
VERSO L’ANALISI STATICA DEGLI ANSWER SET
PROGRAMS

TOWARDS STATIC ANALYSIS OF ANSWER SET
PROGRAMS1

Stefania Costantini

Abstract

In questo lavoro viene proposto un metodo di analisi sta-
tica per l’“Answer Set Programming”, chée un nuovo
paradigma basato sulla semantica degli “answer sets” in-
trodotta da Gelfond e Lifschitz (chiamata anche seman-
tica dei “modelli stabili”). Il metodo si basa sui seguenti
punti: identificare i cicli che compaiono in un programma,
mostrando che i modelli stabili del programma stesso si
possono ottenere dai modelli stabili di particolari sotto-
programmi corrispondenti ai cicli; definire il Grafo dei Ci-
cli, dove ogni nodo corrisponde ad un ciclo ed ogni arco
ad un letterale detto “handle”, che puó essere visto come
una connessione fra due cicli in quanto l’atomo che in esso
occorre appartiene ad entrambi i cicli. Sul Grafo dei Cicli
é possibile verificare diverse proprietá di un programma,
inclusa la consistenza.

In this paper we propose a static analysis methodology for
Answer Set Programming, which ia a new logic program-
ming paradigm based on Gelfond-Lifschitz’s answer set
semantics (originally defined as ‘stable model semantics’).
The method is based on: identifying the cycles contained
in the program, showing that stable models of the overall
program are composed of stable models of suitable sub-
programs, corresponding to the cycles; defining theCycle
Graph,where each vertex corresponds to one cycle, and
each edge corresponds to onehandle,which is a literal
containing an atom that, occurring in both cycles, actually
determines a connection between them. Several properties
of a program, including consistency, can be checked on its
Cycle Graph.

∗We acknowledge support by theInformation Society Tech-
nologies programme of the European Commission, Future
and Emerging Technologiesunder the IST-2001-37004 WASP
project.

1 Introduction

Answer Set Programming is a branch of Logic Program-
ming based on the Stable Models and Answer Sets declar-
ative semantics defined by Gelfond and Lifschitz [8] [9].
While in standard logic programming program statements
designate properties of a first-class object which is to be
computed, Answer Set Programming (ASP) is based on
the understanding of program statements as constraints on
a set of atoms that encode a solution to the problem at hand.

Several implemented systems for answer sets compu-
tations are now available [13] and their performance is
rapidly improving, approaching that of state-of-art SAT
model checkers. The programmer shall write the logic pro-
gramπ with negation-as-failure but without function sym-
bols. By feedingπ to an ASP solver, one obtains thean-
swer sets, and solutions to given problem can beread off
the answer sets. Several answer sets corresponds to several
different solutions. However, as it is well-known, under the
answer set semantics a program may have no answer sets,
i.e. it is not necessarilyconsistent.

In this paper we propose a static analysis methodology
for Answer Set Programming. The method is based on
the following points. (1) Identifying the cycles contained
in the program, showing that stable models of the overall
program are composed of stable models of suitable sub-
programs, corresponding to the cycles. (2) Defining the
Cycle Graph,where each vertex corresponds to one cycle,
and each edge corresponds to onehandle,which is a literal
containing an atom that, occurring in both cycles, actually
determines a connection between them. In particular, ex-
istence of stable models is guaranteed if and only if for
every odd cycle we can find a subgraph with certain prop-
erties. (3) Providing a procedure for checking consistency
on the Cycle Graph without actually computing the answer
sets. In fact, the necessary and sufficient condition that we
introduce is syntactic in the sense that it does not refer ei-
ther to models or derivations.It just requires to look at the
program (represented by the Cycle Graph) and at the rules

composing the cycles.
Checking for the existence of stable models is a hard a

computational problem (in fact, NP-complete) [?]. Being
able to check for the existence of stable models syntacti-
cally for every answer set program can be useful in prac-
tice in many ways. In [4] it is argued that the approach can
be useful for improving answer set computation, for defin-
ing classes of programs that are consistent by construction,
and as a first step toward a component-based methodology
for the construction and analysis of answer set programs.
Here we show how it can be in principle used for checking
many properties, e.g. for detecting whether an atom can
belong to some answer set.

The method is presented for programs which are in a
canonical formto which any logic program can be reduced
by means of a tractable transformation [6]. Canonical pro-
grams focus the attention on cyclic dependencies. Rules
are kept short, so as to make the syntactic analysis of the
program easier. The stable models of any general logic
program coincide (up to the language) to those of the corre-
sponding canonical program. We will shortly discuss how
the method might be rephrased for general programs, even
in non-grounded form.

2 Cycles and Handles

We assume the standard definitions of a general logic pro-
gram Π (or simply “logic program”) [10], well-founded
[12] stable model [8] and answer set semantics [9]. When-
ever we mention consistency (or stability) conditions, we
refer to the conditions introduced in [8]. For the sake of
simplicity, we consider here the definition ofstable model
instead of that of answer set, which is an extension given
for programs that contain the explicit negation operator¬.
In fact, this is not going to make a difference in the con-
text of this work, and we will often interchange the terms
“stable models” and “answer sets”. The methodology pro-
posed in this paper is based on identifying the negative cy-
cles contained in the program.

Definition 1 A set of rules C is called anegative cycle, or
for short acycle, if it has either the form

λ1 ← notλ2,∆1

λ2 ← notλ3,∆2

. . .
λn ← notλ1,∆n

where n> 1 andλ1, . . . , λn are distinct atoms or the form

λ1 ← notλ1,∆1

Each ∆i , i ≤ n, is a (possibly empty) conjunction
δi1 , . . . , δih of literals (either positive or negative), where
for eachδi j , ij ≤ ih, δi j 6= λi andδi j 6= notλi . The∆i ’s are
called theAND handlesof the cycle. We say that∆i is an
AND handle for atomλi , or, equivalently, an AND handle
referring toλi .

We say thatC has sizen and it is even (respectively odd)
if n = 2k, k ≥ 1 (respectively,n = 2k + 1, k ≥ 0). For
n = 1 we have the (odd) self-loop.

A positive cycleis similar to a negative cycle, except that
we have positive literalsλi ’s in the body of rules instead of
negative ones. In the rest of the paper we will consider
negative cycles unless differently specified explicitly.

For any cycle C, we will denote by
Composingatoms(C) the set {λ1, . . . , λn}, i.e., the
set of atoms thatoccur in cycle C. We say that the rules
listed above areinvolved in the cycle, orform the cycle.
In the rest of the paper, sometimes it will be useful to
see Composingatoms(C) as divided into two subsets,
that we indicate as twokinds of atoms: the set of the
Evenatoms(C)composed of theλi ’s with i even, and
the setOdd atoms(C), composed of theλi ’s with i odd.
Notice that the sets of atoms composing different cycles
are not required to be disjoint. In fact, the same atom may
be involved in more than one cycle.

Conventionally, in the rest of the paperC andCi denote
cycles in general,OC andOCi denote odd cycles, andEC
or ECi denote even cycles.

Definition 2 A rule is called anauxiliary rule of cycleC
if it is of this form:
λi ← ∆
whereλi ∈ ComposingAtoms(C), and∆ is a non-empty
conjunctionδi1 , . . . , δih of literals where for each ij ≤ ih
eitherδi j = αi j , or δi j = notαi j for some atomαi j andαi j 6∈
Composingatoms(C). ∆ is called anOR handleof cycle
C (more specifically, an OR handle forλi or, equivalently,
and OR handle referring toλi).

A cycle may possibly have several auxiliary rules, cor-
responding to different OR handles. In the following, we
will call Aux(C) the set of the auxiliary rules of a cycleC.
A cycle with no AND handles and no OR handles is called
unconstrained.

Consider for instance the following programπ.

— OC1

q ← not q
—– Aux(OC1)
q ← f
— OC2

p ← not p, not f
— EC1

e← not f
f ← not e

It can be seen as divided into the following parts, each one
corresponding toCi + Aux(Ci) for cycleCi . The first part
is composed of odd cycleOC1, with an auxiliary rule (OR
handle):

q ← not q
q ← f

The second part is composed of odd cycleOC2, without
auxiliary rules but with an AND handle:

p ← not p, not f
The third part is composed of the unconstrained even cycle

EC1:

e← not f
f ← not e

Notice that the basic definition of a cycle corresponds to
that of anegative cyclein theAtom Dependency Graphas
defined in [7]. However, as discussed in [3], on the depen-
dency graph it impossible to identify the handles, and there
are different programs with different answer set, but the
same dependency graph. Cycles and handles can be iden-
tified unambiguously on theExtended Dependency Graph
as defined and discussed in [1] and [5].

In the following, without loss of generality [6] we refer
to logic programs which are in thecanonical formdefined
below. All definitions and results introduced in the rest of
the paper might be rephrased for the general case, but the
choice of referring to programs in canonical form is a sig-
nificant conceptual simplification that leads without loss of
generality to a more readable and intuitive formalization.

Definition 3 A logic program Π is in canonical form
(or, equivalently,Π is a canonical program) if it is WF-
irreducible (i.e., all its atoms are deemed undefined under
the well-founded semantics), and fulfills the following syn-
tactic conditions.

1. Π does not contain positive cycles;

2. every atom inΠ occurs both in the head of some rule
and in the body of some (possibly the same) rule;

3. every atom inΠ is involved in some cycle;

4. each rule ofΠ is either involved in a cycle, or is an
auxiliary rule of some cycle;

5. each (AND/OR) handle of a cycle C consists of ex-
actly one literal, eitherα or not α, where atomα 6∈
Composingatoms(C).

The above definition implies that in a canonical program
Π: (i) the body of each rule which is involved in a cycle
consists of either one or two literals; (ii) the body of each
rule which is an auxiliary rule of some cycle consists of
exactly one literal. For instance, programπ introduced be-
fore is in canonical form.

3 Active handles and consistency

Truth or falsity of the atoms occurring in the handles of a
cycle (w.r.t. a given set of atoms) affects truth/falsity ofthe
atoms involved in the cycle. This creates the conditions for
stable models to exist or not. The idea is formalized in the
following definitions ofactive handles.

Definition 4 Let I be a set of atoms. An AND handle∆
of cycle C isactivew.r.t. I if it is false w.r.t. I. We say
that the rule where the handle occurs has anactive AND
handle. An OR handle∆ of cycle C isactivew.r.t. I if it is
true w.r.t.I. We say that the rule where the handle occurs
has anactive OR handle.

Assume thatI is a model. We can make the following
observations. (i) The headλ of a ruleρ with an active AND
handle is not required to be true inI. (ii) The head of a rule
λ ← ∆ where∆ is an active OR handle is necessarily true
in I: since the body is true, the headλ must also be true.

As we will see, the active handles of a cycleC gives
relevant indications about whether a set of atomsI is a
stable model.

Given cycleC, let HC be the set of the handles ofC,
which are either of the form(∆ : AND : β) or of the form
(∆ : OR : β), whereβ ∈ ComposingAtoms(C): When-
ever we need not care aboutβ we shorten(∆ : K : β) as
(∆ : K), K = AND/OR. We call “handles” the expressions
in both forms, and whenever necessary we implicitly shift
from one form to the other one. Informally, we will say for
instance “the OR (resp. AND) handle∆ of β” meaning
(∆ : OR : β) (resp.(∆ : AND : β)). In general however
the indication ofβ is necessary. In fact, different atoms of
a cycle may have handles with the same∆, but although
active/not active at the same time, they may affect the ex-
istence of stable models differently.

Given any subsetZ of HC, it is useful to identify the
set of atoms occurring in the handles belonging toZ,
that we callAtoms(Z). Given any subsetZ of HC, let
ActivationAtC(Z) the atoms that are required to be true,
in order to make all the handles inZ active (implicitly, to
this aim all the other atoms are required to be false). Vice
versa, any subsetV of Atoms(HC) corresponds to a subset
of the handles ofC, calledActiveC(V), that become active,
if atoms inV are true.

Finally, it is useful to introduce a short notation for the
union of different sets of rules. ByI1 + . . . + Iq, with
I1, . . . Iq sets of rules, we mean the program consisting of
the union of all the rules belonging toI1, . . . Iq. As a spe-
cial case, some of theI j ’s can be sets of atoms, where each
atomβ ∈ I j is understood as a fact.

In [4] it is proved that for checking whether a logic pro-
gram has stable models (and, possibly, for finding these
models) one can do the following (where we letXi ⊆
Atoms(HCi), and we assume to add atoms inXi as facts
to Ci + Aux(Ci)).

(i) Divide program Π into pieces, of the formCi +
Aux(Ci), and check whether every odd cycle has han-
dles; if not, then the program is inconsistent.

(ii) For every cycleCi with handles, find the setsXi that
make the subprogramCi + Aux(Ci) consistent, and
find the stable modelsSCi of eachCi + Aux(Ci) +

Xi . Each SCi is called a partial stable model1 of
Π relative to C, and Xi is called itsbase. Notice
that in the case of unconstrained even cycles,HCi is
empty, and we have two stable models, namelyM1

Ci
=

Evenatoms(Ci) andM2
Ci

= Odd atoms(Ci).

(iii) Check whether there exists a collection ofXi ’s, one
for each cycle, such that the correspondingSCi ’s form
a collection of partial stable models which iscompat-
ible, i.e., which fulfills conditions (1)-(3) that follow.
(1) If some atomA occurs in two cyclesCi andCj ,
then their basesXi andXj must agreeA, i.e.,A ∈ Xi if
and only ifA ∈ Xj . (2) If an atomA is supposed to be
true in a baseXj of some cycleCj , then it must be ac-
tually concluded true in some other cycleCh. Notice
that “concluded” does not mean “assumed”, and thus
A must occur in the partial stable modelSh of Ch with-
out being in its baseXh. (3) If an atomA is supposed
to be false in the base of some cycleCj , it cannot be
concluded true in any of the other cycles, i.e.,A does
not occur in the partial stable modelSk of anyCk. If
the above conditions are fulfilled, then the program is
consistent, and its stable model(s) can be obtained as
the union of theSCi ’s.

To show how the method works, consider programπ
introduced before. CycleOC1 in itself is inconsistent, but
if we take XOC1

= {f} we get the partial stable model
{f , q}: the active OR handle forcesq to be true. Similarly,
if we take forOC2 XOC2

= {f}, we get the partial stable
model {f}: the active AND handle forcesp to be false.
CycleEC1 is consistent, with partial stable models{e} and
{f}. If we now select the partial stable model{f}, we get
a compatible set of partial stable models thus obtaining the
stable model{f , q} for the overall program.

Instead, the partial stable model{e} for EC1 does not
serve to the purpose of obtaining a stable model for the
overall program, since atomf , which is in the positive base
of both the odd cycles, is not concluded true in this partial
stable model. Therefore, with this choice the handles of the
odd cycles are not active and no overall consistency can be
achieved.

4 Handle assignments and admissibility

In previous sections we have discussed how to split a stable
model of a program into a compatible set of partial stable
models of the cycles. In this section we define syntactic
conditions that specify how active handles affect consis-
tency of extended cycles.

Notice that the cycles where it is possible to derive an
atomα are the cyclesα is involved in, which are the cy-
cles the handle∆ comes from,or equivalently thesource
cyclesof the handle. Handles inHC are called theincom-
ing handlesof C. The same handle of a cycleC may come

1this term has been used in [10] with a very different meaning.

from different cycles, and may refer to different atoms of
C. Vice versa, the setOut handles(C) denotes the atoms
involved inC that occur in the handles of some other cycle.

Moreover, we say that:
(α : AND) and(α : OR) are opposite handles;
(notα : AND) and(notα : OR) are opposite handles;
(α : AND) and(notα : AND) are contrary handles;
(α : OR) and(notα : OR) are contrary handles;
(α : OR) and(notα : AND) are sibling handles;
(α : AND) and(notα : OR) are sibling handles;
Below we introduce the definition ofhandle assignment,

which is a consistent hypothesis on (some of) the handles
of a cycleC. Namely, it is a quadruple composed of the
following sets. INA

C contains the incoming handles which
are assumed to be active. FromINA

C one can immediately
derive a corresponding assumption onXC. In particular,
XC = ActivationAtC(INA

C), i.e. it is exactly the set of the
atoms that make the handles inINA

C active. Vice versa,INN
C

contains the incoming handles which are assumed to be
not active. Handles ofC which are not inINA

C∪ INN
C can be

either active or not active, but their status is either unknown
or irrelevant in the context where the handle assignment is
used.

OUT+

C is the set of out-handles which are required to be
concluded true. This in order to make some handle of some
other cycle active, as we have seen in the example above.
Similarly, OUT−

C is the set of the out-handles which are
required to be concluded false, for the same reason. Of
course, theOUTC’s must be disjoint, since no atom can be
required to be simultaneously true and false.

Definition 5 A basic handle assignmentto (or for) cycle C
is a quadruple of sets

〈INA
C, INN

C , OUT+

C , OUT−

C 〉

where the (possibly empty) composing sets are such that:
INA

C ∪ INN
C ⊆ HC;

INA
C ∩ INN

C = ∅;
neither INA

C and INN
C contain pairs of either opposite or

contrary handles;
OUT+

C ∪ OUT−

C ⊆ Out handles(C);
OUT+

C ∩ OUT−

C = ∅.

For short, when talking of bothINA
C andINN

C we will say
“the INC’s”.

Definition 6 A handle assignment will be calledtrivial if
OUT+

C = OUT−

C = ∅, otherwise it will be callednon-
trivial.

In a trivial handle assignment, no requirement is speci-
fied on the out-handles ofC.

Definition 7 A handle assignment will be calledeffec-
tive whenever INAC 6= ∅, otherwise it will be callednon-
effective.

If INA
C is empty, there are two possible situations. (i)

HC = ∅, i.e., the cycle is unconstrained. (ii)HC 6= ∅ but
no active incoming handle is assumed: in this case, we say
that the cycle isactually unconstrainedw.r.t. this handle
assignment.

We have to cope with the relationship between opposite,
contrary, and sibling handles, whenever they should occur
in the same cycleC. Notice that two opposite or contrary
handles are never simultaneously active, i.e., whenever on
is active the other one is not active, and vice versa. Instead,
two sibling handles are either both active or both not active.

Definition 8 Let: h and h− be a pair of opposite handles;
h and hn be a pair of contrary handles; and h and hs be a
pair of sibling handles. Acomplete handle assignment, or
simply ahandle assignment, to cycle C is a basic handle
assignment to C where, for each pair of opposite, contrary
or sibling handles the occur in C, the following conditions
hold:
h ∈ INA

C if and only if h− ∈ INN
C ;

h ∈ INA
C if and only if hn ∈ INN

C ;
either h, hs ∈ INA

C and h, hs 6∈ INN
C or h, hs ∈ INN

C and
h, hs 6∈ INA

C.

A basic handle assignment can becompleted, i.e., turned
into a complete handle assignment, by an obvious update
of theINC’s.

What the definition does not state yet is thatINC’s and
theOUTC’s should be compatible, in the sense that the han-
dles in INA

C and INN
C being active should not prevent the

out-handles inOUTC’s from being true/false as required.
This is formalized in the following:

Definition 9 A handle assignment HA =
〈INA

C, INN
C , OUT+

C , OUT−

C 〉 to a cycle C isadmissibleif
and only if the program C+ Aux(C)+ ActivationAtC(INA

C)

is consistent, and for some stable model SINA
C of this

program, OUT+C ⊆ SINA
C and OUT−C ∩ SINA

C = ∅. We say

that SINA
C correspondsto HA.

It is easy to see [4] that a non-effective handle assign-
ment cannot be admissible for an odd cycle, and is admis-
sible for an even cycleC if and only if eitherOUT+

C ⊆
Evenatoms(C) or OUT+

C ⊆ Odd atoms(C).
Observe that whenever a handle assignment is effective

the corresponding program fragment is locally stratified,
and thus, according to [10], has a unique stable model that
coincides with its well-founded model. It may also be ob-
served that a trivial handle assignment, which does not
state requirements on the out-handles, is always admissi-
ble for an even cycle, and it is admissible for an odd cycle
only if it is effective (otherwise as seen before the cycle is
inconsistent).

The admissibility of a non-trivial effective handle as-
signment for cycleC can be checked syntactically, by
means of the criterion that we state below. The advantage

of this check is that it does not require to compute the well-
founded model ofC + Aux(C) + ActivationAtC(INA

C), but
it just looks at the rules ofC. Although the syntactic for-
mulation may seem somewhat complex, it simply states
in which cases an atom inOUT+

C , which is required to
be concluded true w.r.t. the given handle assignment (or,
conversely, an atom inOUT−

C which is required to be con-
cluded false), is actually allowed to take the specified truth
value without raising inconsistencies. Notice thatOUT+

C
and OUT−

C must be mutually coherent, in the sense that
truth of an atom inOUT+

C cannot rely on truth of an atom
in OUT−

C (that instead is required to be concluded false),
and vice versa.

Proposition 1 A non-trivial effective handle assignment
〈INA

C, INN
C , OUT+

C , OUT−

C 〉 to cycle C is admissible if and
only if for everyλi ∈ OUT+

C the following condition 1
holds, and for everyλk ∈ OUT−

C the following condition 2
holds.

• Condition 1.

– Either there exists an OR handle ho for λi , ho ∈
INA

C or

– for every AND handle ha for λi , ha ∈ INN
C and

λi+1 6∈ OUT+

C , and
condition 2 holds forλi+1.

• Condition 2.

– For every OR handle ho for λk, ho ∈ INN
C , and

– either there exists an AND handle ha for λk such
that ha ∈ INA

C, or
λk+1 6∈ OUT−

C , and condition 1 holds forλk+1.

The fact that conditions 1 and 2 refer to each other
is not surprising, since they are to be applied to cycles.
Notice however that since the given handle assignment is
effective, some of the handles of the cycle are assumed
to be active in this assignment. This means that some
of the λ’s is forced to be either true (by an OR han-
dle) or false (via an AND handle). Then, the program
C+Aux(C)+ActivationAtC(INA

C) is consistent. What con-
ditions 1 and 2 check is simply that the given active/non-
active handles are make the resulting partial stable model
contain theOUT+

C ’s but not theOUT−

C ’s. Admissibility of
a handle assignment in fact intuitively means that what is
given “in input” to a cycle actually entails what is expected
“in output”.

Definition 10 An admissible handle assignment
〈INA

C, INN
C , OUT+

C , OUT−

C 〉 is minimal if there is no
other sets INA

′

C ⊂ INA
C and INN′

C ⊂ INN
C such that

〈INA′

C , INN′

C , OUT+

C , OUT−

C 〉 is still admissible.

There can be alternative minimal sets of incoming active
handles for the same out-handles. However, there may also
be the case there is none.

5 Cycle Graph and support sets

In this section we introduce the Cycle Graph of a program,
that represent cycles and handles, and we show that the
concepts and principles that we have previously introduced
allow us to define syntactic conditions for consistency on
the Cycle Graph.

Definition 11 Given programΠ, theCycle GraphCGΠ, is
a directed graph defined as follows:

• Vertices. One vertex for each one of the cycles
C1, . . . , Cw that occur inΠ. Vertices corresponding
to even cycles are labeled as ECi ’s while those corre-
sponding to odd cycles are labeled as OCj ’s.

• Edges. An edge(Cj , Ci) marked with(∆ : K : λ)
for each handle(∆ : K : λ) ∈ HCi of cycle Ci , that
comes from Cj .

Each marked edge will be denoted by(Cj , Ci |∆ : K :
λ), where either(Cj or Ci or λ) will be omitted whenever
they are clear from the context, and we may write for short
(Cj , Ci |h), h standing for a handle that is either clear from
the context or does not matter in that point. An edge on the
CGconnects the cycle a handle comes from to the cycle to
which the handle belongs.

The Cycle Graph of a program directly represents cy-
cles, that correspond to its vertices. It also indirectly rep-
resents extended cycles, since its edges are marked by the
handles. Paths on the Cycle Graph graph represent direct
or indirect connections between cycles through the han-
dles. In order to relate admissible handle assignments for
the cycles ofΠ to subgraphs of its cycle graphCGΠ we
introduce the following definitions.

Definition 12 Given programΠ, let aCG support setbe a
pair S= 〈ACT+, ACT−〉 of subsets of the handles marking
the edges of CGΠ (represented in the form(∆ : K) with
K = AND/OR) such that the following conditions hold:
(i) ACT+ ∩ ACT− = ∅.
(ii) if two opposite handles h and h− both occur on the CG,
then ACT+ contains handle h if and only if ACT− contains
its opposite handle h−.
(iii) if two contrary handles h and hn both occur on the CG,
then ACT+ contains handle h if and only if ACT− contains
its contrary handle hn.
(iv) if two sibling handles h and hs both occur on the CG,
then either h, hs ∈ ACT+ and h, hs 6∈ ACT−, or vice versa
h, hs ∈ ACT− and h, hs 6∈ ACT+

For givenS, we will indicate its two components with
ACT+(S) andACT−(S). As stated in Section 3, we have to
restrict the attention on CG support sets including at least
one active handle for each odd cycle. Then, we have to
check that the assumptions on the handles are mutually co-
herent, and are sufficient for ensuring consistency.

Definition 13 A CG support set S ispotentially adequate
if for every odd cycle C inΠ there exists a handle h∈ HC

such that h∈ ACT+(S).

A CG support setS induces a set of handle assignments,
one for each of the cycles{C1, . . . , Cw} occurring inΠ.

The induced assignments are obtained on the basis of
the following observations.

Each handle inh ∈ ACT+(S) is supposed to be active,
and therefore it must be active for each cycleCi such that
h ∈ HCi .

Each handle inh ∈ ACT−(S) is supposed to be not ac-
tive, and therefore it must be not active for each of cycleCj

such thath ∈ HCj .
If a handleh in S requires, in order to be active/not ac-

tive, an atomβ to be false, then it must be concluded false
in all the extended cycles of the programh comes from.

If a handleh in S requires, in order to be active/not ac-
tive, an atomβ to be true, then it must be concluded true
in all the extended cycles of the programh comes from.
This point deserves some comment, since one usually as-
sumes that it suffices to concludeβ truesomewherein the
program. Consider however that any ruleβ ← Bodythat
allowsβ to be concluded true in some cycle is an auxiliary
rule to all the other cyclesβ is involved into. This is whyβ
is concluded trueeverywhere it occurs.This is the mech-
anism for selecting partial stable models of the cycles that
agree on shared atoms, in order to assemble stable models
of the overall program.

Definition 14 Let S = 〈ACT+, ACT−〉 be a CG support
set which is potentially adequate. For each cycle Ck occur-
ring in Π, k ≤ w, the (possibly empty) handle assignment
induced by this set is determined as follows.

1. Let INA
Ck

be HCk ∩ ACT+(S).

2. Let INN
Ck

be HCk ∩ ACT−(S).

3. Let OUT+Ck
be the (possibly empty) set of all atoms

β ∈ Out handles(Ck) such that there is a handle h∈
ACT+(S) either of the form(β : OR) or (not β :
AND).

4. Let OUT−Ck
be the (possibly empty) set of all atoms

α ∈ Out handles(Ck) such that there is a handle h∈
ACT−(S) either of the form(α : AND) or (not α :
OR).

5. Verify that OUT−Ck
∩ OUT+

Ck
= ∅.

If this is the case for each Ck, then S actually induces a set
of handle assignments, and is calledcoherent.Otherwise,
S does not induce a set of handle assignments, and is called
incoherent.

The above definition does not guarantee that the assign-
ments induced by a coherent support set are admissible,
that the same atom is not required to be both true and false

in the assignments of different cycles, and that the incom-
ing handles of a cycle being supposed to be active/not ac-
tive corresponds to a suitable setting of the out-handles of
the cycles they come from. Consider for instance cycleCi

which has an incoming handle, e.g.h = (β : OR : λ), in
INA

Ci
: h is supposed to be active, which in turn means that

β must be concluded true elsewhere in the program; then,
for all cyclesCj whereβ is involved into, we must have
β ∈ OUT+

Cj
, in order to fulfill the requirement. Of course,

we have to consider bothINA
C andINC

N , and both the AND
and the OR handles.

The following definition formalizes this more strict re-
quirements.

Definition 15 A coherent CG support set S isadequate
(w.r.t. not adequate) if for the induced handle assignments
the following conditions hold:

1. they are admissible;

2. for each two cycles Ci , Cj in Π, OUT+

Ci
∩OUT−

Cj
= ∅.

3. For every Ci in Π, for every handle h∈ INA
Ck

of the
form either(β : OR : λ) or (notβ : AND : λ), and for
every handle h∈ INN

Ck
of the form either(β : AND :

λ) or (not β : OR : λ), for every other cycle Cj in
Π, i 6= j, such thatβ ∈ Out handles(Cj), we have
β ∈ OUT+

Cj
.

4. For every Ci in Π, for every handle h∈ INA
Ck

of the
form either(not β : OR : λ) or (β : AND : λ), and
for every handle h∈ INN

Ck
of the form either(not β :

AND : λ) or (β : OR : λ), for every other cycle Cj
in Π, i 6= j, such thatβ ∈ Out handles(Cj), we have
β ∈ OUT−

Cj
.

In [4] we have introduced a necessary and sufficient syn-
tactic condition for consistency based on the Cycle Graph
of the program.

Theorem 1 A programΠ has stable models if and only if
there exists and adequate CG support set S forΠ.

Therefore, it is useful to define a procedure for identify-
ing adequate support sets of a program on its Cycle Graph.

6 Identifying adequate support sets on the
Cycle Graph

The above definitions allow us to define a procedure for
trying tofind adequate support setsSstarting from the odd
cycles, and following the dependencies on theCG.

For the sake of readability we introduce some simplify-
ing assumptions.

• Given handleh = (∆ : K : λ), by ACT+(S) ∪ {h}
(resp. ACT−(S) ∪ {h}) we meanACT+(S) ∪ {(∆ :
K)} (resp.ACT+(S) ∪ {(∆ : K)}).

• Given handleh ∈ ACT+(S) (resp.h ∈ ACT−(S)) of
the form(∆ : K), by INA

C ∪ {h} (resp.INN
C ∪ {h}) we

mean: to identify the setH = {(∆ : K : λ) ∈ HC}
and performINA

C ∪ H (resp.INN
C ∪ H).

• By HC ∩ ACT+(S) (resp. HC ∩ ACT+(S)) we mean
{(∆ : K : λ) ∈ HC|(∆ : K) ∈ ACT+(S)} (resp.
(∆ : K) ∈ ACT+(S)).

Assumption 1 Whenever for handleh eitherhs or h− or
hn or some of them occur on theCG, by A ∪ {h} (where
A can be eitherACT+(S) or ACT−(S) or INA

C or INN
C for

some cycleC) we implicitly mean that the sibling handle is
added toA as well, while the opposite and contrary handles
are added to the “opposite” set.

Definition 16 Procedure PACG for finding adequate
CG support sets for programΠ

1. Let initially S= 〈∅; ∅〉.

2. For each cycle Ck occurring inΠ, k ≤ w, let initially
HACk = 〈∅, ∅, ∅, ∅〉

3. For each odd cycle OC inΠ do:

(a) Choose h∈ HOC. If HOC = ∅, than FAIL.

(b) For chosen h:

i. ACT+(S) := ACT+(S) ∪ {h};

ii. for each cycle Ck in Π such that h∈ HCk:
INA

Ck
:= INA

Ck
∪ h;

iii. If h is either of the form(β : OR) or (notβ :
AND), for each cycle Ck in Π whereβ ∈
Out handles(Ck), do: OUT+

Ck
:= OUT+

Ck
∪

{β};

iv. If h is either of the form(notβ : OR) or (β :
AND), for each cycle Ck in Π whereβ ∈
Out handles(Ck), do: OUT−Ck

:= OUT−

Ck
∪

{β}

4. REPEAT

(a) Verify that ACT+(S) ∩ ACT−(S) = ∅. If not,
FAIL.

(b) For each cycle Ck in Π such that OUT+Ck
6= ∅ or

OUT−

Ck
6= ∅:

i. Verify that OUT+Ck
∩ OUT−

Ck
= ∅. If not,

FAIL.

ii. Update (if needed) INACk
and INN

Ck
w.r.t.

OUT+

Ck
and OUT−Ch

, and check that the re-
sulting handle assignment is admissible. If
not, FAIL.

iii. For each other cycle Ch in Π do: verify that
OUT+

Ck
∩ OUT−

Ch
= ∅, and that OUT−Ck

∩

OUT+

Ch
= ∅. If not, FAIL.

(c) For each cycle Ck in Π, for each h∈ INA
Ck

:

i. do ACT+(S) := ACT+(S) ∪ {h};

ii. For each cycle Ch in Π such that h∈ HCh:
INA

Ch
:= INA

Ch
∪ h;

(d) If h is either of the form(β : OR) or (not β :
AND), for each cycle Ck in Π where β ∈
Out handles(Ck), do: OUT+

Ck
:= OUT+

Ck
∪ {β};

(e) If h is either of the form(not β : OR) or
(β : AND), for each cycle Ck in Π whereβ ∈
Out handles(Ck), do: OUT−Ck

:= OUT−

Ck
∪ {β}

5. For each cycle Ck in Π, for each h∈ INN
Ck

:

(a) do ACT−(S) := ACT−(S) ∪ {h};

(b) For each cycle Ch in Π such that h∈ HCh: do
INN

Ch
:= INN

Ch
∪ h;

(c) If h is either of the form(β : OR) or (not β :
AND), for each cycle Ck in Π where β ∈
Out handles(Ck), do: OUT−Ck

:= OUT−

Ck
∪ {β};

(d) If h is either of the form(not β : OR) or
(β : AND), for each cycle Ck in Π whereβ ∈
Out handles(Ck), do: OUT+

Ck
:= OUT+

Ck
∪ {β}

UNTIL no set is updated by the previous steps.

Proposition 2 Procedure PACG either fails, or returns an
adequate CG support set.

7 Example

Consider the following collection of cycles.

— OC0 — OC1 — OC3

p ← not s, not c p← not s, not c r← not r, not e
s← not t s← not t
t ← not p t← not p

s← a

— OC2 — OC′

2

q ← not q q← not q
q ← not e q← not e

q ← a

— EC1 — EC2 — EC3

a ← not c a← not b e← not f
c ← not a b← not a f ← not e
Let π1 = OC0 ∪ EC1, π2 = OC1 ∪ EC1 ∪ EC2, π3 =

OC1 ∪ EC1 ∪ EC2 ∪ EC3 ∪ OC2 ∪ OC3, andπ4 = OC1 ∪
EC1∪EC2∪EC3∪OC′

2∪OC3. The Cycle Graphs of these
programs are shown in Figures 1, 2, 3 and 4 respectively.

Let’s now apply the definition of handle assignment.
For π1 = OC0 ∪ EC1, the odd cycleOC0 admits the

unique potentially active handle(not c : AND : p) Then,
we letSπ1

be such thatACT+(Sπ1
) = {(not c : AND)} and

ACT−(Sπ1
) = ∅. The induced sets of handle assignments

are as follows.
For OC0: INA

OC0
= {(not c : AND)}, OUT+

OC0
=

OUT−

OC0
= ∅. This assignment is trivially admissible,

EC1

OC0

not c : AND : p

Figure 1: The Cycle Graph ofπ1.

since there is no requirement on the out-handles. ForEC1:
OUT+

EC1
= {c}, OUT−

EC1
= {∅}. INEC1

= ∅, sinceEC1 is
unconstrained. It is easy to verify that this handle assign-
ment is admissible, by lettingλ1 = a andλ2 = c, where of
course forc to be truea must be false. This handle assign-
ment corresponds to selecting the partial stable model{c}
for EC1, while discarding the other partial stable model
{a}. Then,Sπ1

is an adequate CG support set.
Consider programπ2 = OC1 ∪EC1 ∪EC2. CyclesEC1

andEC2 are not independent. In fact, rulea ← not b of
EC2 is an auxiliary rule forEC1, and, vice versa,a ← not c
of EC1 is an auxiliary rule forEC2. Then, here we have a
cyclic connection between the even cycles. This is evident
on the Cycle Graph ofπ2, reported in Figure 2.

EC1 EC2

OC1

(not c: AND: p) (a: OR: s)

(not c: OR: a)

(not b: OR: a)

Figure 2: The Cycle Graph ofπ2.

The odd cycleOC1 has two handles, of which at least
one must be active. Let us first assume that(not c : AND :
p) is active.

According to the PACG procedure, we try to assemble a
CG support setS, by letting at firstACT+(Sπ2

) = {(not c :
AND)} andACT−(Sπ2

) = {(not c : OR)}. In fact, since
not cis an incoming OR handle fora in EC2, when assum-
ing (not c : AND) to be active, we also have to assume its
opposite handle and its contrary handle to be not active.

Accordingly, we letINA
OC1

= {(not c : AND)} and
INN

EC2
= {(not c : OR)} Now, we have to putOUT−

OC1
=

{p} andOUT+

EC1
= {c}. To form an admissible handle

assignment forEC1, this implies to letINN
EC1

= {(not b :
OR)}. Consequently, we have to updateACT−(Sπ2

) which
becomes:ACT−(Sπ2

) = {(not c : AND), (not b : OR)}.
This leads to putOUT+

EC1
= {b}.

Further iteration of the procedure changes nothing, and
thus the pair of setsACT+(Sπ2

) = {(not c : AND)} and
ACT−(Sπ2

) = {(not c : OR), (not b : OR)} form, as it is
easy to verify, an adequate CG support set.

Notice that this kind of reasoning requires neither to find
the stable models of the cycles, nor to consider every edge
of theCG. In fact, we do not need to consider the second
incoming handle ofOC1.

Let us now make the alternative assumption, i.e. assume
that (a : OR : s) is active forOC1. This means at first
ACT+(Sπ2

) = {(a : OR)} and ACT−(Sπ2
) = ∅, since

not a does not occur in handles of theCG. This implies
OUT+

EC1
= {a}. Thus, there is no requirement onINEC2

for forming an admissible handle assignment, and then the
procedure stops here.

For programπ3 = OC1∪EC1∪EC2∪EC3∪OC2∪OC3,
the only incoming handles toOC2 andOC3 are opposite
handles, that cannot be both active. For the other cycles,
the situation is exactly the same as forπ2.

EC1 EC2

OC1

(not c: AND: p) (a: OR: s)

(not c: OR: a)

(not b: OR: a)

EC3

OC2

(not e: OR: q)

OC3

(not e: AND: r)

Figure 3: The Cycle Graph ofπ3.

On its Cycle Graph (Figure 3) it is apparent that con-
sistency problems of this program arise from subprogram
EC3 ∪OC2 ∪OC3. We can fix these problems for instance
by replacingOC2 with OC′

2, which means that we add an
auxiliary rule (and then an OR handle) toOC2. We thus
obtain programπ4 (CG in Figure 4) where we can exploit
handle(a : OR) for bothOC1 andOC′

2. It is easy to verify
that the CG support setScomposed ofACT+(Sπ4

) = {(a :
OR), (not e: AND)} andACT−(Sπ4

) = {(not e: OR)} is
adequate. The need to supportOC′

2 rules out the possi-
bility of supportingOC1 by means of the handle(not c :
AND : p).

8 How to exploit the results

We have identified and discussed in depth two aspects of
consistency checking: (1) the odd cycles must be (either
directly or indirectly) supported by the even cycles; (2) this

EC1 EC2

OC1

(not c: AND: p) (a: OR: s)

(not c: OR: a)

(not b: OR: a)

EC3

OC2

(not e: OR: q)

OC3

(not e: AND: r)(a: OR: q)

Figure 4: The Cycle Graph ofπ4.

support must be consistent, in the sense that no contrasting
assumptions on the handles can be made.

Point (1) is related to the “coarse” structure of the pro-
gram, and can be easily checked on theCG, so as to rule
out a lot of inconsistent programs, thus leaving only the
“potentially consistent” ones to be checked w.r.t. point (2).

The former definitions and result and the PACG proce-
dure can be adapted to perform several static analysis tasks,
beyond checking consistency. For lack of space we explain
what we mean by means of examples and then we intro-
duce a preliminary result.

Let us for instance reconsider programπ2 in the above
example. Let us assume we want to know whether atomp
may belong to an answer set ofπ2. Sincep occurs in cycle
OC1, there must exist a non-trivial effective handle assign-
ment forOC1 such thatp ∈ OUT+

OC1
. From Proposition 1

we know that (Condition 1) either there exists an OR han-
dle for p (part (a)) which is not the case here, or there is
no active AND handle (part (b)) and the atom in the cycle
(namely,s) upon whichp depends is inOUT−

OC1
. Then,

on the cycle graph we rule out handle(not c : AND : p)
as a support forOC1. However, the other possibility is
(a : OR : s). Again according to Proposition 1, with an
active OR handles cannot be inOUT−

OC1
. Therefore,p

cannot be in any answer set ofπ2.
Take programπ4 in the above example. Cana be in an

answer set of this program? PACG can check this, if we
let the procedure choose(a : OR) as a supporting handle
for bothOC1 andOC2. As seen at the end of previous sec-
tion, with this choice an adequate CG support set can be
constructed, and then the answer is yes. Instead, atomb
cannot be in any answer set of this program. In fact, the
only cycle whereb occurs isOC2. Again by Proposition 1
for b to be true (i.e., forb to be inOUT+

EC2
a must be false

(condition 1.(b)). Then, handle(a : OR) cannot be ac-
tive. It is easy to check on theCG that, in this case,OC2

andOC3 should be supported by opposite handles, which
cannot be the case.

An easy way to initialize PACG is to start with a non-
empty initial candidate support set.

Definition 17 Let PACGE be the same as PACG, where in
step 1 we let initially S= 〈ACT+

init , ACT−

init〉, where ACT+init

and ACT−init can be non-empty.

Proposition 3 An atom A can belong to some of the an-
swer sets of programΠ only if the following conditions
hold.

(i) There exists a cycle C where A is involved into and
a non-trivial effective handle assignment for C such
that A∈ OUT+

C .

(ii) PACGE returns an adequate CG support set given ini-
tially ACT+

init = OUT+

C and ACT−init = OUT−

C .

9 Discussion

An issue to consider is how much space is consumed by the
Cycle Graph. In the case of canonical programs, a given
program is just split into parts, and then the Cycle Graph
does not take more space than the program itself. Non-
canonical programs instead, because of long rules may
contain an exponential number of cycles. A worst case
for negative programs is represented byextremal programs
ChoTru96, where a rule may contain all the atoms which
occur in the program. However, although an extensive
study has to be performed, many odd cycles presumably do
not really need to be represented in the Cycle Graph. For
instance, in extremal programs all rules of each odd cycle
also belong to even cycles, all distinct: thus, whatever the
choice of the partial stable models of the even cycles, the
odd cycle turns out to be supported.

But, how can the method proposed in this paper be ex-
tended to non-canonical programs? (1) If an OR handle is
composed of several literals, they must beall true for the
handle to be active. (2) If an AND handle is composed of
several literals,at least onemust be false for the handle to
be active. (3) If the connection between cycles are not di-
rect but there are chains of dependencies, in order to state
whether a literal in a handle is true/false these chains of
dependencies must be followed.

How can the method be applicable to analyze non-
grounded programs? In principle, a version of the Cycle
Graph can be built for non-grounded programs as well.
Point (1) of consistency checking can be at least partly per-
formed. However, either for performing point (2) or for
other analysis tasks, at least part of the program must be
grounded. How to optimize “on the flight” partial ground-
ing is a future topic of this research.

References

[1] BRIGNOLI, G., COSTANTINI, S., D’ANTONA, O.
AND PROVETTI, A., 1999. Characterizing and
computing stable models of logic programs: the
non–stratified case. InProc. of CIT99 Conference
on Information Technology.

[2] CHOLEWIŃSKI, P. AND TRUSZCZYŃSKI, M.,
1999. Extremal problems in logic programming

and stable model computation.J. of Logic Pro-
gramming, 38, 219–242.

[3] COSTANTINI, S., 2001. Comparing different graph
representations of logic programs under the answer
set semantics. InProc. AAAI Spring Symposium
“Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reason-
ing”, 21–26.

[4] COSTANTINI, S., 2005. On the existence of stable
models of unstratified logic programs. InTo appear
in: “Theory and Practice of Logic Programming”.

[5] COSTANTINI, S., D’ANTONA, O. AND

PROVETTI, A., 2002. On the equivalence
and range of applicability of graph-based represen-
tations of logic programs.Information Processing
Letters 84(2), 241–249.

[6] COSTANTINI, S. AND PROVETTI, A., 2004. Nor-
mal forms for answer set programming. To appear
in: Theory and Practice of Logic Programming.

[7] FAGES, F., 1994. Consistency of Clark’s comple-
tion and existence of stable models.Methods of
Logic in Computer Science2, 51–60.

[8] GELFOND, M. AND L IFSCHITZ, V., 1988. The
stable model semantics for logic programming. In
Proc. of the Fifth Joint International Conf. and
Symp.. The MIT Press, Cambridge, MA, 1070–
1080.

[9] GELFOND, M. AND L IFSCHITZ, V., 1991. Classi-
cal negation in logic programs and disjunctive data-
bases.New Generation Computing 9, 365–385.

[10] PRZYMUSINSKA, H. AND PRZYMUSINSKI, T. C.,
1990. Semantic issues in deductive databases and
logic programs. Formal Tech. in Art. Intell., a
Sourcebook, Elsevier Sc. Publ. B.V., 321–367.

[11] SCHLIPF, J. S., 1995. The expressive power of
logic programming semantics. J. of Comp. and
Syst. Sciences 51 (1), 64-86.

[12] VAN GELDER A., ROSS K.A. AND SCHLIPF J.,
1990. The well-founded semantics for general
logic programs.J. of the ACM 38(3), 620–650.

[13] WEB LOCATION OF THE MOST KNOWN ASP
SOLVERS.
Cmodels:http://www.cs.utexas.edu/users/yuliya/
Aspps:http://www.cs.uky.edu/ai/aspps/
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-
potsdam.de/˜ linke/nomore/
Smodels:http://www.tcs.hut.fi/Software/smodels/

