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1 Dip. di Informatica, Università di L’Aquila, Coppito 67010, L’Aquila, Italy
stefania.costantini@univaq.it

2 Dept. of Science and Technology - ITN, Linköping University, Norrköping, Sweden
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Abstract

This paper deals with run-time detection and possible correction of er-
roneous and/or anomalous behavior in agents. Agent behavior is affected
by its interaction with the external world, i.e., by events perceived by the
agent and in which order. Nevertheless, in most practical cases, the actual
arrival order of events is unforeseeable, and the set of possible events is so
large that computing all combinations would result in a combinatorial ex-
plosion, resorting to “priori” verification techniques is actually unpractical.
However, properties that one wants to verify often depend upon which events
have been observed by an agent up to a certain point, and which other ones
are supposed to occur later. Therefore, we augment our previous approaches
by allowing an agent to explicitly observe and record its past behavior so as
to be able to decide its best actions, and avoid errors performed in previous
similar situations.

1 Introduction

Agents are by definition software entities which interact with an environment, and
thus are subject to modify themselves and evolve according to both external and
internal stimuli, the latter due to the proactive and deliberative capabilities of the
agent themselves.

In previous work, we defined semantic frameworks for agent approaches based
on computational logic that account for: (i) the kind of evolution of reactive
and proactive agents due to directly dealing with stimuli, that are to be coped
with, recorded and possibly removed [8]; and (ii) the kind of evolution related
to adding/removing rules from the agent knowledge base [2]. These frameworks
have been integrated into an overall framework for logical evolving agents (cf.
[11, 6]), where every agent is seen as the composition of a base-level (or object-
level) agent program and one or more meta-levels. In this model, updates related
to recoding stimuli are performed in a standard way, while updates involving the
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addition/deletion of sets of rules, related to learning, belief revision, etc. are a
consequence of meta-level decisions.

As agent systems are more widely used in real-world applications, the issue of
verification is becoming increasingly important (see [14] and the many references
therein).

In computational logic, two common approaches to the verification of com-
putational systems are model checking [5] and theorem proving. There are many
attempts to adapt these techniques to agents (see again [14]). In previous work, we
have already addressed the problem concerning the monitoring at run-time of agent
behavior against desired properties, or with respect to a certain specification. In our
approach we have introduced the possibility of defining, possibly both at the object
and at the meta-level, axioms that determine properties to be respected or enforced,
or simply verified, whenever a property is desirable but not mandatory. We assume
these properties to be verified at runtime. Upon verification of a property (which is
evaluated within a context instantiated onto the present circumstances), suitable ac-
tions can be undertaken, that we call in general improvement action. Improvements
can imply revision of the agent knowledge, or tentative repair of malfunctioning,
or tentative improvement of future behavior, according to the situation at hand. Our
approach is to some extent similar to that of [4] for evolving software.

The motivation of the work presented in the present paper is that the agent
behavior is affected by its interaction with the external world, i.e., by events per-
ceived by the agent and in which order. In most practical cases however, the actual
arrival order of events is unforeseeable, and the set of possible events is so large
that computing all combinations would result in a combinatorial explosion, thus
making “a priori” verification techniques actually unpractical. Moreover, proper-
ties that one wants to verify often depend upon which events have been observed
by an agent up to a certain point, and which others are supposed to occur later.
Therefore, we augment our previous approaches by allowing an agent to explicitly
observe and record its past behavior so as to be able to decide the best actions to
do, and to avoid errors performed in previous similar situations. This motivates the
importance of recording the most relevant facts which happened in the past and of
recovering error and behavioral anomalies by means of appropriate strategies.

The definition of frameworks such as the one that we propose here, for check-
ing agent behavior during its life based on experience, has not been really treated up
to now. In fact, there has been an increasing quest for agent platforms whose com-
ponent entities would be capable of exhibiting a correct and rigorous behavior with
respect to expectations. However, developers have mostly applied model-checking
techniques that are based upon abstract models of an agent system, thus neglecting
the run-time verification of behavior during the agent life according to what hap-
pens in actual evolution of the system. On the one hand, due to the combinatorial
explosion, properties that can be statically verified are necessarily quite simple. On
the other hand, there is no way to reinstate a correct behavior at run-time, in case
unwanted situations should occur.

The model-checking paradigm allows one to model a system S in terms of au-
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tomata by building an implementation Ps of the system at hand by means of a
model-checker friendly language and then verifying some formal specifications.
These are commonly expressed either as formulae of the branching time temporal
logic CTL [17, 22] or as formulae of Linear Temporal Logic [16, 28]. Model-
checking techniques have been adopted in order to check systems implemented
in AgentSpeak(L) [13], where a variation of the language aimed at allowing its
algorithmic verification is proposed. programs written in this modified language
can then be submitted to model checkers. Penczek and Lomuscio have defined
bounded semantics of CTLK [21], a combined logic of knowledge and time. The
approach is to translate the system model and a formula ϕ, indicating the property
to be verified, to sets of propositional formulae then submitted to a SAT-solver.
However, if an agent can learn new knowledge or rules, then it is clearly difficult
or even impossible to check the behavior correctness after these modifications by
means of either model-checking or other static approaches. In fact, as mentioned
before model-checking techniques are applied by rewriting the interpreter in an-
other language and this operation cannot be re-executed whenever the agent learns
a new fact or rule.

The deductive approach to verification uses a logical formula to describe all
possible executions of the agent system and then attempts to prove the required
property from this logical formula. The required properties are often captured using
modal and temporal logics. Deductive approaches have been adopted by Shapiro,
Lesperance and Levesque that defined CASLve [27], a verification environment
for the Cognitive Agent Specification Language. A limitation of the theorem prov-
ing approach is the problem’s complexity, and thus a human interaction is often
required.

Another possible approach to agent validation requires to observe the agent’s
behavior as it performs its tasks in a series of test scenarios before putting it at work.
But this approach, as observed by Wallace in [29], by its very nature is incomplete,
since all possible scenarios cannot be examined. Nor the future agent knowledge is
knowable in advance. So, it is necessary to individuate a new mechanism capable
of verifying the agent behavior correctness without stopping its life.

In this paper, we propose a method for checking the agent behavior correctness
during the agent activity, based on maintaining information on its past behavior.
This information is useful in that it records what has happened in the past to the
agent (events perceived, conclusions reached and actions performed) and thus en-
codes relevant aspects of an agent’s experience. If augmented by time-stamps,
these records (that we call past events) constitute in a way the history of the agent
activity. The set of past events evolves in time, and can be managed for instance
by distinguishing the most recent versions of each past event, that contribute to the
agent present perception of the state of the world.

Past events can be exploited for the purpose of self-checking agent activities:
we propose in fact the introduction of specific constraints, defined as temporal-
logic-like formulae expressed upon past events and events that are supposed to
occur in the future. Alberti et al. in [1] have adopted a similar approach based
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on social constraints in order to model the interactions among (possibly heteroge-
neous) agents that form an open society.

The present proposal instead is not aimed at verifying the agents’ behaviors
correctness in the context of communication acts exchange but it is aimed at eval-
uating the reliability of a single agent, that we assume not to be malicious. The
constraints that we introduce are purposely of a quite simple form so as to be eas-
ily and efficiently checked.

Another interesting class of techniques for agent behavior verification is based
on variations of Kowalski and Sergot’s Event Calculus, used in conjunction with
abduction. We intend in the future to perform a comparison between our behav-
ioral constraints and these techniques. We mention here the interesting approaches
in [26] and [3] that analyze safety properties and formalize Policy Specification.
In [3], the abduction process is applied to a specification that models both the sys-
tems behavior and the policy specification, allowing to detect conflicts when the
applicability of the policies is enforced on the runtime state of the system.

This paper is organized as follows. In Section 2 we shortly summarize our
approach to evolutionary semantics of logical agents and our previous work on
interval temporal logic. some kind of anomalies that agent behavior can reveal.
In Section 3 we discuss how an agent should record and keep up-to-date its past
experience, i.e., how an agent should construct its “memory”. In Section 4 we
define dynamic constraints expressed by defining temporal logic formulae based
on agent’s memory. Finally, we proffer concluding remarks in Section 5.

2 Background

2.1 Declarative Semantics of Evolving Agents

The declarative semantics we refer to here has been introduced and discussed in
depth in [8]. It is aimed at declaratively modeling the changes inside an agent
which are determined both by changes in the environment, that we call external
events, and by the agent’s own self-modifications, that we call internal events. The
key idea is to understand these changes as the result of the application of program-
transformation functions. In this approach, a program-transformation function is
applied upon reception of either an external or an internal event, the latter having a
possibly different meaning in different formalisms.

As a typical situation, perception of an external event will have an effect on
the program which represents the agent: for instance, the event will be stored as
a new fact in the program. This transforms the program into a new program, that
will procedurally behave differently than before, e.g., by possibly reacting to the
event. Or, the internal event corresponding to the decision of the agent to undertake
an activity triggers a more complex program transformation, resulting in version
of the program where the corresponding intention is somewhat “loaded” so as to
become executable.
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Thus, we abstractly formalize an agent as the tuple Ag = < PAg, E, I, A >
where Ag is the agent name and PAg describes the agent behavioral rules, i.e.,
the agent program. E is the set of the external events, i.e, events that the agent
is capable to perceive and recognize: let E = {E1, . . . , En} for some n. I is the
internal events set (distinguished internal conclusions): let I = {I1, . . . , Im} for
some m. A is the set of actions that the agent can possibly perform: let A =
{A1, . . . , Ak} for some k. Let E = (E ∪ I ∪A).

According to this semantic account, one will have an initial program P0 =
PAg which, according to events that happen and actions which are performed,
passes through corresponding program-transformation steps (each one transform-
ing Pi into Pi+1) (see [8]), and thus gives rise to a Program Evolution Sequence
PE = [P0, ..., Pn, ...]. The program evolution sequence will have a corresponding
Semantic Evolution Sequence ME = [M0, ...,Mn, ...] where Mi is the semantic
account of Pi.

The different languages and different formalisms in which an agent can possi-
bly be expressed will influence the following key points: (i) when a transition from
Pi to Pi+1 takes place, i.e. which are the external and internal factors that deter-
mine a change in the agent; (ii) which kind of transformations are performed; (iii)
which semantic approach is adopted, i.e., how Mi is obtained from Pi. Mi might
be for instance a model, or an initial algebra, or whatever declarative meaning can
be attributed to an agent program. In general, given a semantics S we will have
Mi = S(Pi).

A particular internal event that may determine a transition can be, e.g., the de-
cision of the agent to revise its knowledge, for instance by verifying constraints,
removing “old” facts, or performing any kind of belief revision. Also belief revi-
sion in fact can be seen in our approach as a step of program transformation that in
this case results in the updated theory.

We also believe it useful to perform an Initialization step, where the program
PAg written by the programmer is transformed into a corresponding program P0

by means of some sort of knowledge compilation. This initialization step can be
understood as a rewriting of the program in an intermediate language and/or as
the loading of a “virtual machine” that supports language features. This stage can
on one extreme do nothing, on the other extreme it can perform complex transfor-
mations by producing “code” that implements language features in the underlying
logical formalism. P0 can be simply a program (logical theory) or can have addi-
tional information associated to it.

LetH be the agent “history”, better discussed below, i.e., a record of the events
that happen and of the actions that the agent performs, each one time-stamped so
as to indicate when they occurred.

Definition 2.1 (Evolutionary semantics). Let Ag be an agent. The evolutionary
semantics εAg of Ag is the tuple ⟨H,PE,ME⟩.

The size of the elements of εAg is in principle infinite, as agents are entities
that may stay alive forever. However, we define an “instant view” of semantics:
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Definition 2.2 (Evolutionary semantics snapshot). Let Ag be an agent, with evo-
lutionary semantics εAg = ⟨H,PE,ME⟩. The snaphot at stage i εAg

i is the tuple
⟨Hi, Pi,Mi⟩ where Hi is the history up to the event that has determined the tran-
sition from Pi−1 to Pi.

2.2 Temporal Logic

For defining properties that are supposed to be respected by an evolving system,
a well-established approach is that of Temporal Logic (introduced in Computer
Science by Pnueli [25], for a survey the reader can refer to [12]), and in particular
Linear-time Temporal Logic (LTL), that implicitly quantifies universally upon all
possible paths. LTL logics are called linear because, in contrast to branching time
logics, they evaluate each formula with respect to a vertex-labeled infinite path
s0s1 . . . where each vertex si in the path corresponds to a point in time (or “time
instant” or “state”).

LTL enriches an underlying first-order logic language with a set of temporal
connectives composed of a number of unary and binary connectives referring to
future-time and past-time. The syntax of the operators that are of interest in this
paper is given below, where φ and ψ are formulae.

2.2.1 Future-time connectives

(Assume m < n)

X (next state). Xφ states that φ will be true at next state.

G (always in future). Gφmeans that φ will always be true in every future state.

F (sometime in future). Fφ states that there is a future state where φ will be
true.

W (weak until). φWψ is true in a state s if ψ is true in a state t, in the future
of state s, and φ is true in every state in the time interval [s,t) where t is
excluded.

U (strong until). φUψ is true in a state s if ψ is true in a state t, in the future
of state s, and φ is true in every state in the time interval [s,t] where t is
included.

N (never). Nφ states that φ should not become true in any future state.

τ (current state).

2.2.2 Past-time connectives

(Assume m < n)

X̂ (last state). X̂φ states that if there is a last state, then φ was true in that state.
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F̂ (some time in the past). F̂φ states that φ was true in some past state.

Ĝ (always in the past). Ĝφ states that φ was true in all past states.

Ẑ (weak since). φẐψ is true in a state s if ψ was true in a state t (in the past of
state s), and φ was true in every state of the time interval [t,s).

Ŝ (since). φẐψ is true in a state s if ψ was true in a state t (in the past of state
s), and φ was true at every state in the time interval [t,s].

2.2.3 Interval Connectives

In prior work (see e.g., [7]) we introduced an extension to temporal logic based
on intervals, where states in which a temporal formula is supposed to hold are
explicitly stated. The new operators are in particular the following (assume m <
n).

τ(i) (current state). τ(i) is true if si is the current state.

Xm (future m-state). Xmφ states that φ will be true in the state sm+1.

Fm (bounded eventually). Fmφ states that φ eventually has to hold somewhere
on the path from the current state to sm.

Fm,n (bounded eventually in time interval). Fm,nφ states that φ eventually has to
hold somewhere on the path from state sm to sn.

Gm,n (always in time interval). Gm,nφ states that φ should become true at most at
state sm and then hold at least until state sn.

G⟨m,n⟩ (strong always in time interval). G⟨m,n⟩φ states that φ should become true
just in sm and then hold until state sn, and not in sn+1.

Nm,n (bounded never). Nm,nφ states that φ should not be true in any state between
sm and sn.

Em,n (sometime in time interval). Em,nφ states that φ has to occur one or more
times between sm and sn.

3 Defining agent experience

A rule-based agent consists of a knowledge base and of rules aimed at providing
the entity with rational, reactive, pro-active and communication capabilities. The
knowledge base constitutes a part of the agent’s “memory”, where rules define the
agent’s behavior. Through “memory”, the agent is potentially able to learn from
experiences and ground what it knows on these experiences [15]. The interaction
between the agent and the environment can play an important role in construct-
ing its memory and may affect its future behavior. Most methods to design agent
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memorization mechanisms have been inspired by models of human memory as for
instance [20], [23].

In 1968, Atkinson and Shiffrin proposed a model of human memory which
posited two distinct memory stores: short-term memory and long-term memory.
This model has been suggested by Gero and Liew for constructive memory whose
implementation has been presented in [19]. Memory construction [in this model]
occurs whenever an agent uses past experiences in the current environment in a sit-
uated manner. In a constructive memory system, any information about the current
environment, the internal state of the agent and the interactions between the agent
and the environment is used as cues in its memory construction process. Memory,
experience and knowledge are in general strongly related. Correlation between
these elements can be obtained via neural networks as in [19], via mathematical
models as in [18] or via logical deduction.

Some of the authors of this paper have proposed in [9],[10] a method of corre-
lating agent experience and knowledge by using a particular construct, the internal
events, that has been introduced in the DALI language (though it can be in prin-
ciple adopted in any computational logic setting). We have defined the “static”
agent memory in a very simple way as composed of the original knowledge base
augmented with past events that record the external stimuli perceived, the internal
conclusions reached and the actions performed.

Past events can play a role in reaching internal conclusions. These conclusions,
which are proactively pursued, take the role of “dynamic” memory that supports
decision-making and actions: in fact, the agent can inspect its own state and its
view of the present state of the world, so as to identify the better behavioral strategy
in that moment. The agent re-elaboration of its experiences creates a particular
view of the external world. By “particular” we mean that each agent, on the basis
of its knowledge and experience, can interpret what has changed in the world in its
peculiar manner. In our view therefore, an agent must record not only perceived
external stimuli but also the internal conclusions reached by the entity and the
actions performed. This allows in principle all aspects of agent behavior to be
related, thus potentially improving its performance.

More specifically, past events, in our approach, record external events that have
happened, internal events that have been raised and actions that have been per-
formed by the agent. Each past event is time-stamped to also record when the
event has happened. Past events have at least two relevant roles: describe the agent
experience; keep track of the state of the world and of its changes, possibly due to
the agent intervention.

With time, on the one hand past events can be overridden by more recent ones
of the same kind (take for example temperature measurement: the last one is the
“current” one) and on the other hand can also be overridden also by more recent
ones of different kinds, which are somehow related.

In this paper, we extend and refine the concepts that we had introduced in the
above-mentioned previous work. In particular, we introduce a set P of current
“valid” past events that describe the state of the world as perceived by the agent.

8



We also introduce a set PNV where we store all previous ones. Thus, the historyH
referred to in the definition of the evolutionary semantics is the tuple ⟨P, PNV ⟩.
Given history H , we introduce the notation H.P and H.PNV to refer to the two
components. In practice, H is dynamically augmented with new events that hap-
pen. Let E = (E ∪ I ∪ A) be the set of the events that may happen, in which as
already observed we include the sets of external (set E) and internal (set I) events
and the actions (set A) that the agent itself performs. Each event in X ∈ E may
occur none or several times in the agent’s life. Each occurrence is therefore indi-
cated as X : Ti where Ti is a time-stamp indicating when this specific occurrence
has happened (where the time-stamp can be omitted if irrelevant. Each X ∈ E is
a ground term, with the customary prolog-like syntax. If one is interested in iden-
tifying which kind of event is X , a postfix (that can be omitted if irrelevant) can
provide this indication. I.e., XE is an external event, XA is an action and XI an
internal event. As soon as X is perceived by the agent, it is recorded in P in the
form XP

Y : Ti where P is a postfix that syntactically indicates past events and Y
is a label indicating what is X , i.e., if it belongs to E, I or A. By abuse of notation
for the sake of conciseness we will often omit label Y if the specific kind of event
is irrelevant, and we will sometimes indicate XP

Y : Ti as Xi or simply X .
Clearly, as new “versions” of an event arrive, they should somehow “override”

the old versions that have to be transferred into PNV: for instance, P will contain
the most recent measure of the outside temperature, while previous measurements
will be recorded in PNV.

Past events in PNV may still have a relevant role for the entity decision process.
In fact, an agent could be interested for instance in knowing how often an action has
been performed or a particular stimuli has been received by the environment, or the
first and last occurrences, etc. In the previous example, measurements recorded in
PNV might for instance be used for computing the average temperature in a certain
period of time. Clearly, PNV will have a limited size and thus older or less relevant
events will have to be canceled. We do not cope with this issue in this paper, where
instead we will cope with the issue of how to keep P up-to-date. Consider for
example to have an agent that opens or respectively closes some kind of access.
The action of opening the access can be performed only if the access is closed, and
vice versa for closing. Assume that this very simple agent believes that no external
interference may occur, and thus the access is considered (by the agent) to be closed
if the agent remembers to have closed it, and vice versa it is considered to be open
if the agent remembers to have opened it. These “memories”, in our approaches,
are past events in P. Therefore, the agent will have previously closed the door (and
thus it considers itself enabled to open it) if a past event such as closeAP : t1 is
in P. After performing the action openA : t2, not only the past event openAP : t2
must be inserted into P , but for avoiding possible mistakes the previous past event
closeAP : t1 should be removed from P and transferred into PNV. Past Constraints
define which past events must be eliminated and under which conditions. They
should be automatically applied in order to keep the agent memory consistent with
the external world. More formally, we define a Past Constraint as follows (where
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we overlook the label Y indicating the kind of past event).

Definition 3.1 (Past Constraint). A Past Constraint has syntax:

XkP : Tk, ..., XmP : Tm EXsP : Ts, ..., XzP : Tz, {C1, ..., Cn}

whereXkP : Tk, ..., XmP : Tm are the past events which are no longer valid when-
ever past events XsP : Ts, ..., XzP : Tz become known and conditions C1, ..., Cn

are true, i.e., as we will say, whenever the constraint holds.

For the previous example, we would have the following past constraint.

closeAP : t1 E openAP : t2, t1 < t2

We define H ⋆ X as the operation of adding the past-event version of event
X ∈ E to the history, that also implies transferring past events from P to PNV
according to the past constraints.

Definition 3.2. Let PC be the set of past constraints and S a set of past events.
By F = PC(S) we indicate the result of the application of the past constraints in
PC, i.e., F included the left-hand sides of all the constraints in PC which hold
given as known the past events in S.

Definition 3.3. Given history H = ⟨P, PNV ⟩, set of past constraints PC and
event X , the result of H ⋆ X is an updated history H ′ = ⟨P ′, PNV ′⟩ where: (i)
P ′ = S \F with S = H.P ∪{XP } and F = PC(S); (i) PNV ′ = H.PNV ∪F ,
.

In [24], we also addressed the problem of modeling evolving prospective agent
systems, i.e. those looking ahead a number of steps into the future, thus being
confronted with having to choose among different possible courses of evolution,
and so needing to prefer and commit about the best one to follow, as seen from
their present state.

4 Checking the behavior of Evolving Agents

According to the evolutionary semantics that we have defined before, time instants
s0s1 . . . of temporal logic can be understood in terms of the events that happen. In
fact, at the i-th evolution step we have an history Hi, an agent program Pi and its
intended semantics Mi, determined by events E1, . . . , Ei occurred so far. The next
evolution step will take place in accordance to the perception of next event Ei+1.
Then, any property φ which holds w.r.t. εAg

i , i.e. w.r.t. the agent evolutionary
semantics up to step i, will keep holding until next event will determine a transition
to the next snapshot. In other words, the agent understands the world only in terms
of the event that it perceives. Therefore we can state the following.
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Definition 4.1. Given agent Ag with evolutionary semantics εAg, we let si = εAg
i

= ⟨Hi, Pi,Mi⟩.

I.e., a state is taken to be the snapshot at stage i of the evolutionary semantics of
the agent.

In model-checking, the aim is to establish if some LTL formulaOpφ or φOpψ
can be established to be true, given a description of the system at hand from which
the system evolution can be somehow elicited. In order to cope with the many
cases where this evolution cannot be fully foreseen, we propose a reformulation of
temporal logic operators so as to take into account the events that have happened
already and those that are expected to happen in the future and to be relevant to the
property that we intend to check. We do so because indeed checking a property
w.r.t. any possible sequence of events would determine a combinatorial explosion
of the checks that should be made. Moreover, many of the checks would be useless,
as they would concern combination of events that are irrelevant to the property at
hand.

Definition 4.2 (Evolutionary LTL Expressions). Let τ be a temporal logic expres-
sion of the form Opφ if operator Op is unary or φOpψ if operator Op is binary.
The evolutionary version of τ , that we will call Evolutionary LTL Expression, is of
the form

{EP1 , . . . , EPn−1} τ : {F1, . . . , Fm}

where: n,m ≥ 0; {EP1 , . . . , EPn−1} ⊆ Hn.P denote the relevant events which
are supposed to have happened; sn = εAg

n is the state from which the property
is required to be checked; {F1, . . . , Fm} denote the events that are expected to
happen in the future; if k− 1 is the state in which Fm will happen, sn+k = εAg

n+k is
the state until which τ is required to be checked.

We may notice that we might adapt for this case the enhanced temporal logic
operators that we have discussed above, i.e., in τ , we might adopt Opn,n+k in-
stead of Op, except that in general we do not know k, i.e., we cannot foresee
at which state the last expected relevant event Fm will happen. We may also
notice that in many practical cases we are unable to provide a full sequence of
the expected events, and sometimes we will be interested only in some of them.
Thus, in the above definition, to be able to indicate the sets of past and future
events in a more flexible way we admit the syntax of regular expressions (see,
e.g., http : //en.wikipedia.org/wiki/Regular expression and the references
therein). We also extend this syntax as follows.

Definition 4.3. Let X be a wild-card standing for any event. The expression
X+(Y v1

1 , . . . , Y vm
m ), where m > 0 and for each of the vi’s, either vi > 0 or vi

= ’+’, stands for a non-empty sequence of X’s in which each event Yi occurs vi
times, and in particular any number of times if vi = ’+’.
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Moreover, in Definition 4.2 we do not require the EPi’s and the Fi’s to be ground
terms. Instead, we admit each of them to contain variables if we are not inter-
ested in precisely specifying some of their parameters. For instance, the expres-
sion X+(consumeA

+(r,Q)) indicates a sequence of events where the action of
consuming (some resource r) occurs at least once. Each action will refer to a
quantity Q which is not specified. An evolutionary LTL expression could be for
instance:

X+(supplyA(r, s))N(quantity(r, V ), V < th)X+(consumeA
+(r,Q))

stating that, after having provided a supply of resource r for a total quantity s, the
agent is expected to consume unknown quantities of the resource itself. Never-
theless, the expression states a constraint requiring that the available quantity of
resource r remains over a certain threshold th. Evolutionary LTL expressions are
in fact supposed to act as constraints to be verified at run-time whenever new events
are perceived. At any state between si and sn+k a violation may occur if the inner
LTL formula τ does not hold of that state. The proposition below formally allows
for dynamic run-time checking of evolutionary LTL expressions. In fact, it says
that if a given expression holds in a certain state and is supposed to keep holding
after the first expected event has happened, then checking this expression amounts
to checking the modified expression where the occurred event has become a past
event, and subsequent events are still expected.

Proposition 1. Given expression F = {EP1 , . . . , EPn} τ : {F1, . . . , Fm}, assume
that F holds at state sn and that τ still holds after the occurrence of event F1.
Given FF1 = {EP1 , . . . , EPn , FP1} τ : {F2, . . . , Fm} we have F ≡ FF1 .

In prior work (see e.g., [6, 7]), we introduced temporal logic rules with im-
provement, where actions could be specified in order to cope with unwanted sit-
uations. We extend this approach to the present work. As discussed above, we
consider evolutionary LTL expressions as constraints that can hold or not at any
state. We enrich these constraints by means of the specification of which actions
to perform in order to try regain a suitable state of affairs. For lack of space, we
illustrate our proposal by means of the following example. The evolutionary LTL
expression with improvement listed below states that no more consumption can
take place if the available quantity of resource r is scarce (thus, in this case, the
improvement it is rather a repair).

X+(supplyA(r, s))N(quantity(r, V ), V < th)X+(consumeA
+(r,Q)) :

prevent(consumeA(r,Q))

We assume the distinguished predicate prevent to be implicitly added to the pre-
conditions of every action, that can take place only if not prevented. We might
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as well add another constraint, that forces the agent to limit consumption to small
quantities (say th1) if it is approaching the threshold (say that the remaining quan-
tity is th + s, for some s). Again, the distinguished predicate allow should be a
precondition of every action, that should be performed only if not prevented and
allowed.

X+(supplyA(r, s))N(quantity(r, V ), V < th+ s)X+(consumeA
+(r,Q)) :

allow(consumeA(r,Q), Q < th1)

5 Concluding Remarks

In this paper, we have presented an approach to update agent memory and to detect
and correct behavioral anomalies by using dynamic constraints. The approach is
based on introducing particular events, past events, that record what has happened.
The runtime observation of actual anomalous behavior with dynamic possible cor-
rection of detected problems, as opposed to full prior classical program verification
and validation on all inputs, can be a key to bringing down the well-known com-
putational complexity of the agent behavior assurance problem.
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