
Expressing preferences declaratively
in logic-based agent languages

Stefania Costantini
Universit̀a degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: stefcost@di.univaq.it

Pierangelo Dell’Acqua
Department of Science and

Technology - ITN
Linköping University

601 74 Norrk̈oping, Sweden
Email: pier@itn.liu.se

Arianna Tocchio
Universit̀a degli Studi di L’Aquila

Dipartimento di Informatica
Via Vetoio, Loc. Coppito,
I-67010 L’Aquila - Italy

Email: tocchio@di.univaq.it

Abstract— In this paper we present an approach to intro-
ducing preferences among actions in logic-based agent-oriented
languages. These preferences are expressed in the body of rules
(i.e., they are local to the rule where they are defined). To the
best of our knowledge, no similar approach has been proposed
before, and cannot be easily simulated by means of preferences
expressed in the head of rules, which are global. The approach
is applied to choosing which action an agent should perform in
reaction to an event, among the feasible ones.

I. I NTRODUCTION

Intelligent agents perform advanced activities such as ne-
gotiation, bargaining, etc. where they have to choose among
alternatives. The choice will be based on some kind of
preference or priorities related for instance to:

• the agent’s objectives;
• the context (cooperative vs. competitive);
• available resources;
• the strategies that the agent intends to follow.

Agents will in general include specialized modules and/or
meta-level axioms for applying priorities and preferences, like
for instance those proposed in [9] for prioritized defeasible
reasoning. However, it can be useful in logical agents to be
able to express preferences at a more basic linguistic level.
These basic preferences can then be employed in building
more advanced high-level strategies. At the language level,
preferences have already been expressed in various way in
Answer Set Programming [8] [12]. In that context, the basic
mechanism is that of computing the Answer Sets and then
chose “preferred” ones. We will shortly review below the
work of Brewka on LPODS (Logic Programs with Ordered
Disjunction) [2] and the work of Sakama and Inue on PLP
(Prioritized Logic Programming) [13]. The reader may refer
to the latter paper and to [6] for a discussion of relevant
existing approaches. Some of them are based on establish-
ing priorities/preferences among atoms (facts), and typically
introduce some form of disjunction in the head of rules. Other
approaches express instead priorities among rules.

Our proposal is aimed at allowing an agent to express pref-
erences concerning either which action they would perform in
a given situation, or, in perspective, which goal they would

pursue in a certain stage. Since actions are often performedin
reaction to events and goals are set in accordance to some
internal conclusion that has been reached, we propose to
introduce disjunction in the body of rules. If the body of a
rule contains a disjunction among two or more actions, the
preferred one will be chosen according topreference rules,
that may have a body in that (following [13]) priorities may
be conditional. If agents evolve with time and enlarge their
knowledge and experience, priorities may dynamically change
according to the agent evolution.

In agent languages that are not based on Answer Set
Programming, one cannot select the preferred model(s) by
means of a filter on possible models. Then, other techniques
are needed in order to provide a semantic account to this
proposal. Recently, an approach to declarative semantics of
logical agent-oriented languages that considers evolution of
agents has appeared in the literature [5]: changes that occur
either externally (i.e., reception of exogenous events) orin-
ternally (i.e., courses of actions undertaken based on internal
conditions) are considered as making a change in the agent
program, which is a logical theory, and in its semantics
(however defined). For such a change to be represented, it
is understood as the application of a program-transformation
function. Thus, agent evolution is seen as program evolution,
with a corresponding semantic evolution.

This semantic approach can be applied to the present setting
by adapting the proposal of thesplit programsintroduced in
[2]. A split program is a version of the given program obtained
by replacing each disjunction by one of its options. Then, at
each step we would have a set ofpossible evolutions, each
corresponding to a split program. Among them, the preferred
one (according to the present conditions) is taken, while all
the others are pruned. As mentioned before, given similar
situations in different stages of the agent life, differentoptions
can be taken, according to the present assessment of the agent
knowledge.

Though simple, this mechanism is to the best of our
knowledge new, as no similar approach has been proposed
before, and it cannot be easily simulated by existing ones.

In Section II we review some features that intelligent
logical agents should in our opinion possess, and the related
usefulness of introducing preferences. In Section III we briefly
review previous related work on preferences. In Section V
we introduce the approach, and in Section VI its semantics.
Finally, we conclude in Section VII.

II. ENHANCING CAPABILITIES OF LOGICAL AGENTS BY

INTRODUCING PREFERENCES

A great deal can be said about features that agents in general
and logical agents in particular should possess (for a review the
reader may refer for instance to [14], for a discussion to [11]).
It is widely recognized however that agents, whatever the
language and the approach on which they are based, should be
able to cope with a changing and partially known environment.
In this environment, agents should be able to interact, when
they deem it appropriate, with other agents or with the user
in order to complete their own problem solving and to help
others with their activities.

Interacting agents may act according to suitable strategies,
which include expressing preferences and establishing prior-
ities, possibly with the aid of past experiences. In our view,
complex strategies can take profit of basic linguistic constructs
reminiscent of those introduced in Answer Set Programming.

Our proposal is aimed at allowing an agent to express pref-
erences/priorities (in the following, we will often interchange
the two terms) concerning either which action they would
perform in a given situation, or also, in perspective, whichgoal
they would pursue in a certain stage. Since actions are often
performed in reaction to events and goals are set in accordance
to some internal conclusion that has been reached, we propose
to introduce disjunction in the body of rules. If the body of
a rule contains a disjunction among two or more actions, the
preferredone is chosen according topreference rules, that may
have a body. I.e., following [13], priorities may be conditional.
Also, preference rules may contain references to the agent past
experience, and then the preferred choice may change over
time. More precisely, whenever the body of a rule contains a
disjunction among two or more actions, the intended meaning
is the following:

• preference rules establish which action is preferred;
• precondition of the action state whether it can be actually

performed, i.e., if it is feasible;
• the agent should perform the best preferred feasible

action.

III. PREVIOUS RELATED WORK

The reader may refer to [6] for a discussion of many
existing approaches to preferences. The main distinction is
among those that define priorities/preferences among atoms
(facts), and typically introduce some form of disjunction in
the head of rules, and those that express instead priorities
among rules. Among the latter ones, we mention [10] that
applies preferences among rules in negotiating agents based

on argumentation, so as to tune argumentations according to
changing contexts.

The approach of [13] considersgeneral extended disjunctive
programswhere a rule has the syntax:

L1| . . . |Lk|notLk+1| . . . |notLk+h ← Body

where “|” represents disjunction andnot is negation as
failure under the Answer Set semantics. A preference, or
priority, between two ground literalse1, e2 is expressed in
the form e1 ≺ e2. An answer setS2 of a given program is
preferable onto another answer setS1 iff S2 \ S1 contains
an elemente2 whose priority is higher than some elemente1

in S1 \ S2, and the latter does not contain another element
e3 whose priority is strictly higher thate2. Then, preferred
answer sets (or p-answer sets) are a subset of the traditional
ones, that can be seen as a special case corresponding to empty
priorities.

Basic PLP is exploited in [13] so as to express priorities
not only between plain facts, but also between more general
forms of knowledge. The approach allows many forms of
commonsense reasoning to be modeled.

An interesting application is that ofpriority with precon-
ditions. For instance, borrowing the example from [13], the
situation where a person drinks tea or coffee but she prefers
coffee to tea when sleepy can be represented as follows (in a
prolog-like syntax):

tea | coffee.

tea ≺ coffee :- sleepy .

This program can be translated in a standard way in plain
PLP and, assuming thatsleepyholds, has the p-answer set
{sleepy , coffee}.

In LPODS [2], one can write expressions such asA × B

in the head of rules, where the new connective× stands for
ordered disjunction. The expression intuitively stands for: if
possibleA, but if A is impossible then (at least)B. If there
are several disjuncts, the first one represents the best preferred
option, the second one represents the second best option, etc.
The following is an example where a person who wishes to
spend the evening out and has money prefers to go to theatre,
or else (if impossible) to go to the cinema, or else (if both
previous options cannot be taken) to go to dine at a restaurant.

theatre × cinema × restaurant :-
want to go out , have money .

For selecting the preferred answer set(s) of a programP ,
one obtains the possible split programs ofP , where a split
programP ′ is obtained fromP by replacing each disjunctive
rule by one of its options. Then, the answer sets ofP are taken
to be the answer sets of the split programs. To choose preferred
ones given that there may be several disjunctions, a notion of
degree of satisfactionof disjunctive rules must be defined, that

2

induces a partial ordering on answer sets. Preferred answersets
are those that satisfy all rules ofP to the better degree.

IV. COMPARISON

To the best of our knowledge, the approach of introducing
preferences in the body of logical rules is novel, and has never
appeared in the literature. It cannot be easily simulated by
using preferences in the head: in fact, preferences expressed
in the body arelocal to the rule where they occur, while
preferences defined in the head areglobal. The application to
agents performing actions is also new. As an agent evolves in
time and its knowledge changes, preferred choices will change
as well. Then, according to the same preference structure an
agent will in general prefer differently in different stages of
its life.

V. THE APPROACH IN MORE DETAIL

We will now introduce a simple though in our opinion
effective construct that can be employed in agent-oriented
logic languages based on logic (horn-clause) programming.
Similarly to [13], we assume the following:

• preferences are expressed between two ground facts;
• preferences are expressed explicitly by means of special

rules, that may have conditions;
• preference is transitive, irreflexive and anti-symmetric.

In our approach, preferences can be defined betweenactions
that agents may perform. We make some preliminary assump-
tion about the agent languages we are considering. We do
not commit to any particular syntax, though we will propose
a sample one in order to introduce and illustrate examples.
We will discuss the semantics of the class of languages that
we consider in Section VI. By saying “an agent” we mean
a program written in the language at hand, that behaves as
an agent when it is put at work. We assume in particular the
following syntactic and operational features.

• The agent is able to perceive external events coming from
the environment where the agent is situated. In our sample
syntax an external event is an atom which is distinguished
by postfixE. E.g.,rainE indicates an external event.

• The agent is able to react to external events, i.e., the lan-
guage provides some kind of condition-action construct.
In our sample syntax ee indicate reaction by means of the
connective :> . Then, a reactive rule will be indicated
with pE :> Body meaning that whenever the external
eventpE is perceived, the agent will executeBody. There
are languages (like, e.g., the one presented in [3]) where
an agent can react to its own internal conclusions, that
are interpreted as events (thus modeling proactivity). We
assume that the syntax for reaction is the same in both
cases. However, an internally generated event is indicated
with postifix I, i.e., in the formpI.

• The agent is able to perform actions. Actions will occur
in the agent program as special atoms. In our sample
syntax we assume them to be in the formqA, i.e.,

they are distinguished by suffixA. E.g.,open umbrellaA

indicates an action. Actions may have preconditions: In
our sample syntax we assume them to be expressed by
rules. The connective:< indicates that the rule defines
the precondition of an action. I.e., a precondition rule will
be indicated asqA :< Body, meaning that the actionqA
can be performed only ifBody is true. We do not cope
here with the effective execution of actions, that is left to
the language run-time support.

In the proposed approach, a disjunction (indicated with
“ |”) of actions may occur in the body of a reactive rule.
Preferences among actions are defined inpreference rules,
that are indicated by the new connective<< . Then, a rule
pE :> q1A | q2A means that in reaction topE the agent
may perform either actionq1A or action q2A. A rule
q1A <<q2A :- Body means that actionq2A is preferred over
actionq1A provided thatBody is true. I.e., ifBody is not true
the preference is not applicable, and then any of the actions
can be indifferently executed. A set of preference rules define
in general apartial order among actions, where preferences
are transitively applied and actions that are unordered canbe
indifferently executed. In our approach preferences are applied
on feasibleactions. I.e., the partial order among actions must
be re-evaluated at each step of the agent life where a choice
is possible, according to the preconditions of the actions.The
preferred actions at each stage are those that can actually be
performed and that are selected by the preference partial order.

Example 5.1:Consider a person who receives an invitation
to go out. She would prefer accepting the invitation rather
than refusing, provided that the invitation comes from nice
people. She is able to accept if she has money and time. The
invitation is anexternal eventthat reaches the agent from her
external environment. Accepting or refusing constitutes the
reaction to the event, and both are actions. One of the actions
(namely, accepting) has preconditions. In our sample syntax,
an agent program fragment formalizing this situation may look
as follows.

invitationE :> acceptA | rejectA.

acceptA :< have money , have time.

refuseA<< acceptA :- nice people inviting .

When the external eventinvitationE is perceived by the
agent, it can react by alternatively performing one of two
actions. The actionacceptA will be performed if its precondi-
tions are verified. As preferences are among feasible actions,
acceptA is preferred provided thatnice people inviting holds.
Notice that this is not known in advance, as the agent evolves
in time: the invitation may arrive at a stage of the agent
operation when time and money are available, and then the
preferred action is chosen. If instead the invitation (or, another
future invitation) arrives when there are no resources for
accepting, the agent will refuse the invitation.

Another example will introduce further aspects.

Example 5.2:Let us now rephrase the example of the
person preferring coffee over tea if sleepy. Let us put it in

3

a proactive perspective, where the person wonders whether it
is time to take a break from working, e.g., at mid-afternoon.
If so, she will consider whether to drink tea or coffee. The
corresponding program fragment might look as follows, where
take break is an internal conclusionthat triggers a proactive
behavior: the first rule reaches the conclusion that taking a
break is in order; the second rule states what to do then, i.e.,
specifies a reaction to the internal conclusion itself (indicated
in the second rule with postfixI for “internal”). For the
mechanism to be effective,take break must be attempted from
time to time, so as to trigger the consequent behavior as soon
as it becomes true.

take break :- five oclock .

take breakI :> drink teaA | drink coffeeA.

drink coffeeA :< espresso.

drink teaA<< drink coffeeA :- sleepy .

Again, what the agent will do depends upon the present
conditions, i.e., upon whether the agent feels sleepy or not.
Moreover, in this variation the agent drinks coffee only if she
can have an espresso.

Assume now that there is also the option of drinking juice,
though the agent will only drink orange juice, and that the
agent prefers juice to tea. Then the program becomes:

take break :- five oclock .

take breakI :> drink teaA | drink coffeeA

| drink juiceA.

drink coffeeA :< espresso.

drink juiceA :< orange.

drink teaA<< drink coffeeA :- sleepy .

drink teaA<< drink juiceA.

The expected behavior is the following:

• If sleepy holds andespresso holds as well, the agent
can drink coffee (the actiondrink coffeeA is allowed)
and will not drink tea, which is less preferred. Iforange

does not hold, the agent will definitely drink coffee.
• If sleepy holds andespresso holds as well, the agent

can drink coffee (the actiondrink coffeeA is allowed)
and will not drink tea, which is less preferred. Iforange

holds, also the actiondrink juiceA is allowed, and pre-
ferred overdrink teaA. The agent can indifferently drink
either coffee or juice, as they are unrelated.

• If espresso does not hold, the agent cannot drink cof-
fee (the actiondrink coffeeA is not allowed). Then, if
orange holds then the agent will drink juice (the action
drink juiceA will be performed), otherwise it will drink
tea (as the actiondrink teaA is always allowed, not
having preconditions).

• If sleepy does not hold, there is no preference between tea
and coffee. Iforange does not hold andespresso holds,
one of the two actionsdrink teaA or drink coffeeA can
be indifferently executed. Iforange holds andespresso
holds as well,drink juiceA is preferred overdrink teaA,

but as no other priority is specified, one of the actions
drink coffeeA or drink juiceA can be indifferently exe-
cuted.

VI. D ECLARATIVE SEMANTICS OF EVOLVING AGENTS

WITH PREFERENCES

The evolutionary semantics that has been proposed in [5]
has the objective of providing a unifying framework for
various languages and semantics for reactive and proactive
logical agents.

This semantic approach is based upon declaratively mod-
eling the changes inside an agent which are determined both
by changes in the environment and by the agent’s own self-
modifications. The key idea is to understand these changes
as the result of the application of program-transformation
functions. In this view, a program-transformation function is
applied for instance upon reception of either an external oran
internal event, the latter having a possibly different meaning
in different formalisms. That is, perception of an event canbe
understood as having an effect on the program which defines
the agent: for instance, the event can be stored as a new fact
in the program. Similarly, actions which are performed can be
recorded as new facts. All the “past” events and actions will
constitute the “experience” of the agent.

Recording each event or action or any other change that
occurs inside an agent can be semantically interpreted as
transforming the agent program into a new program, that
may procedurally behave differently than before: e.g., by
possibly reacting to the event, or drawing conclusions from
past experience. Or also, the internal event correspondingto
the decision of the agent to undertake an activity triggers a
more complex program transformation, resulting in versionof
the program where the correspondingintention is somewhat
“loaded” so as to become executable.

Then, in general one will have an initial programP0 which,
according to these program-transformation steps (each one
transformingPi into Pi+1), gives rise to a Program Evo-
lution SequencePE = [P0, ..., Pn]. The program evolution
sequence will have a corresponding Semantic Evolution Se-
quenceME = [M0, ...,Mn] whereMi is the semantic account
of Pi according to the specific language and the chosen
semantics. The couple〈PE; ME〉 is called theEvolutionary
Semanticsof the agent programPAg, corresponding to the
particular sequence of changes that has happened, and to the
order in which they have been considered. The evolutionary
semantics of an agent represents the history of an agent
without introducing a concept of a “state”.

The different languages and different formalisms will influ-
ence the following key points:

1) When a transition fromPi to Pi+1 takes place, i.e.,
which are the external and/or internal factors that de-
termine a change in the agent.

2) Which kind of transformations are performed.
3) Which semantic approach is adopted, i.e., howMi is

obtained fromPi. Mi might be for instance a model,

4

or an initial algebra, or a set of Answer Sets if the
given language is based on Answer Set Programming
(that comes from the stable model semantics of [8]). In
general, given a semanticsS we will haveMi = S(Pi).

A transition fromPi to Pi+1 can reasonably take place, for
instance:

• When an event happens.
• When an action is performed.
• When a new goal is set.
• Upon reception of new knowledge from other agents.
• In consequence to the decision to accept/reject the new

knowledge.
• In consequence to the agent decision to revise its own

knowledge.

We say that at stagePi+1 of the evolution the agenthas
perceived event ev (whatever its class) meaning that the
transition fromPi to Pi+1 has taken place in consequence
of reception ofev. It is reasonable to assume that in the stage
Pi+1 the agent will cope withev, e.g., by reacting to it if it
is an external event.

Example 6.1:It is useful to discuss how the program trans-
formation step related to actions might be formalized. Intu-
itively, an action atom (like e.g.drink coffeeA in a previous
example) should become true given its preconditions, if any
(espresso in the example) whenever the action is actually
performed in some rule. For the sake of simplicity assume
that (like in the examples presented above) actions can occur
only in the body of reactive rules.

Declaratively, this means that the action occurs in the body
of an applicable reactive rule. Practically, whenever thatrule
will be processed by the interpreter because the corresponding
(external or internal) event has happened, the action will be
actually performed (by means of any kind of mechanism
that connects the agent to its environment). To account for
this behavior, in the initialization step each rule defining
preconditions for actions, say of the form

actA :<C1, . . . , Cs

is transformed into a set of rules of the form:

actA :- D1, . . . ,Dh, C1, . . . , Cs

whereD1, . . . ,Dh, h ≥ 0 are the conditions (except for other
actions) of each reactive rule whereactA occurs in the body.
The Ci’s are omitted ifactA has no preconditions.

Whenever at some stagePi of the program evolutionactA

will be attempted and feasible as its preconditions are true, we
will have actA ∈ Mi.

It can be useful in general to perform anInitialization
step, where the programPAg, written by the programmer, is
transformed into a corresponding initial programP0 by means
of some sort of knowledge compilation. This initialization
step can be understood as a rewriting of the program in
an intermediate language and/or as the loading of a “virtual
machine” that supports language features. This stage can on
one extreme do nothing, on the other extreme it can perform

complex transformations by producing “code” that implements
language features in the underlying logical formalism.P0 can
be simply a program (logical theory) or can have additional
information associated to it.

This semantic approach can be extended so as to encompass
the present proposal. As a first point, in the initializationstep
preferences must be collected and preference rules removed.
Then,P0 will not contain preference rules, but will be associ-
ated to a structurePref where preferences between couples of
(ground) actions are made explicit, by performing the transitive
closure of preference rules. The conditions of a preferencerule
(if any) are added as preconditions of the preferred action.

We adapt the idea ofsplit programfrom [2]. A split program
is a version of the given program obtained by replacing a dis-
junction by one of its options. In our case, whenever an agent
at stagePi of its evolution has perceived an (either external
or internal) event, saypE, it will react to it. However, if there
is a disjunction of actions in the body of the corresponding
reactive rule, then the agent may react in more that one way.
The different ways of reacting are represented by differentsplit
programs, each one representing an alternative. Precisely,

Definition 1: Let PAg be an agent program that has been
transformed into a programP0 by the initialization step. Let
Pi be the program obtained from the evolution ofP0 at the
i-th step, corresponding to the perception of eventpE. Let
pE :> Body be the corresponding reactive rule inPi, where a
disjunction of actions occurs inBody. A split programP ′

i is
obtained by replacing the disjunction with one of its options.

Referring to the program of Example 5.1, at the initialization
step it is transformed into:

invitationE :> acceptA | rejectA.

acceptA :< have money , have time,

nice people inviting .

where the preferencerefuseA<< acceptA is recorded in the
structurePref . Then, whenever the eventinvitationE will
be perceived will be two split programs: a first one, sayφ1,
where the body of the reactive rule contains onlyacceptA,
and a second one, sayφ2, where the body of the reactive rule
contains onlyrefuseA.

We will have a set{P 1
i , . . . , P k

i } of split programs cor-
responding to the numberk of actions occurring in the
disjunction. Assuming that events are considered one at a time
(i.e., an evolution step copes with a single event), at each stage
split programs will be relative to a single reactive rule, and will
correspond to a set{M1

i , . . . ,Mk
i } whereM

j
i is the semantics

of P
j
i . We say that wea split occursat stagePi of program

evolution whenever at that stage the incoming event is related
to a reactive rule with a disjunction of actions in its body.

The preferred split programs are those whose semantics
contain the preferred actions. Precisely:

Definition 2: Let PAg be an agent program that has been
transformed into a programP0 by the initialization step, and
let Pref be the preference structure that has been associated

5

to the program. LetPi correspond to a step of the evolution of
P0, where a split occurs. Given two split programsP r

i andP s
i

obtained fromPi by splitting a disjunctionact1A | . . . | actkA,
thenP r

i is preferred overP s
i if the following conditions hold:

• the semanticsMr
i of P r

i containsactrAi;
• actrAi is preferred overactsAi according toPref .

Notice that bothMr
i and Ms

i may not contain the corre-
sponding action (actrAi andactsAi respectively), in case its
preconditions are false. Then, a split program is preferredupon
another one if (i) its semantics entails the related action and
(ii) either the semantics of the other one does not entail the
related action, or the former action is preferred.

Then, at each step where a split occurs we have a set of
possible evolutions, each corresponding to a split program.
Among them, the preferred one (according to the present
conditions) is taken, while all the others are pruned. As
mentioned before, given similar situations at different stages of
the agent life, different options can be taken, according tothe
present assessment of the agent knowledge. In the example,φ1

will be preferred toΦ2 whenever it actually entailsacceptA.

We can have a unique best preferred split programP b
i if

Pref is a total order with respect to the actions over which
we split, or we may have more than one equally preferred split
programs. Any of them can be indifferently selected.

Definition 3: Let Pi be a stage of the program evolution
sequence, where a split occurs. We letPi+1 be any of the best
preferred split programs.

VII. C ONCLUDING REMARKS

In this paper we have presented an approach to express-
ing preferences among actions and in logical agents. The
approach builds on previous relevant work related to answer
set programming, but is rephrased for reactive and proactive
agents that evolve in time. In fact, the semantics of the
approach is given inevolutionary terms, where an agent
program is considered to be modified by events that happen
and actions that are performed, while its semantic account
evolve correspondingly.

There are others approaches in computational logic that are
related to the present one, and to which we are indebted,
namely [1] and [7], where preferences and updating pref-
erences are coped with in the context of a more general
approach to updating logic programs. We may notice that the
examples that we have presented basically refer to the syntax
and procedural semantics of the DALI language [3], [4], [14].
Actually they correspond to working DALI programs, though
the implementation is prototypical and is being experimented.

Our next research objective is to extend the possibility of
expressing preferences to all kinds of subgoals occurring in
the body of logical rules, instead of coping with actions only.

Another important objective is to extend the approach so as
to be able to express preferences among agent goals (objectives
to reach). In fact, the reasoning can be similar. Actually, setting
an objective is related to building a plan for achieving it. A

plan however can be seen as divided into:

1) a preliminary check stage, where feasibility of subse-
quent actions is checked (are the tickets available? Do I
have the money? Do my friends accept to join me? May
I rent a car?);

2) an operative stage, where actions that influence the
environment (and in general cannot be retracted, or at
least not so easily) are performed.

The first stage can be seen as a feasibility stage for setting
an objective. Then, if there is a disjunction of objectives in the
body of a rule, we mean that the agent should set the most
preferred feasible one.

REFERENCES

[1] J. J. Alferes, P. Dell’Acqua and L. M. Pereira,A compilation of updates
plus preferences. Logics in Artificial Intelligence, Proc. of the 8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002, pp. 62-74.

[2] G. Brewka, Logic programming with ordered disjunction, In Proc. of
AAAI-02, Edmonton, Canada, 2002.

[3] S. Costantini and A. Tocchio,A logic programming language for multi-
agent systems. Logics in Artificial Intelligence, Proc. of the 8th Europ.
Conf., JELIA 2002, LNAI 2424, Springer-Verlag, 2002.

[4] S. Costantini, A. Tocchio,The DALI logic programming agent-oriented
language. Logics in Artificial Intelligence, Proc. of the 9th European
Conference, Jelia 2004, Lisbon, September 2004. LNAI 3229, Springer-
Verlag, Germany, 2004.

[5] S. Costantini, A. Tocchio,About declarative semantics of logic-based
agent languages. In M. Baldoni and P. Torroni (eds.), Declarative Agent
Languages and Technologies, Post-Proc. of DALT 2005. LNAI 3229,
Springer-Verlag, Germany, 2006.

[6] J. Delgrande, T. Schaub, H. Tompits and K. Wang,A classification and
survey of preference handling approaches in nonmonotonic reasoning.
Computational Intelligence, 2004.

[7] P. Dell’Acqua and L. M. Pereira,Preferring and updating in logic-
based agents. In: Web-Knowledge Management and Decision Support.
Selected Papers from the 14th Int. Conf. on Applications of Prolog
(INAP), LNAI 2543, Springer-Verlag, Berlin, 2003, pp. 70-85.

[8] M. Gelfond and V. Lifschitz, The stable model semantics for logic
programming.Proc. of 5th ILPS conference, 1988, pp. 1070-1080.

[9] M. Gelfond and T. C. Son,Reasoning with prioritized defaults. In
Proc. of the 3rd Int. Works. on Logic Programming and Knowledge
Representation, LNAI 1471, Springer-Verlag, Berlin, 1998, pp. 164-
223.

[10] A. Kakas and P. Moraitis,Adaptive agent negotiation via argumentation.
In Proc. of the 5th International Joint Conf. on Autonomous Agents and
Multi-Agent Systems (AAMAS’06), Hakodate, Japan, 2006.

[11] R. A. Kowalski, The logical way to be artificially intelligent, Compu-
tational Logic in Multi-Agent Systems(CLIMA VI Post-Proceedings),
LNAI 3900, Springer-Verlag, Berlin, 2005, pp. 1-22.

[12] V. Lifschitz, Answer set planning.Invited talk. Proc. of ICLP ’99 Conf.,
pp. 23–37. The MIT Press, 1999.

[13] C. Sakama and K. Inoue, Prioritized logic programming and its
application to commonsense reasoning. Artif. Int. 123(1-2), Elsevier,
2000, pp. 185-222.

[14] A. Tocchio, Multi-Agent systems in computational logic, Ph.D. Thesis,
Dipartimento di Informatica, Universitá degli Studi di L’Aquila, 2005.

6

