Component-based Answer Set Programming

Stefania Costantini

Universi@a degli Studi di L'Aquila
Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L'Aquila - Italy
{stefcost }@di.univag.it

Abstract. In previous work we have discussed the importance of identifying the
cycles that occur in a logic program under the answer set semantics, and the
connections between cycles, that we have cdiiaddles We have proved that
answer sets of the overall program are composed of answer sets of suitable sub-
programs, corresponding to the cycles. We have defineayble graphCG,

where each vertex of this graph corresponds to one cycle, and each edge corre-
sponds to ondandle.On the CG, we can check consistency by checking the
existence of certain subgraphs. In this paper we will show that cycles and cycle
graphs can be generalizeddomponentandcomponent graph®y suitably ar-
ranging the handles connecting components, larger consistent programs can be
built out of smaller one. Components can be understooagests,where one

agent communicates with another one if there is a handle which puts them in
connection, and the agent makeagtive

1 Introduction

An important hot topic is, in our opinion, that of defining software engineering princi-
ples for Answer Set Programming, which is an alternative logic programming paradigm
[GelLif88] [GelLif91] based on the Answer Set Semantics of [MarTru99] [Lif99], and
put into practice by means of effective inference engines [Systems]. Also, it is impor-
tant to have the possibility of defining significant subprogramsamponentdo be
possibly distributed over different nodes of a network. Both the connections between
components and the ways of exchanging information should be clearly defined.

In previous work [Cos03] we have discussed the importance of identifying the cy-
cles that occur in a logic program under the answer set semantics, and the connections
between cycles, that we have calleandles We have proved that answer sets of the
overall program are composed of answer sets of suitable sub-programs, corresponding
to the cycles. We have defined thgcle graphC'G, where each vertex of this graph
corresponds to one cycle, and each edge corresponds twaodée,which is a literal
containing an atom that, occurring in both cycles, actually determines a connection be-
tween them. In fact, the truth value of the handle in the cycle where it appears as the
head of a rule, influences the truth value of the atoms of the cycle(s) where it occurs in

* We acknowledge support by tih&ormation Society Technologies programme of the European
Commission, Future and Emerging Technologieder the IST-2001-37004 WASP project.

the body. Cycles can be even, if they consist of an even number of rules, or vice versa
they can be odd. Problems for consistency, as it is well-known, originate in the odd
cycles. If for every odd cycle we can find a subgraph ofd{e with certain properties,

then the existence of answer sets is guaranteed.

In this paper we will show that cycles and cycle graphs can be generalized to com-
ponents andomponent graphrecisely, acomponent is defined to be a bunch of
cycles. It can be developed on its own, or it can be identified orCtf¥eof a larger
program. Previous results allow us to define conditions onrpet handleghat keep
a component consistent. Symmetrically, twe-handlesf C are atoms belonging to its
answer sets that correspond to input handles of other components.

We will propose a program development methodology for Answer Set Program-
ming based building larger consistent programs by suitably combining components.
On theCompCG in fact, the connection between components are easily identified. In
particular, its edges correspond to the handles of each component, whose value may
possibly be provided by other components. On¢henpCG, one can either add new
consistent components, or modify existing ones, and can check on the edges if there are
problems for consistency, and how to fix them.

In this framework, components may even be understood as independent agents, and
providing a suitable value for an handle of a component may be understood as send-
ing a message to the component itself. Consider the following example, representing a
fragment of the code of eontroller component/agent:

circuit_ok «— not fault

fault — not fault, nottest_ok

wheretest_ok is an incoming handle, coming fromtestercomponent/agent. As soon
as thetesterwill achievetest_ok, this incoming handle will become true, thus making
thecontroller consistent, and able to conclude cuit_ok.

In Section 2 we define cycles, handles, and components. In Section 3 we define the
cycle graphC'GG and discuss how to check consistency on@hie.

In Section 4 we discuss how to generalize thé€' to build the CompCG, and
propose the guidelines for a program development methodology for Answer Set Pro-
gramming based on defining components and connecting them 6htheCG (a full
definition is postponed to the extended version of the paper). We will then argue that
components can be understood as independent agents, even located on different nodes
of a network. We will illustrate the proposed approach by means of a concrete example.
where we will also show that components/agents can be identified on the non-ground
version of the program.

2 Preliminary Definitions, Cycles and Handles

In this paper we consider the langua@elT' ALOG™ for deductive databases, which is
more restricted than traditional logic programming (the reader may refer to [MarTru99]
for a discussion). In the following, we will implicitly refer to the ground version of
DATALOG™ programs.

A logic program may contain negated atoms of the fer A rule p is defined as
usual, and can be seen as composed of a conclusief(p), and a set of conditions
body(p). The latter can be divided into positive conditigns(p) each one of the form
A, and negative conditionseg(p), each one of the formot A. The literal A is either
an atormu, or a negated atoma.

The answer sets semantics [GelLif88,GelLif91] is a view of logic programs as sets
of inference rules (more precisely, default inference rules). Alternatively, one can see
a program as a set of constraints on the solution of a problem, where each answer
set represents a solution compatible with the constraints expressed by the program.
Consider the simple prografy < notp. p < notgq.}. For instance, the first rule is
read as “assuming thatis false, we carconcludethatgq is true.” This program has two
answer sets. In the first ongjs true whilep is false; in the second ong s true while
q is false.

A subsetM of the Herbrand basBp of a DAT ALOG™ programP is an answer
set of P, if M coincides with the least model of the reduY of P with respect tal/.

This reduct is obtained by deleting frof all rules containing a conditionot a, for
someq in M, and by deleting all negative conditions form the other rules. Answer sets
are minimal supported models, and form an anti-chain.

Unlike with other semantics, a program may have several answer sets, or may have
no answer set, because conclusions are included in an answer set only if they can be
justified. The following program has no answer set:

{a < notb. b — notc. ¢ — nota.}

The reason is that in every minimal model of this program there is a true atom that de-
pends (in the program) on the negation of another true atom. Whenever a program has
no answer sets, we will say that the progranmisonsistentCorrespondingly, check-

ing for consistency means checking for the existence of answer sets. Assume the stan-
dard definitions of (propositional) general logic program and of answer set semantics
[GelLif88]. Whenever we mention consistency (or stability) conditions, we refer to the
conditions introduced in [GelLif88]. Leil be a general logic program. In the follow-

ing, we will often simply say “logic program” to mean a general logic program. By
abuse of notation, we will often safable modelso meanmanswer sets

The rest of this paper is heavily based on identifying the cycles that occur in a logic
program under the answer set semantics, and the connections between cycles. Below is
the definition of a cycle:

Definition 1. A set of rule< is called a cycle if it has the following form:

A1 < not Ao, Aq
Ag — nOt)\g, Ay

Ap < NoOtA, A,
where\q, ..., A, are distinct atoms. Each\;, i < n, is a (possibly empty) conjunction

iy, -+, 04, Ofliterals (either positive or negative), where for eagh i; < s, d;; # A
andJ;; # not);. TheA;'s are called the AND handles of the cycle. We say that

is an AND handle for atom\;, or, equivalently, an AND handle referring 1q. A; is
calledsimpleif it is composed of a single literal.

We say thatC' has sizen and it is even (respectively odd) if = 2k, &k > 1
(respectivelyp = 2k + 1, k > 0). By abuse of notation, for. = 1 we have the (odd)
self-loopA; < not);, 4;. Inwhat follows, again by abuse of notatiap, ; will denote
)‘(H-l)modnl i-e-!)\n—&-l = A1

Given cycleC, we callComposing_atoms(C) = {\1, ..., \,} the set containing
all the atomsinvolvedin cycle C'. We say that the rules listed above a@meolvedin
the cycle, orform the cycle. In the rest of the paper, sometimes it will be useful to
seeComposing-atoms(C') as divided into two subsets, that we indicate as kvols
of atoms: the set of thEvenatoms(C)composed of the\;'s with i even, and the set
Odd.atoms(C) composed of the,;’s with i odd.

Conventionally, in the rest of the paper with or C; we will refer to cycles in
general, withOC' or OC;; to odd cycles and witl’C' or EC; to even cycles

In the following program for instance, there is an odd cycle, that we mayxal,
with composing atomsge, f, g} and an even cycle, that we may calC’, with com-
posing atomda, b}.

— 0C;

e < not f, nota
f < notg,b

g < note

— ECq

a < notb

b < nota

OC1 has an AND handleota referring toe, and an AND handlé referring tof.

Definition 2. A rule is called arauxiliary rule of cycleC (or, equivalentlyto cycleC')
if it is of this form:

where)\, € ComposingAtoms(’), and A is a non-empty conjunctiody, , ..., d;, of
literals (either positive or negative), where for eagh, i; < in, §;; # \; andd;, #
not \;. A is called an OR handle of cycté (more specifically, an OR handle faf or,
equivalently, and OR handle referring 1q).

A cycle may possibly have several auxiliary rules, corresponding to different OR
handles. In the rest of this paper, we will cAlix(C)the set of the auxiliary rules of a
cycleC.

In the following program for instance, there is an odd cy@l&; with composing
atoms{c, d, e} and an even cycl&C; with composing atoméa, b}. The odd cycle has
three auxiliary rules.

— 04
¢« notd
d < note
e < notc
— Auz(0Ch)
c < nota
d < nota
d < notb
— ECy
a « notb
b < nota

In particular, we haveluxz(OC;) = {c¢ < nota,d < nota, d < notb}.

In summary, a cycle may have some AND handles, occurring in one or more of the
rules that form the cycle itself, and also some OR handles, occurring in its auxiliary
rules.

A cycle may also have no AND handles and no OR handles, i.e., no handles at
all, in which case it is calledinconstrained:he following program is composed of
unconstrained cycles (in particular, there is an even cycle involving atansb, and
an odd cycle involving atom).

— EC,
a < notb
b < nota
— 0C
p < notp
It is useful to collect the set of handles of a cycle into a set, where however each
handle is annotated so as to keep track dkiitsl. I.e., we want to remember whether a
handle is an OR handle or an AND handle of the cycle.

Definition 3. Given cycle”, the setf - of the handles of is defined as follows, where
B € Composing_Atoms(C):

He={(A: AND: 3)| A isan AND handle ofC referring to 5} U
{(A:OR: ()| A isan OR handle of” referring to 5}

Whenever we need not care abgutve shorten(A : K :) as(A : K), K =
AND/OR. By abuse of notation, we call “handles” the expressions in both forms, and
whenever necessary we implicitly shift from one form to the other one. Informally, we
will say for instance “the OR (resp. AND) handieof 3” meaning(A : OR :) (resp.

(A: AND : 3)).

Definition 4. LetC be a cycle. The prograf? + Aux(C') is thecompleted cycleor-
responding ta’.

Definition 5. Let C be a cycle. LetZ C H¢. The programC + Aux(C) 4+ Z is an
extended cycleorresponding ta”'.

Definition 6. Let C; be a cycle occurring in1. We say thatSc, € Be, yaux(c;) IS
a partial stable modefor IT relative toC;, if 3X; C Atoms(H¢,;) such thatSe, is
a stable model of the corresponding extended cgtle- Aux(C;) + X;. The setX;
is called a positive base fof¢,, while the setX,” = Atoms(H¢;) \ X, is called a
negative base fof,. The couple of setsX;, X") is called a base foS¢;.

In the ongoing, for the sake of simplicity we consider only simple OR handles,
and simple AND handles, i.e., handles composed of a single literal. More precisely, we
consider logic programs in a spectanonical form Rules in a program are in a simple
uniform format. This is for the sake of clarity, and without loss of generality. Every
program in fact can be reduced to this form [CosPro03]. The formal properties of the
canonical form and the algorithm for obtaining it are discussed in [CosPro03]. Here we
need to notice that a program in canonical form has no positive circularities, and cannot
have an exponential number of cycles.

Definition 7. A logic programIT is in canonical form (or, equivalently] is a canon-
ical program) if it is negative (i.e., does not contain positive literals), and fulfills the
following syntactic conditions.

every atom i occurs both in the head and in the body of some rule;

every atom irf/ is involved in some cycle;

each rule of/] is either involved in a cycle, or is an auxiliary rule of some cycle;
each handle of a cycl€ consists of exactly one literal, eitheror not o, where
atoma does not occur irt.

PwbdPE

Since the above definition requires handles to consist of just one literal, it implies
that in a canonical prograif : (i) the body of each rule which is involved in a cycle
consists of either one or two literals; (ii) the body of each rule which is an auxiliary rule
of some cycle consists of exactly one literal.

Handles may help avoid inconsistencies in two ways. An AND hadqlevhich is
false allows the head; of the rule to be false. An OR handi&which is true forces the
atom; to which it refers to be true as well. This idea is formalized into the following
definitions ofactive handles.

Definition 8. LetZ be an interpretation. An AND handla of cycleC is active w.r.t.

7 if the corresponding literal is false w.rZ. We say that the rule where the handle
occurs has an active AND handle. An OR handlef cycleC is active w.r.t.Z if the
corresponding literal is true w.r.tZ. We say that the rule where the handle occurs has
an active OR handle.

Assume thaf is a model. We can make the following observations. (i) The head
of a rulep with an active AND handle is not required to be tru¢Zin(ii) The head of a
rule A\ — A whereA is an active OR handle is necessarily trugirsince the body is
true, the head must also be true.

Observing which are the active handles of a cy€lgives relevant indications about
whether an interpretatiah is a stable model.

Consider for instance the following program:

— 0Cy
p < notp, nota
— ECy
a < notb
b < nota
— 0Cy
q <+ notgq
— Auzx(0Cs)
qa—f
— ECy
e« not f
f < note
Interpretationda, f, ¢}, {a,e,q}, {b,p, f,q} {b,p, e, ¢} are minimal models. Consider
interpretatior{a, f, ¢}: both the AND handleot a of cyclep «— notp, nota and the
OR handlef of cycleq < notq are active w.r.t. this interpretatiofia, f, ¢} is a stable
model, since atorp is forced to be false, and atogris forced to be true, thus avoiding
the inconsistencies. In all the other minimal models instead, one of the handles is not
active. l.e., either literahot a is true, and thus irrelevant in the context of a rule which
is inconsistent, or literaf is false, thus leaving the inconsistency@rmrhese minimal
models are in fact not stable.

In conclusion, the example suggests that for a minimal madeb be stable, each
odd cycle must have an active handle. This will be stated formally in the next section.

Another thing that the example above shows is that the stable nledglq} of the
overall program is actually the union of the stable mode! of the program fragment
OC1UEC] and of the stable modglf, ¢} of the program fragmer®®Cy U Auz(OCs)U
ECs.

In fact, for checking whether a logic program has answer sets (and, possibly, for
finding them) one can do the following.

(i) Divide the programs into pieces, of the for) + Aux(C;), and check whether

every odd cycle has handles; if not, then the program is inconsistent;

(ii) For every cycleC; with handles, find the set¥; that make the subprogra@} +
Aux(C;) consistent, and find the corresponding answer Set$; notice that in
the case of unconstrained even cyclHg, is empty, and we have two answer sets,
namerMa = Evenatoms(;) andMa = Oddatoms(;).

(iii) Check whether there exists a collection &f’s, one for each cycle, such that the
corresponding¢,’s agree on shared atoms (and then are calbedpatiblg: in this
case the program is consistent, and its answer set(s) can be obtained as the union of
the S¢,’s.

The following theorem (proved in [Cos03]) formally states the connection between
the answer sets dff, and the partial answer sets of its cycles.

Theorem 1. An interpretationZ of I1 is a stable model if and only if there exists a
compatible setS = 54,...,5, of partial answer sets for its composing cycles such

i<w

3 The Cycle GraphCG

Clearly, it is possible to uniquely identify the sgt, . . ., C,, } of the cycles that occur
in program/I. This set can be divided in the two disjoint subsets of the even cycles
{EC4,...,EC,}, and of the odd cycle§OCY, ..., OCh}.

Then, the program structure in terms of cycles, handles and handle paths can be
described by means of a graph, where cycles are the vertices and handles are the edges.
Below in fact we introduce the novel notion of a cycle graph.

Definition 9. The Cycle GraplC' G, is a directed graph defined as follows:

— Vertices.One vertex for each of cyclés, . . ., C,,. Vertices corresponding to even
cycles are labeled aB'C;’s while those corresponding to odd cycles are labeled as
OCj 's.

— Edges.An edge(C;, C;) marked with(A : K : \) for each handlgA : K : \) €
Hg, of cycleC;, that comes frond';.

Each marked edge will be denoted (@y;, C;|A : K :), where however by abuse
of notation either(C; or C; or A) will be omitted whenever they are clear from the
context, and we may write for shof€;, C;|k), h standing for a handle that is either
clear from the context or does not matter in that point.

An edge on th&€'G connects the cycle a handle comes from to the cycle to which the
handle belongs. Edges on th&r make it clear that handleonnectdifferent cycles:
a handleA being or not being assumed to be active, corresponds to theatshich
occurs inA to be required to take a certain truth value in the cycles the handle comes
from, depending of the kind of the handle. Preciselyy i required to be true, then it
must be concluded true in at least one of the cycles it is involved midfrequired to
be false, it must be concluded false in all cycles it is involved in.

As a consequence of Theorem 1, the odd cycles need to have at least one active
handle, since on their own they would be inconsistent. If such a handle comes from
another odd cycle, then we can repeat the same reasoning. Therefore, any odd cycle, for
being consistent, must be directly or indirectly connected to some even cycle, through
a “chains” of handles. On th€G, for every odd cycle it is possible to check whether
such a connection may exist.

First, one has to check that any odd cy©l€' has at least one handle. Secondly, one
has to check that the different handles marking the edges @f thare compatible, in
the sense that the truth values required for the atoms occurring in the handles so as to
make some of them active and some of them non-active as required by the definitions
below should not be in contrast (i.e., the same atom cannot be required to be both true
and false).

Last, one has to check that there may exist partial stable models for the(tyote
handle comes from, so as to make that handle active.

From [Cos03] we take the following definition (where we basically leave the con-
cept of incompatible handles to the reader’s intuition):

Definition 10. Given program®, let aCG support selbe a couple
S = (ACT,ACT™)

of subsets of the handles marking the edgeS@j;, represented in the forA : K)

(K = AND/OR), where handles idC'T+ are supposed to be active, and handles in
ACT~ are supposed to be not active, and we have:

() ACTT N ACT~ = 1.

(ii) neither ACT* nor ACT~ contain a couple of incompatible handles.

Given S, we will indicate its two components withC'T'* (S) and ACT~ (S).

A CG support set represents the handles that are supposed to be active/not active for
making the odd cycles and the whole program consistent.

As discussed before, consistency is strongly conditioned by the odd cycles of the
program. So, we have to restrict the attention on CG support sets including at least one
active handle for each odd cycle, and then we have to check that the assumptions on
the handles are mutually coherent, and are sufficient for ensuring consistency. An CG
support set ipotentially adequaté it provides at least one active incoming handle for
each of the odd cycles.

Definition 11. An CG support sef' is potentially adequate if for every odd cydlein
IT there exists a handle € H¢ such thath € ACT*(.9).

The definition ofadequatesupport sets (omitted here) formalizes a more strict re-
quirement, to make sure that the requirement to be active/non-active for the handles
occurring in a support set can possibly be fulfilled in the cycles they come from.

Then, we have proved the following:

Theorem 2. A programlIl has answer sets if and only if there exists and adequate CG
support seftS for I1.

4 The methodology

In this Section, we aim at proposing a view of a logic program under the answer set
semantics as a collection of components, where a component is a set completed cycles.
This novel view leads to new ways of building programs, and to new ways of check-
ing consistency of large programs. In fact, a large program can be assembled starting
from existing components, and its consistency can be checked simply by checking the
connectionbetween components, i.e., the handles that join them. Also, we will discuss
how components can be understood as agents.

Let acomponent be a bunch of cycles, plus the indication of its incoming handles
whose value can be possibly provided by other components.

Definition 12. A component is a set of completed cycles, each of the farm-
Auz(C), together with a sefl composed of some of the incoming handles of these
extended cycles. We cdll; the set of théenput handle®fC.

Definition 13. A programis a sef = {C,...,C,} of components.

A component can be developed on its own, or it can be identified od'theof
a larger program. Similarly to a cycle howevérjs not meant to be an independent
program, rather it is connected to other components by means of handles.

Here we mean to propose a program development methodology for Answer Set
Programming based on defining, over tfi&, a higher level graph where vertices are
componentsand edges are a subset of the edges oftie connecting components
instead of single cycles.

Definition 14. The Component Grapt'ompGy, is a directed graph defined as fol-
lows:

— Vertices.One vertex for each of the componentssin

— Edges.An edge(C;, C;) marked with(A : K : X) for each handleh = (A : K :
\) € He, of component;, that comes frong;.

Each marked edge will be denoted, like for th&r, by (C;,C;|A : K : X). An edge
(C;,C;) marked with handlés = (A : K : A\) means that componeg accepts as
inputthe value ofA from component;.

We give below a sketch description of the methodology, that we will illustrate by
means of an example. A full definition is postponed to the extended version of the paper.
The input handles of each component will be listed in the short fdarmi.

Let us consider the following example. We have a traffic light (callgthat, for the
sake of simplicity, can just take the colors greeridr short) and reds(for short). We
have two lanes, one going north-soutts for short) and the other one east-west (
for short), crossing at the traffic light. If the traffic light is green in one direction it must
be red in the other one, and vice versa. The traffic light is subject to faults, ans precisely
it does not work whenevefault_tl is true. This is an input handle which should come
from a “controller” component, not specified below.

Each carl, ¢2, ¢3 wants to go, but it is allowed to go only if it gets the green traffic
light. Otherwise, it remains dummy. Then, all cars behave in the same way. Only, cars
c1l andc¢2 want to go north-south, and then their input handles consist in the possible
colors of the traffic light for lane north-south. Instead, ¢awant to go east-west, and
consequently its incoming handles consist in the possible colors of the traffic light for
lane east-west.

— Component: The traffic light

— Input handlesnot fault_tl : AND

— — Cycle lane ns

tl(g, ns) < nottl(r,ns), not fault_tl.
tl(r,ns) < nottl(g,ns), not fault_tl.
tl(r,ns) «— tl(g7ew)
tl(g,ns) — ti(r,ew)

— — Cycle lane ew

tl(g, ew) < nottl(r, ew), not fault_tl.
tl(r, ew) < notti(g, ew), not fault_tl.
tl(r, ew) «— tl(g,ns)

tl(g, ew) — tl(r,ns)

— Component(cycle): car c1

— Input handlesnotti(r,ns) : AND, ti(g,ns) : OR
go(cl,ns) < notgo(cl, ns),nottl(r, ns).

go(cl,ns) — tl(g,ns).

— Component(cycle): car c2

— Input handlesnotti(r,ns) : AND, ti(g,ns) : OR
go(c2,ns) <« notgo(c2,ns), nottl(r,ns).

go(c2,ns) — tl(g,ns).

— Component(cycle): car c3

— Input handlesnottl(r, ew) : AND, ti(g,ew) : OR
go(c3, ew) < notgo(c3, ew), nottl(r, ew).

go(c3, ew) — ti(g, ew).

It is easy to see that the above program has two answer sets, one when we have the
green light on the north-south lane, and the other one when we have the green light on
the east-west lane. In the former ca$eandc2 can go, while:3 is dummy. In the latter
case it isc3 that can go.

On theC'G, we would have as many nodes as the cycle. In particular, the traffic
light subprogram is divided into two cycles, each one with two incoming AND handles
and two incoming OR handles. Each car is a cycle on its own, with an AND incoming
handle that, if active, means that the car cannot go, and an incoming OR handle that, if
active, means that the car can go.

Instead, in th&€ompCG: the traffic light part is a single vertex, with an input AND
handle coming from a controller component (here unspecified) able to signal a fault;
each car is a single component, with the input handles that signal whether it can go or
must stop. Consistency of the overall program based on the assumption of consistency
of the single components can be checked ortheipC'G exactly like it is done on the
CG, i.e., on the handles connecting components.

Components can also be understood as agents, that can in principle be located on
different nodes of a network. The traffic-light agent is always consistent, unless it re-

ceives a factfault_tl by the controller component. In this case, the traffic-light agent
becomes inconsistent, and stops working. Otherwise, it has two answer sets, one of
which can be randomly selected, thus giving the green light on one lane, and the red
light one the other one.

Each car agent is always consistent, ut(C'ar, D) is false if the agent receives
the red lightt/(r, D) on its lane by means of the incoming AND handle and it is instead
true if the agent receives the green light-, D) by means of the incoming OR handle.
In this case, the answer setjig(Car, D).

These components/agents can be instantiated from the following non-grounded pro-
gram:

— Component: The traffic light
tl(C1,D1) «
color(C1), color(C2),C1 # C2,lane(D1),
nottl(C2, D1),not fault_tl(D1).
tl(C1, D1) «—
color(C1), go-color(C1),lane(D1),lane(D2),
D1 # D2, nottl(C1, D2),not fault_tl(D1).
ti(C1,D1) «
color(C1), color(C2),C1 # C2,
lane(D1),lane(D2), D1 # D2,tl(C2, D2).
— Component: a car
go(Car, D) «—
color(C),wrong_color(C), lane(D),
not go(Car, D), nottl(C, D).
go(Car, D) «
color(C'), ok_color(C),lane(D), tI(C, D).
Then, the above program can be seen as a template for creating as many traffic lights
and cars as one needs.

5 Concluding Remarks

We have proposed a methodology for developing answer set programs based on compo-
nents, that can possibly be understood as agents. This in the framework of Answer Set
Programming, where every form of true modularization seemed to be impossible. The
conceptual tool is th€ ompCG, based on th€'G. We have given just a sketch of the
proposed methodology. In more detail, each component should be defined together with
aninterface establishing the requirements on the incoming handles, angrohgises

for the values of the outcoming handles. On &enpCG, the combinations of com-
ponents can be checked for consistency by means of the formal tools outlined in the
previous Sections. Combinations of components can be taken as new components, thus
defining higher-level graphs. A formal definition of the methodology and experiments
on real applications are the main future directions of this work.

References
[Cos03]
[CosPro03]

[GelLif8s]

[GelLif91]

[Lif99]

[MarTru99]

[Systems]

Costantini, S., 1998 the existence of stable models of unstratified programs,
submitted, 2003 (draft available at the URL http://costantini.di.univag.it).
Costantini, S., and Provetti A., 200dormal Forms for Answer Set Program-
ming.submitted, 2003 (draft available at the URL http://costantini.di.univag.it).
Gelfond, M. and Lifschitz, V., 1988.The Stable Model Semantics for Logic
Programming In: R. Kowalski and K. Bowen (eds.) Logic Programming: Proc.
of 5th International Conference and Symposium: 1070-1080.
Gelfond, M. and Lifschitz, V., 1991Classical Negation in Logic Programming
and Disjunctive Database$yew Generation Computing 9, 1991: 365-385.
Lifschitz V., 1999. Answer Set Planningn: D. De Schreye (ed.) Proc. of the
1999 International Conference on Logic Programming (invited talk), The MIT
Press: 23-37.
Marek, W., and Truszcigki, M., 1999. Stable Models and an Alternative
Logic Programming Paradigm)n: The Logic Programming Paradigm: a 25-
Year Perspective, Springer-Verlag: 375-398.
CCALChttp://www.cs.utexas.edu/users/mcain/cc
DeReShttp://www.cs.engr.uky.edu/ Ipnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
SMODELS:http://www.tcs.hut.fi/Software/smodels/

