
Strips-like Planning
in the DALI Logic Programmming Language?

Stefania Costantini Arianna Tocchio

Universit̀a degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost, tocchio }@di.univaq.it

Abstract. In this paper we will discuss how some features of the new logic pro-
gramming language DALI for agents and multi-agent systems are suitable to pro-
gramming agents equipped with planning capabilities. We will discuss the design
and implementation of an agent capable to perform STRIPS-like planning, and
we will propose a significant example. In particular, a DALI agent, which is capa-
ble of complex proactive behavior, can build step-by-step her plan by proactively
check for goals and possible actions. We demonstrate how general and flexible
is the treatment of proactivity in DALI, which is different from all the other ap-
proaches that can be found in the literature.

1 Introduction

The new logic programming language DALI [Co99], [CT02], [CGT02] has been de-
signed for modeling Agents and Multi-Agent systems in computational logic. Syntacti-
cally, DALI is close to the Horn clause language and to Prolog. DALI programs however
may contain a new kind of rules, reactive rules, aimed at interacting with an external
environment. The environment is perceived in the form of external events, that can be
exogenous events, observations, or messages from other agents. In response, a DALI
agent can either perform actions or send messages. This is pretty usual in agent for-
malisms aimed at modeling reactive agents (see among the main approaches [KS96],
[DST99], [Fi94] [Ra91], [Ra96]), [SPDEK00].

What is new in DALI is that the same external event can be considered under dif-
ferent points of view: the event is first perceived, and the agent may reason about this
perception, then a reaction can take place, and finally the event and the (possible) ac-
tions that have been performed are recorded as past events and past actions. Another
important novel feature is that internal conclusions can be seen as events: this means,
a DALI agent can “think” about some topic, the conclusions she takes can determine

? Research partially funded by MIUR 40% projectAggregate- and number-reasoning for com-
puting: from decision algorithms to constraint programming with multisets, sets, and maps
and by theInformation Society Technologies programme of the European Commission, Future
and Emerging Technologiesunder the IST-2001-37004 WASP project. Many thanks to Stefano
Gentile, who has joined the DALI project, has cooperated to the implementation of DALI, has
designed the language web site, and has helped and supported the authors in many ways.

a behavior, and, finally, she is able to remember the conclusion, and what she did in
reaction. Whatever the agent remembers is kept or “forgotten” according to suitable
conditions (that can be set by directives). Then, a DALI agent is not a purely reactive
agent based on condition-action rules: rather, it is a reactive, proactive and rational agent
that performs inference within an evolving context.

The new approach proposed by DALI is compared to other existing logic pro-
gramming languages and agent architectures such as ConGolog, 3APL, IMPACT,
METATEM, BDI in [CT02]. However, it is useful to remark that DALI is a logic pro-
gramming language for defining agents and multi-agent systems, and does not commit
to any agent architecture. Differently from other significant approaches like, e.g., DE-
SIRE [1], DALI agents do not have pre-defined submodules. Thus, different possible
functionalities (problem-solving, cooperation, negotiation, etc.) and their interactions
are specific to the particular application. DALI is in fact an “agent-oriented” general-
purpose language that provides, as discussed below, a number of primitive mechanisms
for supporting this paradigm, all of them within a precise logical semantics.

The declarative semantics of DALI is anevolutionary semantics,where the meaning
of a given DALI programP is defined in terms of a modified programPs, where reac-
tive and proactive rules are reinterpreted in terms of standard Horn Clauses. The agent
reception of an event is formalized as a program transformation step. The evolutionary
semantics consists of a sequence of logic programs, resulting from these subsequent
transformations, together with the sequence of the Least Herbrand Model of these pro-
grams. Therefore, this makes it possible to reason about the “state”of an agent, without
introducing explicitly such a notion, and to reason about the conclusions reached and
the actions performed at a certain stage. Procedurally, the interpreter simulates the pro-
gram transformation steps, and applies an extended resolution which is correct with
respect to the Least Herbrand Model of the program at each stage.

DALI is fully implemented in Sicstus Prolog [sicstus]. The imple-
mentation, together with a set of examples, is available at the URL
http://gentile.dm.univaq.it/dali/dali.htm.

In this paper we want to demonstrate that the features of the DALI language allow
many forms of commonsense reasoning to be gracefully represented, and in particular
we will consider STRIPS-like planning. We will show that it is possible to design and
implement this kind of planning without implementing a meta-interpreter like is done
in [CI98] (Ch. 8, section on Planning as Resolution). Rather, each feasible action is
managed by the agent’s proactive behavior: the agent checks whether there is a goal
requiring that action, sets up the possible subgoals, waits for the preconditions to be
verified, performs the actions, and finally arranges the postconditions.

The mechanism for providing this degree of proactivity is that of the internal events.
Namely, the mechanism is the following: if an atomA has been indicated to the in-
terpreter as an internal event by means of a suitable directive, from time to time the
agent attemptsA as a goal (where here “goal”is meant in the sense of resolution-based
Horn-clause language procedural semantics, and not in the sense of planning), at the
frequency set in the directive. If the goal succeeds, it is interpreted as an event, thus
determining the corresponding reaction. I.e., internal events are events that do not come
from the environment. Rather, they are goals defined in some other part of the program.

2

It is possible to define (again by means of directives) priorities among different internal
events, and/or constraints stating for instance that a certain internal event is incompati-
ble with another one.

The implementation that we propose for STRIPS-like planning is aimed at showing
the power, generality and usability of this mechanism, that by the way also provides a
mean for gracefully integrating object-level and meta-level reasoning. To the best of our
knowledge, no other agent language in the literature provides this kind of mechanism,
with this kind of generality.

2 DALI at work: Commonsense Reasoning in everyday situations

A DALI program is syntactically very close to a traditional Horn-clause program. In
particular, a Prolog program is a special case of a DALI program. Specific syntactic
features have been introduced to deal with the agent-oriented capabilities of the lan-
guage, and in particular to deal with events.

Let us consider an event incoming into the agent from its “external world”, like for
instancebell ringsE (postfixE standing for “external”). From the agent’s perspective,
this event can be seen in different ways.

Initially, the agent has perceived the event, but she still have not reacted to it. The
event is now seen as a present eventbell ringsN (postfixN standing for “now”). She
can at this point reason about the event: for instance, she concludes that a visitor has
arrived, and from this she realizes to be happy.

visitor arrived :- bell ringsN.

happy :- visitor arrived.

As she is happy, she feels like singing a song, which is an action (postfixA). This
is obtained by means of the mechanism of internal events: this is a novel feature of
the DALI language, that to the best of the authors’ knowledge cannot be found in any
other language. Conclusionhappy, reinterpreted as an event (postfixI standing for
“internal”), determines a reaction, specified by the followingreactive rule, where new
connective :> stands fordetermines:

happyI :> sing a songA.

In more detail, the mechanism is the following: goalhappy has been indicated to
the interpreter as an internal event by means of a suitable directive. Then, from time to
time the agent wonders whether she is happy, by trying the goal (the frequency can also
be set in the directive). If the goalhappy succeeds, it is interpreted as an event, thus
triggering the corresponding reaction. For coping with unexpected unpleasant situations
that might unfortunately happen to ruin a good day, one can add a directive of the form:

keep happyIunless 〈 terminatingcondition〉.

stating in which situationshappy should not become an internal event.
〈terminating condition〉 is any predicate, that must be explicitly defined in the pro-
gram, and is attempted upon success ofhappy. This formulation is elaboration-tolerant,
since it separates the general definition of happiness, from what (depending on the evo-
lution of the context) might “prevent” happiness.

3

Finally, the actual reaction to the external eventbell ringsE can be that of opening
the door:

bell ringsE :> openthe doorA.

After reaction, the agent is able to remember the event, thus enriching her reasoning
context. An event (either external or internal) that has happened in the past will be called
past event,and writtenbell ringsP , happyP , postfixP standing for “past”. External
events and actions are used also for sending and receiving messages. Then, an event
atom can be more precisely seen as a tripleSender : Event Atom : Timestamp.
TheSender andTimestamp fields can be omitted whenever not needed.

The DALI interpreter is able to answer queries like the standard Prolog interpreter,
but it is able to handle a disjunction of goals. In fact, from time to time it will add
external and internal event as new disjuncts to the current goal, picking them from
queues where they occur in the order they have been generated. An event is removed
from the queue as soon as the corresponding reactive rule is applied.

3 Coordinating Actions based on Context

A DALI agent builds her own context, where she keeps track of the events that have
happened in the past, and of the actions that she has performed. As soon as an event
(either internal or external) is reacted to, and whenever an action subgoal succeeds (and
then the action is performed), the corresponding atom is recorded in the agent database.
By means of directives, it is also possible to indicate other kinds of conclusions that
should be remembered. Past events and past conclusions are indicated by the postfixP ,
and past actions by the postfixPA. The following rule for instance says that Susan is
arriving, since we know her to have left home.

is arriving(susan) :- left homeP(susan).

The following example illustrates how to exploit past actions. In particular, the ac-
tion of opening (resp. closing) a door can be performed only if the door is closed (resp.
open). The window is closed if the agent remembers to have closed it previously. The
window is open if the agent remembers to have opened it previously.

openthe doorA :- door is closed.

door is closed :- closethe doorPA.

closethe doorA :- door is open.

door is open :- openthe doorPA.

It is possible to have a conjunction of events in the head of a reactive rule, like in
the following example.

rainE, windE :> closewindowA.

In order to trigger the reactive rule, all the events in the head must happen within
a certain amount of time. The length of the interval can be set by a directive, and is
checked on the time stamps.

It is important to notice that an agent cannot keep track ofeveryevent and action
for an unlimited period of time, and that, often, subsequent events/actions can make

4

former ones no more valid. In the previous example, the agent will remember to have
opened the door. However, as soon as she closes the door this record becomes no longer
valid and should be removed: the agent in this case is interested to remember only the
last action of a sequence. In the implementation, past events and actions are kept for
a certain (customizable) amount of time, that can be modified by the user through a
suitable directive. Also, the user can express the conditions exemplified below:

keep openthe doorPA until closethe doorA.

As soon as theunti condition (that can also beforever) is fulfilled, i.e., the cor-
responding subgoal has been proved, the past event/action is removed. In the imple-
mentation, events are time-stamped, and the order in which they are “consumed ”cor-
responds to the arrival order. The time-stamp can be useful for introducing into the
language some (limited) possibility of reasoning about time. Past events, past conclu-
sions and past actions, which constitute the “memory” of the agent, are an important
part of the (evolving) context of an agent. The other components are the queue of the
present events, and the queue of the internal events. Memories make the agent aware of
what has happened, and allow her to make predictions about the future.

The following example illustrates the use of actions with preconditions. The agent
emits an order for a productP of which she needs a supply. The order can be done
either by phone or by fax, in the latter case if a fax machine is available.

needsupplyE(P) :> emit oder(P).

emit order(P) :- phoneorderA.

emit order(P) :- fax orderA.

fax orderA :- fax machineavailable.

If we want to express that the order can be done either by phone or by fax, but not
both, we do that by exploiting past actions, and say that an action cannot take place if
the other one has already been performed. Here,not is understood as default negation.

needsupplyE(P) :> emit order(P).

emit order(P) :- phoneorderA, not fax orderPA.

emit order(P) :- fax orderA, not phoneorderPA.

External events and actions are used also for expressing communication acts. An
external event can be a message from another agent, and, symmetrically, an action can
consist in sending a message. Presently we do not commit to any particular agent com-
munication language, that we consider as a customizable choice that can be changed
according to the application domain.

4 Evolutionary Semantics

The declarative semantics of DALI is aimed at describing how an agent is affected by
actual arrival of events, without explicitly introducing a concept of state which is in-
compatible with a purely logic programming language. Rather, we prefer the concept
of context, where modifications to the context are modeled as program transformation

5

steps. For a full definition of the semantics the reader may refer to [CT02]. We sum-
marize the approach here, in order to make the reader understand how the examples
actually work.

We define the semantics of a given DALI programP starting from the declarative
semantics of a modified programPs, obtained fromP by means of syntactic transfor-
mations that specify how the different classes of events are coped with. For the declara-
tive semantics ofPs we take the Well-founded Model, that coincides with the the Least
Herbrand Model if there is no negation in the program (see [PP90] for a discussion).
In the following, for short we will just say “Model”. It is important to notice thatPs

is aimed at modeling the declarative semantics, which is computed by some kind of
immediate-consequence operator, and not represent the procedural behaviour of the in-
terpreter.

For coping with external events, we have to specify that a reactive rule is allowed
to be applied only if the corresponding event has happened. We assume that, as soon as
an event has happened, it is recorded as a unit clause (this assumption will be formally
assessed later). Then, we reach our aim by adding, for each event atomp(Args)E , the
event atom itself in the body of its own reactive rule. The meaning is that this rule can
be applied by the immediate-consequence operator only ifp(Args)E is available as a
fact. Precisely, we transform each reactive rule for external events:

p(Args)E :> R1, . . . , Rq.

into the standard rule:

p(Args)E :- p(Args)E,R1, . . . , Rq.

Similarly, we have to specify that the reactive rule corresponding to an internal event
q(Args)I is allowed to be applied only if the subgoalq(Args) has been proved.

Now, we have to declaratively model actions, without or with an action rule. Proce-
durally, an actionA is performed by the agent as soon asA is executed as a subgoal in
a rule of the form

B :- D1, . . . , Dh, A1, . . . , Ak. h ≥ 1, k ≥ 1
where theAi’s are actions andA ∈ {A1, . . . , Ak}. Declaratively, whenever the con-
ditionsD1, . . . , Dh of the above rule are true, the action atoms should become true as
well (given their preconditions, if any). Thus, the rule can be applied by the immediate-
consequence operator. To this aim, for every action atomA, with action rule

A :- C1, . . . , Cs. s ≥ 1
we modify this rule into:

A :- D1, . . . , Dh, C1, . . . , Cs.
If A has no defining clause, we add clause:

A :- D1, . . . , Dh.

In order to obtain theevolutionarydeclarative semantics ofP , as a first step we
explicitly associate toPs the list of the events that we assume to have arrived up to a
certain point, in the order in which they are supposed to have been received. We let
P0 = 〈Ps, []〉 to indicate that initially no event has happened.

Later on, we havePn = 〈Progn, Event listn〉, whereEvent listn is the list of the
n events that have happened, andProgn is the current program, that has been obtained
from Ps step by step by means of atransition functionΣ. In particular,Σ specifies that,

6

at the n-th step, the current external eventEn (the first one in the event list) is added to
the program as a fact.En is also added as a present event. Instead, the previous event
En−1 is removed as an external and present event, and is added as a past event.

Then, givenPs and listL = [En, . . . , E1] of events, each eventEi determinesthe
transition fromPi−1 to Pi according toΣ. The listP(Ps, L) = [P0, . . . , Pn] is called
theprogram evolutionof Ps with respect toL.

Notice thatPi = 〈Progi, [Ei, . . . , E1]〉, whereProgi is the program as it has
been transformed after the ith application ofΣ. Then, the sequenceM(Ps, L) =
[M0, . . . ,Mn] whereMi is the model ofProgi is themodel evolutionof Ps with respect
to L, andMi the instant model at stepi .

Finally, the evolutionary semanticsEPs of Ps with respect toL is the couple
〈P(Ps, L),M(Ps, L)〉.

The DALI interpreter at each stage basically performs standard SLD-Resolution on
Progi, while however it manages a disjunction of goals, each of them being a query, or
the processing of an event.

5 A complete example: STRIPS-like planning

In this section we implement and discuss an agent who is able to perform some planning
in a STRIPS-like fashion.

Our agent’s planning capabilities are really basic, e.g., we do not consider here the
famous STRIPS anomaly. Then, we may assume that our agent is a child, and in fact
we take as an example the goal of putting on socks and shoes. Of course, the agent
should put her shoes on her socks, and she should put both shoes on. To start the whole
thing, we suppose that some other agent, maybe our agent’s mother, sends a message to
intimate her to wear the shoes. This message is an external event, which is the head of
a reactive rule: the body of the rule specifies the reaction, which in this case consists in
definingwear shoes as a goal to be achieved. This is done by simply asserting a fact
g(wear shoes), if it is not already present. In general, a factg(G) indicates thatG has
been set as a goal, but has not been achieved yet.

put your shoes on immediatelyE :>define goal(wear shoes).
define goal(G) :- not(G), assert(g(G)).

The goalwear shoes has as final effect that of putting the shoes on, and is coped
with by the following rules. The first one, with headshoes, checks whetherwear shoes
is actually a goal to be achieved, simply by looking up the factg(wear shoes). If so, it
defines its subgoals: wearing the shoes implies wearing both the right and the left shoe,
and thus it asserts (by means of proceduredefine subgoal) the factsg(r shoe on) and
g(l shoe on), r standing for “right” andl standing for “left” . Finally, it waits for its
preconditions to be verified. Since this is the “top level” goal, its preconditions coincide
with its subgoals, and whenever they have been fulfilled, the overall goal succeeds.

The trick here is thatshoes must be declared to be an internal event, and
this ensures that the check is done at the frequency which have been set by the
programmer. The first time it is called, the conditionsverify goal(wear shoes)

7

and define subgoals(wear shoes) will succeed, while the third one, i.e.,
preconds(wear shoes), will fail since the subgoals have not been achieved. For a
number of times,shoes will be attempted again and again, where the first two con-
ditions will keep succeeding (with no effect, though) and the third one will keep fail-
ing. Finally, when the subgoals will have been achieved, also the third condition, i.e.,
preconds(wear shoes), will succeed, thusshoes will succeed. Since it is an internal
event, upon success the corresponding reactive rule is triggered, that in this case prints
a message and “cleans up” the goal and the subgoals, by removing the corresponding
facts.

shoes :- verify goal(wear shoes),
define subgoals(wear shoes), preconds(wear shoes).

shoesI :>write(’I have the shoes on’), nl,
remove subgoal(wear shoes), remove subgoals(wear shoes).

define subgoals(wear shoes) :-
define subgoal(r shoe on), define subgoal(l shoe on).

preconds(wear shoes) :- r shoe on, l shoe on.
remove subgoals(wear shoes) :-

remove subgoal(r shoe on), remove subgoal(l shoe on).
Below is the (straightforward) definition of the auxiliary procedures.

verify goal(G) :- g(G).

define subgoal(G) :- not(G), assert(g(G)).
define subgoal().

remove subgoal(G) :- clause(G,), retractall(g(G)).
remove subgoal().

The goalr shoe on (and, similarly, the goall shoe on) is coped with by the fol-
lowing rules. Here we have a more general case, since it is an “intermediate” sub-
goal. Whenever its preconditions are fulfilled (in this case, there is only the condition
r sock on of having put the right sock), the reactive rule will result in the execution
of the action of wearing the shoe, i.e.,put r shoeA, postfixA standing for “action.”
There is another internal event, namely the predicate calledright shoe, whose role is
that of checking if the action has been performed, by looking up in the agent’s memory
the factput r shoePA, postfixPA standing for “action.” that will be added as soon as
the action has been successfully performed. As reaction, it will clean up the subgoals,
that have been achieved and are thus obsolete, an asserts the current subgoal, namely
r shoe on, so as the parent goal will know, and will be able to proceed.

8

r shoe :- verify goal(r shoe on),
define subgoals(r shoe), preconds(r shoe on).

r shoeI :>put r shoeA.

define subgoals(r shoe on) :- define subgoal(r sock on).
preconds(r shoe on) :- r sock on.
right shoe :- put r shoePA.
right shoeI :>remove subgoals(r shoe), assert(r shoe on).
remove subgoals(r shoe on) :- remove subgoal(r sock on).

Finally, the goalr sock on (and, similarly, the goall sock on) is coped with by
the following rules. Here we have a special case, since it is a “leaf” subgoal. It has no
subgoals, and its preconditions are facts (precisely, the single facthave r sock stating
that the agent has the sock to put on.

r sock :- verify goal(r sock on),
define subgoals(sock on R), preconds(put r sock).

r sockI :>put r sockA.

define subgoals(r sock on).
preconds(put r sock) :- have r sock.
right sock :- put r sockPA.
right sockI :>remove subgoals(r sock on),

retractall(have r sock), assert(r sock on).
remove subgoals(r sock on).

An important ingredient for the efficiency of the planner is that of the priorities
among the internal events (again to be set by means of suitable directives), stating in
this case that lower-level subgoals have higher priority, and possible constraints that
state which events are incompatible.

The remark to be done here is that the set of rules managing each subgoal has an
object-level part, stating which preconditions to verify and which actions to perform,
and a meta-level part, setting the subgoals, and asserting the subgoal when it has been
achieved. The object-level and the meta-level components are managed in a uniform
way by means of the internal event mechanism.

To check that the above planner actually works fine, the reader is invited to refer to
the DALI web site, URL http://gentile.dm.univaq.it/dali/dali.htm.

6 Concluding Remarks

We have presented how to implement STRIPS-like planning in DALI, mainly by using
the mechanism of internal events. However, the ability of DALI agents to behave in a
“sensible” way comes from the fact that DALI agents have several classes of events,
that are coped with and recorded in suitable ways, so as to form a context in which the
agent performs her reasoning. A simple form of knowledge update and “belief revision”
is provided by the conditional storing of past events and actions. In the future, more

9

sophisticated belief revision strategies as well as full planning capabilities and a real
agent communication language will be integrated into the formalism.

References

[Co99] S. Costantini. Towards active logic programming. In A. Brogi and P. Hill,
(eds.), Proc. of 2nd International Works. on Component-based Software
Development in Computational Logic (COCL’99), PLI’99, Paris, France,
September 1999. http://www.di.unipi.it/ brogi/ ResearchActivity/COCL99/
proceedings/index.html.

[CGT02] S. Costantini, S. Gentile, A. Tocchio. DALI home page:
http://gentile.dm.univaq.it/dali/dali.htm.

[CT02] S. Costantini, A. Tocchio. A Logic Programming Language for Multi-agent
Systems. In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.), Logics in Artifi-
cial Intelligence, Proc. of the 8th Europ. Conf., JELIA 2002, Cosenza, Italy,
September 2002, LNAI 2424, Springer-Verlag, Berlin, 2002

[DST99] P. Dell’Acqua, F. Sadri, and F. Toni. Communicating agents. In Proc.
International Works. on Multi-Agent Systems in Logic Progr., in conjunction
with ICLP’99, Las Cruces, New Mexico, 1999.

[Fi94] M. Fisher. A survey of concurrent METATEM – the language and its ap-
plications. In Proc. of First International Conf. on Temporal Logic (ICTL),
LNCS 827, Berlin, 1994. Springer Verlag.

1. C. M. Jonker, R. A. Lam and J. Treur. “A Reusable Multi-Agent Architecture
for Active Intelligent Websites”. Journal of Applied Intelligence, vol. 15, 2001,
pp. 7-24.

[KS96] R. A. Kowalski and F. Sadri. Towards a unified agent architecture that
combines rationality with reactivity. In Proc. International Works. on Logic
in Databases, LNCS 1154, Berlin, 1996. Springer-Verlag.

[CI98] D. Poole, A. Mackworth, R. Goebel. Computational Intelligence. Oxford Uni-
versity Press, ISBN 0-19-510270-3, New York, 1998.

[PP90] Przymusinska, H., and Przymusinski, T. C., Semantic Issues in Deductive
Databases and Logic Programs. R.B. Banerji (ed.) Formal Techniques in Artifi-
cial Intelligence, a Sourcebook, Elsevier Sc. Publ. B.V. (North Holland), 1990.

[Ra96] A. S. Rao. AgentSpeak(L): BDI Agents speak out in a logical computable
language. In W. Van De Velde and J. W. Perram, editors, Agents Break-
ing Away: Proc. of the Seventh European Works. on Modelling Autonomous
Agents in a Multi-Agent World, LNAI, pages 42–55, Berlin, 1996. Springer
Verlag.

[Ra91] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In R. Fikes and E. Sandewall, editors, Proc. of Knowledge Rep-
resentation and Reasoning (KR&R-91), pages 473–484. Morgan Kaufmann
Publishers: San Mateo, CA, April 1991.

[sicstus] SICStus home page. http://www.sics.se/sicstus/.
[SPDEK00] V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit

Kraus, Fatma Özcan, and Robert Ross. Heterogenous Active Agents. MIT-
Press, 2000.

10

