VERSO LANALISI STATICA DEGLI ANSWER SET
PROGRAMS

TOWARDS STATIC ANALYSIS OF ANSWER SET
PROGRAMS!

Stefania Costantini

Abstract 1 Introduction

. . .. __Answer Set Programming is a branch of Logic Program-
In questo lavoro viene proposto un metodo di analisi sta- .
. -) ming based on the Stable Models and Answer Sets declar-
tica per I"Answer Set Programming”, cheé un nuovo

, - ative semantics defined by Gelfond and Lifschitz [8] [9].

paradigma basato sulla ;em:_;mnoa _degh answer sets "While in standard logic programming program statements
trodotta da Gelfond e Lifschitz (chiamata anche seman-

tica dei “modelli stabili”). Il metodo si basa sui seguenti designate properties of a first-class object which is to be

o - S) . computed, Answer Set Programming (ASP) is based on
punti: identificare i cicli che compaiono in un programma,

. : o the understanding of program statements as constraints on
mostrando che i modelli stabili del programma stesso sj .

. : S . . a set of atoms that encode a solution to the problem at hand.
possono ottenere dai modelli stabili di particolari sotto-

programmi corrispondenti ai cicli; definire il Grafo dei Ci- S€veral implemented systems for answer sets compu-

cli, dove ogni nodo corrisponde ad un ciclo ed ogni arcd@tions are now available [13] and their performance is
ad un letterale detto “handle”, che (essere visto come rapidly improving, approaching that of state-of-art SAT

una connessione fra due cicli in quanto I'atomo che in essB'0de! checkers. The programmer shall write the logic pro-
occorre appartiene ad entrambi i cicli. Sul Grafo dei Cicli9r@m with negation-as-failure but without function sym-

& possibile verificare diverse propéedli un programma, POIS- By feedingr to an ASP solver, one obtains the-
inclusa la consistenza. swer setsand solutions to given problem can bead off

the answer sets. Several answer sets corresponds to several
different solutions. However, as itis well-known, undeg th

In this paper we propose a static analysis methodology faknSWer set semantics a program may have no answer sets,
Answer Set Programming, which ia a new logic program4-€. itis not necessarilgonsistent
ming paradigm based on Gelfond-Lifschitz's answer set In this paper we propose a static analysis methodology
semantics (originally defined as ‘stable model semantics’for Answer Set Programming. The method is based on
The method is based on: identifying the cycles containethe following points. (1) Identifying the cycles contained
in the program, showing that stable models of the overalin the program, showing that stable models of the overall
program are composed of stable models of suitable sulprogram are composed of stable models of suitable sub-
programs, corresponding to the cycles; definingGiele programs, corresponding to the cycles. (2) Defining the
Graph, where each vertex corresponds to one cycle, an@€ycle Graphwhere each vertex corresponds to one cycle,
each edge corresponds to dmendle,which is a literal and each edge corresponds to éaadlewhich is a literal
containing an atom that, occurring in both cycles, actuallycontaining an atom that, occurring in both cycles, actually
determines a connection between them. Several propertidgetermines a connection between them. In particular, ex-
of a program, including consistency, can be checked on itstence of stable models is guaranteed if and only if for
Cycle Graph. every odd cycle we can find a subgraph with certain prop-
erties. (3) Providing a procedure for checking consistency
on the Cycle Graph without actually computing the answer
“We acknowledge support by theformation Society Tech- S€ts. In fact, the necessary and sufficient condition that we
no[ogies programme of the European Commission, Futur@qtroduce iS SyntaCtiC in the sense that |t doeS not refer ei'
and Emerging Technologiesnder the 1ST-2001-37004 WASP ther to models or derivations.It just requires to look at the
project. program (represented by the Cycle Graph) and at the rules

composing the cycles. We say thatC has sizen and it is even (respectively odd)
Checking for the existence of stable models is a hard & n = 2k, k > 1 (respectivelyn = 2k + 1, k > 0). For

computational problem (in fact, NP-complet€].[Being n = 1 we have the (odd) self-loop.

able to check for the existence of stable models syntacti- A positive cyclas similar to a negative cycle, except that

cally for every answer set program can be useful in pracwe have positive literals;’s in the body of rules instead of

tice in many ways. In [4] it is argued that the approach carnegative ones. In the rest of the paper we will consider

be useful for improving answer set computation, for defin-negative cycles unless differently specified explicitly.

ing classes of programs that are consistent by constryction For any cycle C, we will denote by

and as a first step toward a component-based methodologgomposingatomgC) the set {A,...,An}, i.e., the

for the construction and analysis of answer set programset of atoms thabccur in cycle C. We say that the rules

Here we show how it can be in principle used for checkindisted above areénvolvedin the cycle, orform the cycle.

many properties, e.g. for detecting whether an atom catn the rest of the paper, sometimes it will be useful to

belong to some answer set. see ComposingatomgC) as divided into two subsets,
The method is presented for programs which are in dhat we indicate as twdinds of atoms: the set of the

canonical formo which any logic program can be reduced Evenatoms(C)composed of the\i’s with i even, and

by means of a tractable transformation [6]. Canonical prothe setOdd atoms(C) composed of the\;'s with i odd.

grams focus the attention on cyclic dependencies. Ruld¥otice that the sets of atoms composing different cycles

are kept short, so as to make the syntactic analysis of th@re not required to be disjoint. In fact, the same atom may

program easier. The stable models of any general logibe involved in more than one cycle.

program coincide (up to the language) to those of the corre- Conventionally, in the rest of the pap@randC; denote

sponding canonical program. We will shortly discuss howcycles in generalDC andOG; denote odd cycles, arteiC

the method might be rephrased for general programs, eveit EG denote even cycles.

in non-grounded form. _— . .
9 Definition 2 A rule is called anauxiliary rule of cycleC

if it is of this form:

2 Cycles and Handles A — A
o _ where\; € ComposingAtoms(C), andA is a non-empty
We assume the standard definitions of a general logic prezonjunctions;,, . .. , &, of literals where for each;i< i

gramII (or simply "logic program”) [10], well-founded eijthers; = «, or 6, = notcy, for some atonay, and, &
[12] stable model [8] and answer set semantics [9]. WhencomposingatomgC). A is called anOR handleof cycle

ever we mention consistency (or stability) conditions, wec (more specifically, an OR handle far or, equivalently,
refer to the conditions introduced in [8]. For the sake ofand OR handle referring toy).

simplicity, we consider here the definition sfable model

instead of that of answer set, which is an extension given A cycle may possibly have several auxiliary rules, cor-
for programs that contain the explicit negation operator responding to different OR handles. In the following, we
In fact, this is not going to make a difference in the con-Will call Aux(C)the set of the auxiliary rules of a cyde
text of this work, and we will often interchange the termsA cycle with no AND handles and no OR handles is called
“stable models” and “answer sets”. The methodology prounconstrained.

posed in this paper is based on identifying the negative cy- Consider for instance the following program

cles contained in the program. — 0C,
g« notq
Definition 1 A set of rules C is called aegative cycleor — AuxOC,)
for short acycle if it has either the form q—f
A — nOt/\g,Al _ OCZ f
Ay — NOtAz, Ay p < not p not
— EG,
An < NOt Ay, Ap €« notf
f < note
where n> 1 and\y,. .., Ay are distinct atoms or the form |t can be seen as divided into the following parts, each one

corresponding t&; + Aux(C;) for cycle C;. The first part
Each A, i < n, is a (possibly empty) conjunction is composed of odd cycl®C,, with an auxiliary rule (OR

di,, ..., 0, Of literals (either positive or negative), where handile):

for eachd;, ij < in, i, # Ai andd;; # not). TheA’s are g« notq

called theAND handlesof the cycle. We say tha; is an qf

AND handle for atomh;, or, equivalently, an AND handle The second part is composed of odd cy@€,, without
referring to \;. auxiliary rules but with an AND handle:

A1 < NotAq, A1

p < not p not f Definition 4 LetZ be a set of atoms. An AND handle
The third part is composed of the unconstrained even cyclef cycle C isactivew.r.t. Z if it is false w.r.t. Z. We say

EC,: that the rule where the handle occurs hasamtive AND
handle An OR handle\ of cycle C isactivew.r.t. Z if it is
e« notf true w.r.t. Z. We say that the rule where the handle occurs
f — note has anactive OR handle
Notice that the basic definition of a cycle corresponds to
that of anegative cyclén the Atom Dependency Grapds Assume thaf is a model. We can make the following

defined in [7]. However, as discussed in [3], on the depenobservations. (i) The headof a rulep with an active AND
dency graph itimpossible to identify the handles, and ther&andle is not required to be trueln (i) The head of a rule
are different programs with different answer set, but the\ < A whereA is an active OR handle is necessarily true
same dependency graph. Cycles and handles can be idéR-Z: since the body is true, the headnust also be true.
tified unambiguously on thExtended Dependency Graph As we will see, the active handles of a cydegives

as defined and discussed in [1] and [5]. relevant indications about whether a set of atdinis a
In the following, without loss of generality [6] we refer Stable model.
to logic programs which are in theanonical forntefined Given cycleC, let Hc be the set of the handles @,

below. All definitions and results introduced in the rest ofwhich are either of the formiA : AND : 3) or of the form
the paper might be rephrased for the general case, but tié : OR: 3), whereg € ComposingAtomgC): When-
choice of referring to programs in canonical form is a sig-ever we need not care abgtitve shortenA : K :) as
nificant conceptual simplification that leads without lofs o (A : K), K = AND/OR. We call “handles” the expressions
generality to a more readable and intuitive formalization. in both forms, and whenever necessary we implicitly shift
from one form to the other one. Informally, we will say for
Definition 3 A logic programII is in canonical form instance “the OR (resp. AND) handl& of 3" meaning
(or, equivalently,IT is a canonical program) if it is WF- (A : OR:) (resp.(A : AND: 3)). In general however
irreducible (i.e., all its atoms are deemed undefined undethe indication of3 is necessary. In fact, different atoms of
the well-founded semantics), and fulfills the following-syn @ cycle may have handles with the samebut although

tactic conditions. active/not active at the same time, they may affect the ex-
istence of stable models differently.
1. II does not contain positive cycles; Given any subsef of Hg, it is useful to identify the

set of atoms occurring in the handles belongingzto
2. every atom il occurs both in the head of some rule that we callAtomgZ). Given any subseZ of Hc, let
and in the body of some (possibly the same) rule; ActivationAg(Z) the atoms that are required to be true,
in order to make all the handles hactive (implicitly, to
3. every atom il is involved in some cycle; this aim all the other atoms are required to be false). Vice
versa, any subsét of AtomgHc) corresponds to a subset
4. each rule ofil is either involved in a cycle, oris an of the handles of, calledActive:(V), that become active,
auxiliary rule of some cycle; if atoms inV are true.

Finally, it is useful to introduce a short notation for the
union of different sets of rules. Bl + ... + Ig, with
I1,...1q sets of rules, we mean the program consisting of
the union of all the rules belonging tg, ... 14. As a spe-
L , , cial case, some of thg's can be sets of atoms, where each
The above definition implies that in a canonical programy;om g ¢ |; is understood as a fact.

IT: (i) the body of each rule which is involved in a cycle In [4] itis proved that for checking whether a logic pro-

c0|n3|s;c]s_ (r)]f _elther O”?I_‘” twolllte;als; (i) thel body O_f ?ac?gram has stable models (and, possibly, for finding these
rule which is an auxiliary rule of some cycle consists o models) one can do the following (where we Mt C

?xac_tly_ one Ilter_aI.II;or instance, progranntroduced be- AtomsHc), and we assume to add atomsXnas facts
ore is in canonical form. t0G + AUXC))).

5. each (AND/OR) handle of a cycle C consists of ex
actly one literal, eithel or not o, where atomy ¢
ComposingatomgC).

3 Active handles and consistency (i) Divide programII into pieces, of the fornC; +
Aux(C;), and check whether every odd cycle has han-

Truth or falsity of the atoms occurring in the handles of a dles; if not, then the program is inconsistent.

cycle (w.r.t. a given set of atoms) affects truth/falsityttod

atoms involved in the cycle. This creates the conditions for(ii) For every cycleC; with handles, find the sets that

stable models to exist or not. The idea is formalized inthe =~ make the subprograg; + Aux(C;) consistent, and

following definitions ofactive handles. find the stable modelSc, of eachC; + AuxC;) +

X;. Each&; is called a partial stable modebf from different cycles, and may refer to different atoms of
IT relative to C, and X; is called itshase Notice C. Vice versa, the sédut handle$C) denotes the atoms
that in the case of unconstrained even cychs,is involved inC that occur in the handles of some other cycle.
empty, and we have two stable models, nanmgc Moreover, we say that:

Evenatoms(i) andMg = Odd.atoms(;). (o : AND) and(« : OR) are opposite handles;

nota : AND) and(nota : OR) are opposite handles;

« : AND) and(not« : AND) are contrary handles;

« : OR) and(nota : OR) are contrary handles;

a : OR) and(nota : AND) are sibling handles;

(o : AND) and(nota : OR) are sibling handles;

Below we introduce the definition dfandle assignment
which is a consistent hypothesis on (some of) the handles
of a cycleC. Namely, it is a quadruple composed of the
following sets. IN2 contains the incoming handles which
are assumed to be active. FréN{ one can immediately
Yerive a corresponding assumption Xg. In particular,

Xc = ActivationAg(IN2), i.e. it is exactly the set of the
atoms that make the handlesMg active. Vice versaNQ
concluded true in any of the other cycles, i&does contaiqs the incoming hgndles whiqh are assumed to be
not occur in the partial stable modgl of ahka. notactive. Handles d€ which are not |r1Néu I!\lg can be
the above conditions are fulfilled. then the program iSenher active or not active, but their status is elther_ umkmo .

X . ! : or irrelevant in the context where the handle assignment is
consistent, and its stable model(s) can be obtained ER

i : sed.
the union of the&g,'s. OUT{ is the set of out-handles which are required to be

concluded true. This in order to make some handle of some
other cycle active, as we have seen in the example above.
Similarly, OUT. is the set of the out-handles which are
required to be concluded false, for the same reason. Of
course, th®©OUT¢'s must be disjoint, since no atom can be
required to be simultaneously true and false.

(i) Check whether there exists a collection Xfs, one
for each cycle, such that the correspondsags form
a collection of partial stable models whichdempat-
ible, i.e., which fulfills conditions (1)-(3) that follow.
(1) If some atomA occurs in two cycle<; andG;,
then their baseX; andX; must agreé\, i.e.,A € X; if
and only ifA € X;. (2) If an atomA is supposed to be
true in a base; of some cycleCj, then it must be ac-
tually concluded true in some other cyelg. Notice
that “concluded” does not mean “assumed”, and thu
A must occur in the partial stable modgilof Cy, with-
out being in its bas&. (3) If an atomA is supposed
to be false in the base of some cy€lg it cannot be

A~ N N

To show how the method works, consider program
introduced before. Cycl®C; in itself is inconsistent, but
if we take Xoc, = {f} we get the partial stable model
{f, q}: the active OR handle forcegto be true. Similarly,
if we take forOC, Xoc, = {f}, we get the partial stable
model {f}: the active AND handle forcep to be false.
CycleEC, is consistent, with partial stable modéks and
{f}. If we now select the partial stable modél}, we get
a compatible set of partial stable models thus obtaining th
stable modef{f, g} fgr the overall program. (INA,INN, OUT}, OUT;)

Instead, the partial stable modfd} for EC; does not
serve to the purpose of obtaining a stable model for thevhere the (possibly empty) composing sets are such that:
overall program, since atomwhich is in the positive base IN2 U INY C H;
of both the odd cycles, is not concluded true in this partialNA N INY = (;
stable model. Therefore, with this choice the handles of theeither IN® and INY contain pairs of either opposite or
odd cycles are not active and no overall consistency can beontrary handles;
achieved. OUTZ UOUT; C OuthandlegC);

OUTZ NOUT; = 0.

Definition 5 A basic handle assignmetat(or for) cycle C
ié:, a quadruple of sets

4 Handle assignments and admissibility For short, when talking of bottN& andIN{ we will say

In previous sections we have discussed how to split a stablé€ INc's™.
model of a program into a compatible set of partial stable)] o
models of the cycles. In this section we define syntacti®€finition 6 A handle assignment will be calledvial if
conditions that specify how active handles affect consis®UTc = OUTc = 0, otherwise it will be callechon-
tency of extended cycles. trivial.

Notice that the cycles where it is possible to derive an
atoma are the cycles is involved in, which are the cy-
cles the handlé\ comes fromor equivalently thesource
cyclesof the handle. Handles iH¢ are called thencom-
ing handlef C. The same handle of a cydlzmay come

In a trivial handle assignment, no requirement is speci-
fied on the out-handles &.

Definition 7 A handle assignment will be calleeffec-
tive whenever II§ # (), otherwise it will be callechon-
lthis term has been used in [10] with a very different meaning. effective

If IN& is empty, there are two possible situations. (i)of this check is that it does not require to compute the well-
Hc = 0, i.e., the cycle is unconstrained. (H)c # @ but founded model o€ + Aux(C) + ActivationAt(IN&), but
no active incoming handle is assumed: in this case, we sayjust looks at the rules of. Although the syntactic for-
that the cycle isactually unconstrained.r.t. this handle mulation may seem somewhat complex, it simply states
assignment. in which cases an atom i@UTé, which is required to

We have to cope with the relationship between oppositehe concluded true w.r.t. the given handle assignment (or,
contrary, and sibling handles, whenever they should occuronversely, an atom i@UT: which is required to be con-
in the same cycl€. Notice that two opposite or contrary cluded false), is actually allowed to take the specifiechtrut
handles are never simultaneously active, i.e., whenever oralue without raising inconsistencies. Notice t@TS
is active the other one is not active, and vice versa. Insteadnd OUT; must be mutually coherent, in the sense that
two sibling handles are either both active or both not activetruth of an atom irOUTZ cannot rely on truth of an atom

in OUT. (that instead is required to be concluded false),

Definition 8 Let: h and i be a pair of opposite handles; and vice versa.
h and i be a pair of contrary handles; and h and be a . o])
pair of sibling handles. &Aomplete handle assignment Progosn'!lon 1 A+non-tr|l/|al effectlve_handle_z a_ssug_nment
simply ahandle assignmento cycle C is a basic handle (INc: INc, OUTc, OUT) to+cycle C is admissible if and
assignment to C where, for each pair of opposite, contranPNly if for everyA; € OUT¢ the following condition 1
or sibling handles the occur in C, the following conditions 1°ds, and for every € OUT¢ the following condition 2

hold: olds.
h € IN if and only if i~ € INY; o Condition 1.
h € INZ if and only if ' € INY;
either hh® € IN2 and hh® ¢ INY or h,h® € INY and — Either there exists an OR handlg for \;, h, €
h, h5€ |Né. INé or
]]) — for every AND handle hfor)i, hy € INY and
A basic handle assignment candmmpletedi.e., turned Air1 € OUTS, and
into a complete handle assignment, by an obvious update condition 2 holds for\; ;.
of theINc’s.
What the definition does not state yet is thdt's and e Condition 2.
theOUT¢'’s should be compatible, in the sense that the han-
dles inIN2 and INY being active should not prevent the — For every OR handledior Ay, h, € INZ, and
out-handles irOUT¢’s from being true/false as required. — either there exists an AND handlg tor)\, such
This is formalized in the following: that hy € INA, or

Ak+1 € OUT., and condition 1 holds foky 1.
Definiton9 A handle assignment HA =
(INA,INY,0UTZ,0UT;) to a cycle C isadmissibleif The fact that conditions 1 and 2 refer to each other

and only if the program G- Aux(C) + ActivationAg (IN2) is not surprising, since they are to be applied to cycles.
is consistent. and for some stable mod&of this Notice however that since the given handle assignment is

program OU'EL c SV and OUT, N SNE — . We say effective, some of the handles of the cycle are assumed
NA N to be active in this assignment. This means that some

that 8% correspondso HA. of the X's is forced to be either true (by an OR han-

dle) or false (via an AND handle). Then, the program

ment cannot be admissible or an odd oycle. and s aamicG.AUXC) +ACIVaionAE(INE) is consisert. What con-
sible for an even cycl€ if and only if eitherOUTé c ditions 1 and 2 check is simply that the given active/non-

active handles are make the resulting partial stable model

EvenatomsC) or OUT € Odd.atomsC). _ _contain theDUTZ s but not theOUT ’s. Admissibility of

Observe that_whenever a handle as§|gnment IS eﬁg_ctlvg handle assignment in fact intuitively means that what is
the correspondmg program fragmem is locally stratified iven “in input” to a cycle actually entails what is expected
and thus, according to [10], has a unique stable model th output”,
coincides with its well-founded model. It may also be ob-
served that a trivial handle assignment, which does nabefinition 10 An admissible handle assignment
state requirements on the out-handles, is always admissitNg, INY, OUTZ, OUT;) is minimal if there is no
ble for an even cycle, and it is admissible for an odd cyclgyther sets I c INA and INY < INN such that
;)nrélt))/éfslitslzr(]at;f.ectlve (otherwise as seen before the cycle 'S<INé JINY' OUTE, OUTS) is still admissible.

The admissibility of a non-trivial effective handle as- There can be alternative minimal sets of incoming active
signment for cycleC can be checked syntactically, by handles for the same out-handles. However, there may also
means of the criterion that we state below. The advantagee the case there is none.

5 Cycle Graph and support sets Definition 13 A CG support set S igotentially adequate

if for every odd cycle C il there exists a handle & H¢
In this section we introduce the Cycle Graph of a programgch that he ACTH(S).

that represent cycles and handles, and we show that the

concepts and principles that we have previously introduced A CG support seSinduces a set of handle assignments,

allow us to define syntactic conditions for consistency orone for each of the cycleCy, . . ., Cy} occurring inlI.

the Cycle Graph. The induced assignments are obtained on the basis of
the following observations.

Definition 11 Given prograndl, theCycle GraptCG, is Each handle ith € ACT(S) is supposed to be active,

a directed graph defined as follows: and therefore it must be active for each cy€lesuch that
. he Hci.

o Vertices. One vertex for each one of the cycles Each handle ith € ACT(S) is supposed to be not ac-
Cy, ..., Cy that occur inll. Vertices corresponding - tive, and therefore it must be not active for each of cyzle
to even cycles are labeled as Fvhile those corre- sych thah € He,.
sponding to odd cycles are labeled as;GC If a handleh in Srequires, in order to be active/not ac-

tive, an atomg to be false, then it must be concluded false
in all the extended cycles of the progréimomes from.

If a handleh in Srequires, in order to be active/not ac-
tive, an atomg to be true, then it must be concluded true
in all the extended cycles of the progrdntomes from.
This point deserves some comment, since one usually as-
sumes that it suffices to concludgrue somewherén the
brogram. Consider however that any rule— Bodythat

e Edges. An edge(Cj, Ci) marked with(A : K :))
for each handlgA : K : X\) € Hg, of cycle G, that
comes from €

Each marked edge will be denoted B9, Gi|A : K :
A), where eithe(C; or C; or A) will be omitted whenever
they are clear from the context, and we may write for shor

,Er(]:i’ G ”1)’ T sta(ljndlng f(:r a ?tan(_iletr':h?t IS et|tr'16\er c(ljear frog: allows 3 to be concluded true in some cycle is an auxiliary
€ context or does not matter in that point. An dge on g, q 1 4 the other cycles is involved into. This is why3

CG connects the cycle a handle comes from to the cycle t?s concluded trueverywhere it occursThis is the mech-
which the handle belongs.

anism for selecting partial stable models of the cycles that

The Cycle Graph of a program directly represents Cy'agree on shared atoms, in order to assemble stable models
cles, that correspond to its vertices. It also indirectly-re ﬂf the overall program
e

resents extended cycles, since its edges are marked by t

handles. Paths on the Cycle Graph graph represent direglefinition 14 Let S= (ACT+,ACT~) be a CG support
or indirect connections between cycles through the hanset which is potentially adequate. For each cycie€cur-
dles. In order to relate admissible handle assignments fging in 11, k < w, the (possibly empty) handle assignment

the cycles ofll to subgraphs of its cycle gragbGn we induced by this set is determined as follows.
introduce the following definitions.
1. LetINA be Hg, NACT#(S).

Definition 12 Given prograndl, let aCG support selbe a > Let ”\@k be H, N ACT(S).

pair S= (ACT", ACT") of subsets of the handles marking

the edges of Cf (represented in the forA : K) with 3. | et OUT be the (possibly empty) set of all atoms
K = AND/OR) such that the following conditions hold: Be OuLhkandIe$Ck) such that there is a handle &

() ACTT NACT™ = 0. ACTH(S) either of the form(3 : OR) or (not § :

(i) if two opposite handles h andhboth occur on the CG, AND).

then ACT" contains handle h if and only if ACTcontains

its opposite handleh. 4. Let OUT;, be the (possibly empty) set of all atoms
(iii) if two contrary handles h and'hboth occur on the CG, a € OuthandlegCy) such that there is a handled
then ACT" contains handle h if and only if ACTcontains ACT (S) either of the form(«w : AND) or (nota :

its contrary handle h OR).

(iv) if two sibling handles h and®tboth occur on the CG, . T

then either hh® ¢ ACT+ and hh® ¢ ACT—, or vice versa 5. Verify that OUE, N OUTe, = 0.

h,h® € ACT~ and hh® ¢ ACT* If this is the case for eachCthen S actually induces a set
of handle assignments, and is callesherent.Otherwise,

For givenS we will indicate its two components with 5 does notinduce a set of handle assignments, and is called
ACT"(S) andACT (). As stated in Section 3, we have to jncoherent.

restrict the attention on CG support sets including at least

one active handle for each odd cycle. Then, we have to The above definition does not guarantee that the assign-
check that the assumptions on the handles are mutually caaents induced by a coherent support set are admissible,
herent, and are sufficient for ensuring consistency. that the same atom is not required to be both true and false

in the assignments of different cycles, and that the incom- e Given handleh € ACT*(S) (resp.h € ACT—(9)) of
ing handles of a cycle being supposed to be active/not ac- the form(A : K), by IN& U {h} (resp.INY U {h}) we
tive corresponds to a suitable setting of the out-handles of mean: to identify the sed = {(A : K : \) € Hc}
the cycles they come from. Consider for instance c{;le and performiN& U H (resp.INY U H).

which has an incoming handle, elg.= (5 : OR: \), in
INé: h is supposed to be active, which in turn means that
(6 must be concluded true elsewhere in the program; then,
for all cyclesC; wherej is involved into, we must have
B e OUTé?, in order to fulfill the requirement. Of course

e By Hc NACT*(S) (resp. Hc N ACT*(S)) we mean
{(A: K:) € Hc|(A : K) € ACTH(9)} (resp.
(A : K) € ACTH(9)).

) " Assumption 1 Whenever for handlé eitherh® or h— or

we have to consider botNZ andINg, and both the AND 10 o some of them occur on tHeG by AU {h} (where

and the OR handles. _ . _ A can be eitheACT*(S) or ACT~(S) or IN& or INY for
The following definition formalizes this more strict re- gome cycleC) we implicitly mean that the sibling handle is

quirements. added toA as well, while the opposite and contrary handles

Definition 15 A coherent CG support set S &lequate are added to the “opposite” set.

(w.r.t. not adequate) if for the induced handle assignments)qfinition 16 Procedure PACG for finding adequate
the following conditions hold: CG support sets for program II

1. they are admissible; 1. Letinitially S= (0; 0).

2. for each two cyclesCG; in IT, OUTE NOUT; = 0. 2. For each cycle goccurring inIl, k < w, let initially

HAc, = (0,0,0,0)
3. For each odd cycle OC if do:

3. For every Gin II, for every handle he INg, of the
form either(3 : OR: A) or (not3 : AND: \), and for
every handle he INY of the form either(5 : AND :

) or (not 3 : OR :), for every other cycle On (a) Choose e Hoc. If Hoc = 0, than FAIL.

II, i # j, such that@ € OuthandlegC;), we have
B¢ OUng.

. For every Gin II, for every handle he INCAk of the
form either(not 5 : OR: A) or (8 : AND :)\), and
for every handle ke INY of the form either(not 3 :
AND :)) or (3 : OR: \), for every other cycle C
inII, i # j, such thatg € Outhandle$C;), we have
p € OUT: .

(b) For chosen h:
i. ACTH(S) :=ACT(S)u {h};
ii. for each cycle ¢ in II such that he Hc,:
INék = INCAk Uh;
iii. Ifhis either of the form(g : OR) or (not(:

AND), for each cycle gin II whereg €
Out handlegCy), do: OUTY, := OUTE U

{8}

. - iv. Ifhis either of the forninot3 : OR) or (5 :
In [4] we have introduced a necessary and sufficient syn- AND), for each cycle @in IT where €

tactic condition for consistency based on the Cycle Graph Outhandle$Cy), do: OUTS := OUTS U
of the program. (8} T G G

Theorem 1 A programllI has stable models if and only if 4 REPEAT
there exists and adequate CG support set Skor
(@) Verify that ACT (S) N ACT(S) = 0. If not,
Therefore, it is useful to define a procedure for identify- FAIL.

ing adequate support sets of a program on its Cycle Graph. (b) For each cycle @in II such that OUE # 0 or
k

. OUT, # 0:
6 Identifying adequate support sets on the , Ck% -
Cycle Graph i. Verify that OUT, N OUT; = 0. If not,
FAIL.

The above definitions allow us to define a procedure for
trying to find adequate support sedstarting from the odd
cycles, and following the dependencies on @@

For the sake of readability we introduce some simplify-
ing assumptions.

ii. Update (if needed) I§ and INY w.r.t.
OUT¢ and OUT,, and check that the re-
sulting handle assignment is admissible. If
not, FAIL.

iii. Foreach other cycle €in IT do: verify that
OUTE“k N OUT; = 0, and that OUE, N
OUTé“h = (. If not, FAIL.

(c) For each cycle €in II, for each he INék:

e Given handleh = (A : K : X), by ACTH(S) U {h}
(resp. ACT—(S) U {h}) we meanACT"(S) U {(A :
K)} (resp.ACTT(S) U {(A : K)}).

i. do ACTH(S) := ACTH(S) U {h};
ii. For each cycle Gin IT such that he Hc,:
INg :=IN& Uh;
(d) If his either of the form(8 : OR) or (not g :

AND), for each cycle ¢ in II where g € notc:AND : p
Outhandle$Cy), do: OUTY := OUTZ U {5};

(e) If h is either of the form(not 3 : OR) or
(B : AND), for each cycle gin IT whereg €
Out handlegCy), do: OUT, := OUT, U {3}

5. For each cycle €in I, for each he INg'k:

(8) do ACT (S) := ACT"(S) U {h}; Figure 1: The Cycle Graph of;.

(b) For each cycle €in II such that he Hg,: do
INY := INZ Uh; _ _ _

(c) If his either of the form(: OR) or (not g : gr&c_lithe_re 'S n%rj_?glreTegt OFNthe o_utq—)handIeIsEJcE:IEQr

AND), for each cycle ¢ in II where 3 ¢ EC _.{Cij’ i ec, = 10} X ECF] N h" Sli‘?cedl 1S
Out handle$Gy), do: OUT; := OUT. U {4}; unconstrained. Itis easy to verify that this handle assign-

k k ment is admissible, by letting; = aand\; = ¢, where of

(d) If h is either of the form(not 3 : OR) or course forc to be truea must be false. This handle assign-
(B : AND), for each cycle €in Il where3 € ment corresponds to selecting the partial stable médel
Outhandle$Cy), do: OUT,, := OUT U{3} for EC;, while discarding the other partial stable model

{a}. Then,S,, is an adequate CG support set.

Consider program, = OC; UEC; UEG,. CycleseC,
Proposition 2 Procedure PACG either fails, or returns an @ndEC; are not independent. In fact, ruée<— not b of
adequate CG support set. EGC, is an auxiliary rule foEC,, and, vice versa « notc
of EC, is an auxiliary rule folEC,. Then, here we have a
cyclic connection between the even cycles. This is evident
on the Cycle Graph of2, reported in Figure 2.

UNTIL no set is updated by the previous steps.

7 Example

Consider the following collection of cycles.

— 0G — 0OC, — 0OG;

p«<notsnotc p«notsnotc r« notr,note

S« nott S« nott

t—notp t— notp (not c: AND: p) (a:OR: s)
S+—a

—0C, —O0G

g« notq q« notq

g« note g« note
g«<—a (not b: OR: a)

— EC, — EG, — EG;
a<—notc a<—notb e—notf _
c—nota benota f< note Figure 2: The Cycle Graph af;.
Letm = OC() UEC;, my = OC; UEC; UEG,, T3 =
OC, UEC, UEC, UEC; U OC, U OC;, andr, = OC, U The odd cycleOC; has two handles, of which at least
EC, UEC,UEC;UOC,UQGC;. The Cycle Graphs of these one must be active. Let us first assume {lmatt c: AND :
programs are shown in Figures 1, 2, 3 and 4 respectively.p) is active.
Let's now apply the definition of handle assignment. According to the PACG procedure, we try to assemble a
Form; = OC, U EC,, the odd cycleOC, admits the CG support se§, by letting at firstACT* (S;,) = {(notc:
unique potentially active handigot c: AND : p) Then, AND)} andACT(S;,) = {(not c: OR)}. In fact, since
we letS;, be such thabCT" (S;,) = {(notc: AND)} and notcis an incoming OR handle farin EC,, when assum-
ACT~(S;,) = 0. The induced sets of handle assignmentsng (not c: AND) to be active, we also have to assume its
are as follows. opposite handle and its contrary handle to be not active.
For OCy: IN§e, = {(not c : AND)}, OUTS, = Accordingly, we letINg;, = {(not ¢ : AND)} and
OUTqe, = 0. This assignment is trivially admissible, INge, = {(notc: OR)} Now, we have to pubUTg =

(not c: OR: a)

{p} andOUT{, = {c}. To form an admissible handle
assignment foEC;, this implies to leiN. = {(notb:
OR)}. Consequently, we have to upd&€T (S,,) which

becomes ACT (S;,) = {(notc: AND), (notb: OR)}. (notc: AND:P) @ QR

This leads to pubUT{;, = {b}. “Y elorg (note; AND: 1)
Further iteration of the procedure changes nothing, and (not c: OR: a)

thus the pair of setdCT"(S;,) = {(not c: AND)} and

ACT (S;,) = {(notc: OR), (notb: OR)} form, as it is (not b: OR: a)

easy to verify, an adequate CG support set.
Notice that this kind of reasoning requires neither to find
the stable models of the cycles, nor to consider every edge Figure 4: The Cycle Graph ofy.
of the CG. In fact, we do not need to consider the second
incoming handle 00C,;.
Let us now make the alternative assumption, i.e. assum@Pport must be consistent, in the sense that no contrasting
that(a : OR : s) is active forOC;. This means at first @ssumptions on the handles can be made.
ACT*(S;,) = {(a: OR} andACT (S,,) = 0, since Point (1) is related to the “coarse” structure of the pro-
not adoes not occur in handles of ti@G. This implies gram, and can be easily checked on @@, so as to rule
oU-rérCl = {a}. Thus, there is no requirement tigc, out a lot of inconsistent programs, thus leaving only the
for forming an admissible handle assignment, and then théotentially consistent” ones to be checked w.r.t. point (2
procedure stops here. The former definitions and result and the PACG proce-
For programr; = OC, UEC, UEC,UEC;UOC,UOC,, dure can be adapted to perform several static analysis tasks
the only incoming handles t6C, and OC; are opposite beyond checking consistency. For lack of space we explain
handles, that cannot be both active. For the other cycleg/hat we mean by means of examples and then we intro-

the situation is exactly the same as for duce a preliminary result.
Let us for instance reconsider programin the above
example. Let us assume we want to know whether giom
° e e may belong to an answer setmf. Sincep occurs in cycle
OC,, there must exist a non-trivial effective handle assign-
(not ¢: AND: p) @ OR:) ment forOC; such thap € OUTJ, . From Proposition 1

we know that (Condition 1) either there exists an OR han-
dle for p (part (a)) which is not the case here, or there is
no active AND handle (part (b)) and the atom in the cycle
(namely,s) upon whichp depends is irOUTg. . Then,

on the cycle graph we rule out handieot ¢ : AND : p)

as a support fo©OC;. However, the other possibility is
(a : OR: s). Again according to Proposition 1, with an
active OR handles cannot be inOUTg. . Therefore,p

. . o cannot be in any answer setof.
On its Cycle Graph (Figure 3) it is apparent that con- Take programr, in the above example. Canbe in an

sistency problems of this program arise from subprogram,,q\ver set of this program? PACG can check this, if we
EC;UOG, UOG;. We can fix these problems for instance ot the procedure chooge : OR) as a supporting handle
by rg_placmgOCz with OG,, which means that we add an for bothOC; andOGC,. As seen at the end of previous sec-
auxn.|ary rule (and then an OR handle) @C,. We thus . tion, with this choice an adequate CG support set can be
obtain programr, (CG in Figure 4) where we can exploit ¢,ngtrcted, and then the answer is yes. Instead, Btom
. v . .) . 1
handle(a : OR) for bothOC, andOG;. It 'i easy to verlf.y cannot be in any answer set of this program. In fact, the
that the CG.support sStcompf)sed ORCT (S’“{) - {(a_. only cycle whereb occurs iSOC,. Again by Proposition 1
OR), (not e: AND)} andACT(S;,) = {(note: OR)}iS 51 tg pe true (i.e., fob to be iNOUTZ, amust be false
adequate. The need to suppQIC; rules out the possi- condition 1.(b)). Then, handié : OR) cannot be ac-
bility of supportingOC, by means of the handigot ¢ : tive. It is easy to check on th@G that, in this caseQC,
AND: p). andOGC; should be supported by opposite handles, which
cannot be the case.
8 How to exploit the results An easy way to initialize PACG is to start with a non-
empty initial candidate support set.
We have identified and discussed in depth two aspects of
consistency checking: (1) the odd cycles must be (eitheDefinition 17 Let PACGE be the same as PACG, where in
directly or indirectly) supported by the even cycles; (23th step 1 we let initially S= (ACT,", ACT..,), where ACT,

init»

(not e: OR: q) (not e: AND: 1)

(not c: OR: a),

(not b: OR: a)

Figure 3: The Cycle Graph afs.

and ACT,; can be non-empty.

Proposition 3 An atom A can belong to some of the an-
swer sets of progranil only if the following conditions
hold.

(i) There exists a cycle C where A is involved into and
a non-trivial effective handle assignment for C such
that Ac OUT{.

(i) PACGE returns an adequate CG support set given ini-
tially ACT,\, = OUTZ and ACT;;, = OUT, .

9 Discussion

Anissue to consider is how much space is consumed by the
Cycle Graph. In the case of canonical programs, a given
program is just split into parts, and then the Cycle Graph
does not take more space than the program itself. Non-
canonical programs instead, because of long rules may
contain an exponential number of cycles. A worst case
for negative programs is representeddxyrermal programs
ChoTru96, where a rule may contain all the atoms which
occur in the program. However, although an extensive
study has to be performed, many odd cycles presumably do
not really need to be represented in the Cycle Graph. For
instance, in extremal programs all rules of each odd cycle
also belong to even cycles, all distinct: thus, whatever the
choice of the partial stable models of the even cycles, the
odd cycle turns out to be supported.

But, how can the method proposed in this paper be ex-
tended to non-canonical programs? (1) If an OR handle is
composed of several literals, they mustdiktrue for the
handle to be active. (2) If an AND handle is composed of
several literalsat least onenust be false for the handle to
be active. (3) If the connection between cycles are not di-
rect but there are chains of dependencies, in order to state
whether a literal in a handle is true/false these chains of
dependencies must be followed.

How can the method be applicable to analyze non-
grounded programs? In principle, a version of the Cycle
Graph can be built for non-grounded programs as well.
Point (1) of consistency checking can be at least partly per-
formed. However, either for performing point (2) or for
other analysis tasks, at least part of the program must be
grounded. How to optimize “on the flight” partial ground-
ing is a future topic of this research.

References

[1] BRIGNOLI, G., COSTANTINI, S., D’ANTONA, O.
AND PROVETTI, A., 1999. Characterizing and
computing stable models of logic programs: the
non-stratified case. IRroc. of CIT99 Conference
on Information Technology

[2] CHOLEWINSKI, P. AND TRUSZCZYNSKI, M.,
1999. Extremal problems in logic programming

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

and stable model computationJ. of Logic Pro-
gramming 38, 219-242.

COSTANTINI, S., 2001. Comparing different graph
representations of logic programs under the answer
set semantics. IProc. AAAI Spring Symposium
"Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reason-
ing”, 21-26.

COSTANTINI, S., 2005. On the existence of stable
models of unstratified logic programs. To appear
in: “Theory and Practice of Logic Programming”

COSTANTINI, S., D’ANTONA, O. AND
PROVETTI, A., 2002. On the equivalence
and range of applicability of graph-based represen-
tations of logic programsinformation Processing
Letters 84(2)241-249.

COSTANTINI, S.AND PROVETTI, A., 2004. Nor-
mal forms for answer set programming. To appear
in: Theory and Practice of Logic Programming.

FAGES, F., 1994. Consistency of Clark’s comple-
tion and existence of stable model&dethods of
Logic in Computer Science, 51-60.

GELFOND, M. AND LIFSCHITZ, V., 1988. The
stable model semantics for logic programming. In
Proc. of the Fifth Joint International Conf. and
Symp. The MIT Press, Cambridge, MA, 1070—
1080.

GELFOND, M. AND LIFSCHITZ, V., 1991. Classi-
cal negation in logic programs and disjunctive data-
basesNew Generation Computing, 365—385.

PrRzYMUSINSKA, H. AND PRzYMUSINSKI, T. C.,
1990. Semantic issues in deductive databases and
logic programs. Formal Tech. in Art. Intell., a
SourcebookElsevier Sc. Publ. B.V., 321-367.

SCHLIPF, J. S., 1995. The expressive power of
logic programming semantics. J. of Comp. and
Syst. Sciences 51 (1), 64-86.

VAN GELDER A., RossK.A. AND SCHLIPF J.,
1990. The well-founded semantics for general
logic programsJ. of the ACM 38(3)620-650.

WEB LOCATION OF THE MOST KNOWN ASP
SOLVERS
Cmodels:http://www.cs.utexas.edu/users/yuliya/
Aspps:http://www.cs.uky.edu/ai/aspps/

DLV: http://lwww.dbai.tuwien.ac.at/proj/dIv/
NoMoRe: http://www.cs.uni-
potsdam.de/linke/nomore/
Smodelshttp://www.tcs.hut.fi/Software/smodels/

