 = GbHcHF holds.

PROOF. Suppose thatG is the goal A1; : : : ; Ak. As hH;F i is a correct answer,8((A1 ^ : : : ^ Ak)bHcHF)
is a reflective logicalE-consequence of(P;E) for everyE-solutionHF of F . By Lemma 5.11, there exists an

SLDR-refutation of(P;E) [f Ai bHcHF g with computed answerhHi; Fii for all i, 1 � i � k. LetHFi be

anE-solution ofFi, 1 � i � k. AscHidHFi does not instantiate any of the variables inAi and the variables in
every SLDR-refutation are standardized apart, we can combine these SLDR-refutations into an SLDR-refutation

of (P;E) [fGbHcHF g. Assume the computed answer for(P;E) [fGbHcHF g is hH000; F 000i. As 8(GbHcHF)

is a reflective logicalE-consequence of(P;E), by Lemma 5.11,dH000 bHF 000 does not instantiate any variable in

GbHcHF . Thus,GbHcHF = GdH000 bHF 000 holds.
By the Lifting lemma, there exists an SLDR-refutation of(P;E)[fGgwith success statehfg; H0; F 0i such that

hH0; F 0;H [HF i =)
RE

hH000; F 000; fgi. LetH00 beH [HF . ThenGcH0dHF 0
cH00 = GdH000 bHF 000 = GbHcHF

holds.

Received 19 December 1997

