
Component-based Answer Set Programming?

Stefania Costantini

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost }@di.univaq.it

Abstract. In previous work we have discussed the importance of identifying the
cycles that occur in a logic program under the answer set semantics, and the
connections between cycles, that we have calledhandles. We have proved that
answer sets of the overall program are composed of answer sets of suitable sub-
programs, corresponding to the cycles. We have defined thecycle graphCG,
where each vertex of this graph corresponds to one cycle, and each edge corre-
sponds to onehandle.On theCG, we can check consistency by checking the
existence of certain subgraphs. In this paper we will show that cycles and cycle
graphs can be generalized tocomponentsandcomponent graphs.By suitably ar-
ranging the handles connecting components, larger consistent programs can be
built out of smaller one. Components can be understood asagents,where one
agent communicates with another one if there is a handle which puts them in
connection, and the agent makes itactive.

1 Introduction

An important hot topic is, in our opinion, that of defining software engineering princi-
ples for Answer Set Programming, which is an alternative logic programming paradigm
[GelLif88] [GelLif91] based on the Answer Set Semantics of [MarTru99] [Lif99], and
put into practice by means of effective inference engines [Systems]. Also, it is impor-
tant to have the possibility of defining significant subprograms ascomponentsto be
possibly distributed over different nodes of a network. Both the connections between
components and the ways of exchanging information should be clearly defined.

In previous work [Cos03] we have discussed the importance of identifying the cy-
cles that occur in a logic program under the answer set semantics, and the connections
between cycles, that we have calledhandles. We have proved that answer sets of the
overall program are composed of answer sets of suitable sub-programs, corresponding
to the cycles. We have defined thecycle graphCG, where each vertex of this graph
corresponds to one cycle, and each edge corresponds to onehandle,which is a literal
containing an atom that, occurring in both cycles, actually determines a connection be-
tween them. In fact, the truth value of the handle in the cycle where it appears as the
head of a rule, influences the truth value of the atoms of the cycle(s) where it occurs in

? We acknowledge support by theInformation Society Technologies programme of the European
Commission, Future and Emerging Technologiesunder the IST-2001-37004 WASP project.



the body. Cycles can be even, if they consist of an even number of rules, or vice versa
they can be odd. Problems for consistency, as it is well-known, originate in the odd
cycles. If for every odd cycle we can find a subgraph of theCG with certain properties,
then the existence of answer sets is guaranteed.

In this paper we will show that cycles and cycle graphs can be generalized to com-
ponents andcomponent graphs.Precisely, acomponentC is defined to be a bunch of
cycles. It can be developed on its own, or it can be identified on theCG of a larger
program. Previous results allow us to define conditions on theinput handlesthat keep
a component consistent. Symmetrically, theout-handlesof C are atoms belonging to its
answer sets that correspond to input handles of other components.

We will propose a program development methodology for Answer Set Program-
ming based building larger consistent programs by suitably combining components.
On theCompCG in fact, the connection between components are easily identified. In
particular, its edges correspond to the handles of each component, whose value may
possibly be provided by other components. On theCompCG, one can either add new
consistent components, or modify existing ones, and can check on the edges if there are
problems for consistency, and how to fix them.

In this framework, components may even be understood as independent agents, and
providing a suitable value for an handle of a component may be understood as send-
ing a message to the component itself. Consider the following example, representing a
fragment of the code of acontroller component/agent:

circuit ok ← notfault
fault← notfault, not test ok

wheretest ok is an incoming handle, coming from atestercomponent/agent. As soon
as thetesterwill achievetest ok, this incoming handle will become true, thus making
thecontroller consistent, and able to concludecircuit ok.

In Section 2 we define cycles, handles, and components. In Section 3 we define the
cycle graphCG and discuss how to check consistency on theCG.

In Section 4 we discuss how to generalize theCG to build theCompCG, and
propose the guidelines for a program development methodology for Answer Set Pro-
gramming based on defining components and connecting them on theCompCG (a full
definition is postponed to the extended version of the paper). We will then argue that
components can be understood as independent agents, even located on different nodes
of a network. We will illustrate the proposed approach by means of a concrete example.
where we will also show that components/agents can be identified on the non-ground
version of the program.

2 Preliminary Definitions, Cycles and Handles

In this paper we consider the languageDATALOG¬ for deductive databases, which is
more restricted than traditional logic programming (the reader may refer to [MarTru99]
for a discussion). In the following, we will implicitly refer to the ground version of
DATALOG¬ programs.



A logic program may contain negated atoms of the form¬a. A rule ρ is defined as
usual, and can be seen as composed of a conclusionhead(ρ), and a set of conditions
body(ρ). The latter can be divided into positive conditionspos(ρ) each one of the form
A, and negative conditionsneg(ρ), each one of the formnot A. The literalA is either
an atoma, or a negated atom¬a.

The answer sets semantics [GelLif88,GelLif91] is a view of logic programs as sets
of inference rules (more precisely, default inference rules). Alternatively, one can see
a program as a set of constraints on the solution of a problem, where each answer
set represents a solution compatible with the constraints expressed by the program.
Consider the simple program{q ← not p. p ← not q.}. For instance, the first rule is
read as “assuming thatp is false, we canconcludethatq is true.” This program has two
answer sets. In the first one,q is true whilep is false; in the second one,p is true while
q is false.

A subsetM of the Herbrand baseBP of a DATALOG¬ programP is an answer
set ofP , if M coincides with the least model of the reductPM of P with respect toM .
This reduct is obtained by deleting fromP all rules containing a conditionnot a, for
somea in M , and by deleting all negative conditions form the other rules. Answer sets
are minimal supported models, and form an anti-chain.

Unlike with other semantics, a program may have several answer sets, or may have
no answer set, because conclusions are included in an answer set only if they can be
justified. The following program has no answer set:
{a← not b. b← not c. c← nota.}
The reason is that in every minimal model of this program there is a true atom that de-
pends (in the program) on the negation of another true atom. Whenever a program has
no answer sets, we will say that the program isinconsistent. Correspondingly, check-
ing for consistency means checking for the existence of answer sets. Assume the stan-
dard definitions of (propositional) general logic program and of answer set semantics
[GelLif88]. Whenever we mention consistency (or stability) conditions, we refer to the
conditions introduced in [GelLif88]. LetΠ be a general logic program. In the follow-
ing, we will often simply say “logic program” to mean a general logic program. By
abuse of notation, we will often saystable modelsto meananswer sets.

The rest of this paper is heavily based on identifying the cycles that occur in a logic
program under the answer set semantics, and the connections between cycles. Below is
the definition of a cycle:

Definition 1. A set of rulesC is called a cycle if it has the following form:

λ1 ← notλ2,∆1

λ2 ← notλ3,∆2

. . .
λn ← notλ1,∆n

whereλ1, . . . , λn are distinct atoms. Each∆i, i ≤ n, is a (possibly empty) conjunction
δi1 , . . . , δih

of literals (either positive or negative), where for eachδij , ij ≤ ih, δij 6= λi

and δij 6= not λi. The∆i’s are called the AND handles of the cycle. We say that∆i



is an AND handle for atomλi, or, equivalently, an AND handle referring toλi. ∆i is
calledsimpleif it is composed of a single literal.

We say thatC has sizen and it is even (respectively odd) ifn = 2k, k ≥ 1
(respectively,n = 2k + 1, k ≥ 0). By abuse of notation, forn = 1 we have the (odd)
self-loopλ1 ← notλ1,∆1. In what follows, again by abuse of notationλi+1 will denote
λ(i+1)mod n, i.e.,λn+1 = λ1.

Given cycleC, we callComposing atoms(C) = {λ1, . . . , λn} the set containing
all the atomsinvolved in cycle C. We say that the rules listed above areinvolved in
the cycle, orform the cycle. In the rest of the paper, sometimes it will be useful to
seeComposing atoms(C) as divided into two subsets, that we indicate as twokinds
of atoms: the set of theEvenatoms(C)composed of theλi’s with i even, and the set
Odd atoms(C), composed of theλi’s with i odd.

Conventionally, in the rest of the paper withC or Ci we will refer to cycles in
general, withOC or OCi to odd cycles and withEC or ECi to even cycles

In the following program for instance, there is an odd cycle, that we may callOC1,
with composing atoms{e, f, g} and an even cycle, that we may callEC1, with com-
posing atoms{a, b}.

— OC1

e← notf, nota
f ← notg, b
g ← note
— EC1

a← not b
b← nota
OC1 has an AND handlenota referring toe, and an AND handleb referring tof .

Definition 2. A rule is called anauxiliary rule of cycleC (or, equivalently,to cycleC)
if it is of this form:

λi ← ∆

whereλi ∈ ComposingAtoms(C), and∆ is a non-empty conjunctionδi1 , . . . , δih
of

literals (either positive or negative), where for eachδij , ij ≤ ih, δij 6= λi and δij 6=
notλi. ∆ is called an OR handle of cycleC (more specifically, an OR handle forλi or,
equivalently, and OR handle referring toλi).

A cycle may possibly have several auxiliary rules, corresponding to different OR
handles. In the rest of this paper, we will callAux(C)the set of the auxiliary rules of a
cycleC.

In the following program for instance, there is an odd cycleOC1 with composing
atoms{c, d, e} and an even cycleEC1 with composing atoms{a, b}. The odd cycle has
three auxiliary rules.



— OC1

c← notd
d← note
e← not c
—– Aux(OC1)
c← nota
d← nota
d← not b
— EC1

a← not b
b← nota

In particular, we haveAux(OC1) = {c← nota, d← nota, d← not b}.
In summary, a cycle may have some AND handles, occurring in one or more of the

rules that form the cycle itself, and also some OR handles, occurring in its auxiliary
rules.

A cycle may also have no AND handles and no OR handles, i.e., no handles at
all, in which case it is calledunconstrained.The following program is composed of
unconstrained cycles (in particular, there is an even cycle involving atomsa andb, and
an odd cycle involving atomp).

— EC1

a← not b
b← nota
— OC1

p← notp
It is useful to collect the set of handles of a cycle into a set, where however each

handle is annotated so as to keep track of itskind. I.e., we want to remember whether a
handle is an OR handle or an AND handle of the cycle.

Definition 3. Given cycleC, the setHC of the handles ofC is defined as follows, where
β ∈ Composing Atoms(C):

HC = {(∆ : AND : β) |∆ is an AND handle ofC referring to β} ∪
{(∆ : OR : β) |∆ is an OR handle ofC referring to β}

Whenever we need not care aboutβ we shorten(∆ : K : β) as (∆ : K), K =
AND/OR. By abuse of notation, we call “handles” the expressions in both forms, and
whenever necessary we implicitly shift from one form to the other one. Informally, we
will say for instance “the OR (resp. AND) handle∆ of β” meaning(∆ : OR : β) (resp.
(∆ : AND : β)).

Definition 4. LetC be a cycle. The programC + Aux(C) is thecompleted cyclecor-
responding toC.

Definition 5. Let C be a cycle. LetZ ⊆ HC . The programC + Aux(C) + Z is an
extended cyclecorresponding toC.



Definition 6. Let Ci be a cycle occurring inΠ. We say thatSCi
⊆ IBCi+Aux(Ci) is

a partial stable modelfor Π relative toCi, if ∃Xi ⊆ Atoms(HCi) such thatSCi is
a stable model of the corresponding extended cycleCi + Aux(Ci) + Xi. The setXi

is called a positive base forSCi
, while the setX−

i = Atoms(HCi
) \ Xi is called a

negative base forSCi
. The couple of sets〈Xi, X

−
i 〉 is called a base forSCi

.

In the ongoing, for the sake of simplicity we consider only simple OR handles,
and simple AND handles, i.e., handles composed of a single literal. More precisely, we
consider logic programs in a specialcanonical form. Rules in a program are in a simple
uniform format. This is for the sake of clarity, and without loss of generality. Every
program in fact can be reduced to this form [CosPro03]. The formal properties of the
canonical form and the algorithm for obtaining it are discussed in [CosPro03]. Here we
need to notice that a program in canonical form has no positive circularities, and cannot
have an exponential number of cycles.

Definition 7. A logic programΠ is in canonical form (or, equivalently,Π is a canon-
ical program) if it is negative (i.e., does not contain positive literals), and fulfills the
following syntactic conditions.

1. every atom inΠ occurs both in the head and in the body of some rule;
2. every atom inΠ is involved in some cycle;
3. each rule ofΠ is either involved in a cycle, or is an auxiliary rule of some cycle;
4. each handle of a cycleC consists of exactly one literal, eitherα or not α, where

atomα does not occur inC.

Since the above definition requires handles to consist of just one literal, it implies
that in a canonical programΠ : (i) the body of each rule which is involved in a cycle
consists of either one or two literals; (ii) the body of each rule which is an auxiliary rule
of some cycle consists of exactly one literal.

Handles may help avoid inconsistencies in two ways. An AND handle∆i which is
false allows the headλi of the rule to be false. An OR handle∆ which is true forces the
atomλi to which it refers to be true as well. This idea is formalized into the following
definitions ofactive handles.

Definition 8. Let I be an interpretation. An AND handle∆ of cycleC is active w.r.t.
I if the corresponding literal is false w.r.t.I. We say that the rule where the handle
occurs has an active AND handle. An OR handle∆ of cycleC is active w.r.t.I if the
corresponding literal is true w.r.t.I. We say that the rule where the handle occurs has
an active OR handle.

Assume thatI is a model. We can make the following observations. (i) The headλ
of a ruleρ with an active AND handle is not required to be true inI. (ii) The head of a
rule λ ← ∆ where∆ is an active OR handle is necessarily true inI: since the body is
true, the headλ must also be true.

Observing which are the active handles of a cycleC gives relevant indications about
whether an interpretationI is a stable model.



Consider for instance the following program:

— OC1

p← notp, nota
— EC1

a← not b
b← nota
— OC2

q ← not q
—– Aux(OC2)
q ← f
— EC2

e← notf
f ← note

Interpretations{a, f, q}, {a, e, q}, {b, p, f, q} {b, p, e, q} are minimal models. Consider
interpretation{a, f, q}: both the AND handlenot a of cyclep ← not p, not a and the
OR handlef of cycleq ← not q are active w.r.t. this interpretation.{a, f, q} is a stable
model, since atomp is forced to be false, and atomq is forced to be true, thus avoiding
the inconsistencies. In all the other minimal models instead, one of the handles is not
active. I.e., either literalnot a is true, and thus irrelevant in the context of a rule which
is inconsistent, or literalf is false, thus leaving the inconsistency onq. These minimal
models are in fact not stable.

In conclusion, the example suggests that for a minimal modelM to be stable, each
odd cycle must have an active handle. This will be stated formally in the next section.

Another thing that the example above shows is that the stable model{a, f, q} of the
overall program is actually the union of the stable model{a} of the program fragment
OC1∪EC1 and of the stable model{f, q} of the program fragmentOC2∪Aux(OC2)∪
EC2.

In fact, for checking whether a logic program has answer sets (and, possibly, for
finding them) one can do the following.

(i) Divide the programs into pieces, of the formCi + Aux(Ci), and check whether
every odd cycle has handles; if not, then the program is inconsistent;

(ii) For every cycleCi with handles, find the setsXi that make the subprogramCi +
Aux(Ci) consistent, and find the corresponding answer setsSCi

’s; notice that in
the case of unconstrained even cycles,HCi

is empty, and we have two answer sets,
namelyM1

Ci
= Evenatoms(Ci) andM2

Ci
= Odd atoms(Ci).

(iii) Check whether there exists a collection ofXi’s, one for each cycle, such that the
correspondingSCi

’s agree on shared atoms (and then are calledcompatible): in this
case the program is consistent, and its answer set(s) can be obtained as the union of
theSCi

’s.

The following theorem (proved in [Cos03]) formally states the connection between
the answer sets ofΠ, and the partial answer sets of its cycles.



Theorem 1. An interpretationI of Π is a stable model if and only if there exists a
compatible setS = S1, . . . , Sw of partial answer sets for its composing cycles such
that I =

⋃
i≤wSi.

3 The Cycle GraphCG

Clearly, it is possible to uniquely identify the set{C1, . . . , Cw} of the cycles that occur
in programΠ. This set can be divided in the two disjoint subsets of the even cycles
{EC1, . . . , ECg}, and of the odd cycles{OC1, . . . , OCh}.

Then, the program structure in terms of cycles, handles and handle paths can be
described by means of a graph, where cycles are the vertices and handles are the edges.
Below in fact we introduce the novel notion of a cycle graph.

Definition 9. The Cycle GraphCGΠ , is a directed graph defined as follows:

– Vertices.One vertex for each of cyclesC1, . . . , Cw. Vertices corresponding to even
cycles are labeled asECi’s while those corresponding to odd cycles are labeled as
OCj ’s.

– Edges.An edge(Cj , Ci) marked with(∆ : K : λ) for each handle(∆ : K : λ) ∈
HCi

of cycleCi, that comes fromCj .

Each marked edge will be denoted by(Cj , Ci|∆ : K : λ), where however by abuse
of notation either(Cj or Ci or λ) will be omitted whenever they are clear from the
context, and we may write for short(Cj , Ci|h), h standing for a handle that is either
clear from the context or does not matter in that point.

An edge on theCG connects the cycle a handle comes from to the cycle to which the
handle belongs. Edges on theCG make it clear that handlesconnectdifferent cycles:
a handle∆ being or not being assumed to be active, corresponds to the atomα which
occurs in∆ to be required to take a certain truth value in the cycles the handle comes
from, depending of the kind of the handle. Precisely, ifα is required to be true, then it
must be concluded true in at least one of the cycles it is involved in. Ifα is required to
be false, it must be concluded false in all cycles it is involved in.

As a consequence of Theorem 1, the odd cycles need to have at least one active
handle, since on their own they would be inconsistent. If such a handle comes from
another odd cycle, then we can repeat the same reasoning. Therefore, any odd cycle, for
being consistent, must be directly or indirectly connected to some even cycle, through
a “chains” of handles. On theCG, for every odd cycle it is possible to check whether
such a connection may exist.

First, one has to check that any odd cycleOC has at least one handle. Secondly, one
has to check that the different handles marking the edges of theCG are compatible, in
the sense that the truth values required for the atoms occurring in the handles so as to
make some of them active and some of them non-active as required by the definitions
below should not be in contrast (i.e., the same atom cannot be required to be both true
and false).



Last, one has to check that there may exist partial stable models for the cycleC the
handle comes from, so as to make that handle active.

From [Cos03] we take the following definition (where we basically leave the con-
cept of incompatible handles to the reader’s intuition):

Definition 10. Given programΦ, let aCG support setbe a couple

S = 〈ACT+, ACT−〉

of subsets of the handles marking the edges ofCGΦ, represented in the form(∆ : K)
(K = AND/OR), where handles inACT+ are supposed to be active, and handles in
ACT− are supposed to be not active, and we have:
(i) ACT+ ∩ACT− = ∅.
(ii) neitherACT+ nor ACT− contain a couple of incompatible handles.

GivenS, we will indicate its two components withACT+(S) andACT−(S).
A CG support set represents the handles that are supposed to be active/not active for

making the odd cycles and the whole program consistent.

As discussed before, consistency is strongly conditioned by the odd cycles of the
program. So, we have to restrict the attention on CG support sets including at least one
active handle for each odd cycle, and then we have to check that the assumptions on
the handles are mutually coherent, and are sufficient for ensuring consistency. An CG
support set ispotentially adequateif it provides at least one active incoming handle for
each of the odd cycles.

Definition 11. An CG support setS is potentially adequate if for every odd cycleC in
Π there exists a handleh ∈ HC such thath ∈ ACT+(S).

The definition ofadequatesupport sets (omitted here) formalizes a more strict re-
quirement, to make sure that the requirement to be active/non-active for the handles
occurring in a support set can possibly be fulfilled in the cycles they come from.

Then, we have proved the following:

Theorem 2. A programΠ has answer sets if and only if there exists and adequate CG
support setS for Π.

4 The methodology

In this Section, we aim at proposing a view of a logic program under the answer set
semantics as a collection of components, where a component is a set completed cycles.
This novel view leads to new ways of building programs, and to new ways of check-
ing consistency of large programs. In fact, a large program can be assembled starting
from existing components, and its consistency can be checked simply by checking the
connectionsbetween components, i.e., the handles that join them. Also, we will discuss
how components can be understood as agents.

Let acomponentC be a bunch of cycles, plus the indication of its incoming handles
whose value can be possibly provided by other components.



Definition 12. A componentC is a set of completed cycles, each of the formC +
Aux(C), together with a setHC composed of some of the incoming handles of these
extended cycles. We callHC the set of theinput handlesof C.

Definition 13. A program is a setS = {C1, . . . , Cs} of components.

A component can be developed on its own, or it can be identified on theCG of
a larger program. Similarly to a cycle however,C is not meant to be an independent
program, rather it is connected to other components by means of handles.

Here we mean to propose a program development methodology for Answer Set
Programming based on defining, over theCG, a higher level graph where vertices are
components,and edges are a subset of the edges of theCG, connecting components
instead of single cycles.

Definition 14. The Component GraphCompGΠ , is a directed graph defined as fol-
lows:

– Vertices.One vertex for each of the components inS
– Edges.An edge(Cj , Ci) marked with(∆ : K : λ) for each handleh = (∆ : K :

λ) ∈ HCi
of componentCi, that comes fromCj .

Each marked edge will be denoted, like for theCG, by (Cj , Ci|∆ : K : λ). An edge
(Cj , Ci) marked with handleh = (∆ : K : λ) means that componentCi accepts as
input the value of∆ from componentCj .

We give below a sketch description of the methodology, that we will illustrate by
means of an example. A full definition is postponed to the extended version of the paper.
The input handles of each component will be listed in the short form∆ : K.

Let us consider the following example. We have a traffic light (calledtl) that, for the
sake of simplicity, can just take the colors green (g for short) and red (r for short). We
have two lanes, one going north-south (ns for short) and the other one east-west (ew
for short), crossing at the traffic light. If the traffic light is green in one direction it must
be red in the other one, and vice versa. The traffic light is subject to faults, ans precisely
it does not work wheneverfault tl is true. This is an input handle which should come
from a “controller” component, not specified below.

Each carc1, c2, c3 wants to go, but it is allowed to go only if it gets the green traffic
light. Otherwise, it remains dummy. Then, all cars behave in the same way. Only, cars
c1 andc2 want to go north-south, and then their input handles consist in the possible
colors of the traffic light for lane north-south. Instead, carc3 want to go east-west, and
consequently its incoming handles consist in the possible colors of the traffic light for
lane east-west.



— Component: The traffic light
— Input handles:notfault tl : AND
— — Cycle lane ns
tl(g, ns)← not tl(r, ns), notfault tl.
tl(r, ns)← not tl(g, ns), notfault tl.
tl(r, ns)← tl(g, ew).
tl(g, ns)← tl(r, ew).

— — Cycle lane ew
tl(g, ew)← not tl(r, ew), notfault tl.
tl(r, ew)← not tl(g, ew), notfault tl.
tl(r, ew)← tl(g, ns).
tl(g, ew)← tl(r, ns).

— Component(cycle): car c1
— Input handles:not tl(r, ns) : AND, tl(g, ns) : OR
go(c1, ns)← notgo(c1, ns), not tl(r, ns).
go(c1, ns)← tl(g, ns).

— Component(cycle): car c2
— Input handles:not tl(r, ns) : AND, tl(g, ns) : OR
go(c2, ns)← notgo(c2, ns), not tl(r, ns).
go(c2, ns)← tl(g, ns).

— Component(cycle): car c3
— Input handles:not tl(r, ew) : AND, tl(g, ew) : OR
go(c3, ew)← notgo(c3, ew), not tl(r, ew).
go(c3, ew)← tl(g, ew).

It is easy to see that the above program has two answer sets, one when we have the
green light on the north-south lane, and the other one when we have the green light on
the east-west lane. In the former casec1 andc2 can go, whilec3 is dummy. In the latter
case it isc3 that can go.

On theCG, we would have as many nodes as the cycle. In particular, the traffic
light subprogram is divided into two cycles, each one with two incoming AND handles
and two incoming OR handles. Each car is a cycle on its own, with an AND incoming
handle that, if active, means that the car cannot go, and an incoming OR handle that, if
active, means that the car can go.

Instead, in theCompCG: the traffic light part is a single vertex, with an input AND
handle coming from a controller component (here unspecified) able to signal a fault;
each car is a single component, with the input handles that signal whether it can go or
must stop. Consistency of the overall program based on the assumption of consistency
of the single components can be checked on theCompCG exactly like it is done on the
CG, i.e., on the handles connecting components.

Components can also be understood as agents, that can in principle be located on
different nodes of a network. The traffic-light agent is always consistent, unless it re-



ceives a factfault tl by the controller component. In this case, the traffic-light agent
becomes inconsistent, and stops working. Otherwise, it has two answer sets, one of
which can be randomly selected, thus giving the green light on one lane, and the red
light one the other one.

Each car agent is always consistent, but:go(Car, D) is false if the agent receives
the red lighttl(r, D) on its lane by means of the incoming AND handle and it is instead
true if the agent receives the green lighttl(r, D) by means of the incoming OR handle.
In this case, the answer set isgo(Car, D).

These components/agents can be instantiated from the following non-grounded pro-
gram:

— Component: The traffic light
tl(C1, D1)←

color(C1), color(C2), C1 6= C2, lane(D1),
not tl(C2, D1), notfault tl(D1).

tl(C1, D1)←
color(C1), go color(C1), lane(D1), lane(D2),
D1 6= D2, not tl(C1, D2), notfault tl(D1).

tl(C1, D1)←
color(C1), color(C2), C1 6= C2,
lane(D1), lane(D2), D1 6= D2, tl(C2, D2).

— Component: a car
go(Car, D)←

color(C), wrong color(C), lane(D),
notgo(Car, D), not tl(C,D).

go(Car, D)←
color(C), ok color(C), lane(D), tl(C,D).

Then, the above program can be seen as a template for creating as many traffic lights
and cars as one needs.

5 Concluding Remarks

We have proposed a methodology for developing answer set programs based on compo-
nents, that can possibly be understood as agents. This in the framework of Answer Set
Programming, where every form of true modularization seemed to be impossible. The
conceptual tool is theCompCG, based on theCG. We have given just a sketch of the
proposed methodology. In more detail, each component should be defined together with
an interface, establishing the requirements on the incoming handles, and thepromises
for the values of the outcoming handles. On theCompCG, the combinations of com-
ponents can be checked for consistency by means of the formal tools outlined in the
previous Sections. Combinations of components can be taken as new components, thus
defining higher-level graphs. A formal definition of the methodology and experiments
on real applications are the main future directions of this work.



References

[Cos03] Costantini, S., 1995.On the existence of stable models of unstratified programs,
submitted, 2003 (draft available at the URL http://costantini.di.univaq.it).

[CosPro03] Costantini, S., and Provetti A., 2002.Normal Forms for Answer Set Program-
ming.submitted, 2003 (draft available at the URL http://costantini.di.univaq.it).

[GelLif88] Gelfond, M. and Lifschitz, V., 1988.The Stable Model Semantics for Logic
Programming,In: R. Kowalski and K. Bowen (eds.) Logic Programming: Proc.
of 5th International Conference and Symposium: 1070–1080.

[GelLif91] Gelfond, M. and Lifschitz, V., 1991.Classical Negation in Logic Programming
and Disjunctive Databases,New Generation Computing 9, 1991: 365–385.

[Lif99] Lifschitz V., 1999. Answer Set Planning.in: D. De Schreye (ed.) Proc. of the
1999 International Conference on Logic Programming (invited talk), The MIT
Press: 23–37.

[MarTru99] Marek, W., and Truszczyński, M., 1999. Stable Models and an Alternative
Logic Programming Paradigm,In: The Logic Programming Paradigm: a 25-
Year Perspective, Springer-Verlag: 375–398.

[Systems] CCALC:http://www.cs.utexas.edu/users/mcain/cc
DeReS:http://www.cs.engr.uky.edu/ lpnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
SMODELS:http://www.tcs.hut.fi/Software/smodels/


