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BLOOD FLOW THROUGH A CURVED ARTERYG. PONTRELLIIAC-CNR,Viale del Polilinio, 13700161 Roma, ItalyE-mail: g.pontrelli�ia.nr.itA. TATONEDISAT, Faolt�a di IngegneriaUniversity of L'Aquila67040 Monteluo di Roio (AQ), ItalyE-mail: tatone�ing.univaq.itBlood ow in a urved artery is desribed as the motion of a visous uid througha urved thin-walled elasti tube. Under the hypothesis of small urvature, anasymptoti analysis is arried out to solve the governing unsteady 3D equations.The model results an extension of the Womersley's theory for the straight elastitube. A numerial solution is found for the �rst order approximation and om-putational results are �nally presented, demonstrating the role of urvature in thewave propagation and in the development of a seondary ow.1. IntrodutionThe unsteady ow of a visous uid in urved onduits is relevant for severalappliations, partiularly in vasular uid dynamis. Most of the arteriesare moderately urved and blood ow through them is a�eted by entrifu-gal fores whih tend to set up seondary ows, reirulating uid vortiesand ause a non symmetri distribution of the pressure and of the wall shearstress1;2. However, little attention has been given to address the e�et ofthe urvature on all the omponents of the ow veloity and on the pres-sure �eld. Another relevant aspet of the urvature is the inuene on wallshear stresses in relation to atherosleroti diseases and the examination oftime varying ow rates3.The steady ow in a toroidal rigid tube has been the objet of a thoroughinvestigation by Dean4. Most of the literature on ows in urved tubes referto suh a basi work and onern various extensions to the unsteady ase,1
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2but all are on�ned to rigid wall onduits5;6;7. On the other hand, whenonsidering physiologial appliations, wall ompliane and its interationwith the uid onstitute essential aspets that annot be disregarded. Thelassial works of Womersley8 shed light on the ow through an elastistraight tube and opened a series of following studies on the harateris-tis of the wave propagation in arteries9;10;11;12;13;14. The present workextends the theory of Womersley, reasting the ow in a urved tube as asmall orretion of that in a straight one. The formulation is based on thepriniples of uid and solid mehanis and, under general and realisti as-sumptions, a formal omplete proedure is desribed to get the �nal form ofthe uid-wall interation model equations. In a wave propagation ontext,the dependene of the model on four independent parameters is outlined:the pressure amplitude, the pulse frequeny, the elastiity modulus and theurvature ratio. In partiular, through a number of numerial experiments,the role of the latter is highlighted, and the harater of the seondary owaddressed15.2. Fluid-struture interationThe motion of blood in a bended vessel is modelled by the ow of a vis-ous uid in a urved elasti tube, with the geometry of a torus. This isassumed to have a planar axis, a irular ross setion of radius a and aonstant radius of urvature R. An inompressible newtonian uid of vis-osity � and density � is owing within. The dynamis indued by the walldeformability modi�es the uid domain and its boundary onditions, andonversely, the ow �eld, through the stress exerted on the wall, induesthe wall deformation (uid-struture interation). Let us �rst model boththe uid and the solid ontinuum systems with the mehanial onservationlaws.The uid motion is given by the Navier-Stokes equation:���v�t + v � rv� = �rp+ ��v (1)with v the veloity and p the transmural pressure. The uid inompressi-bility reads as: div v = 0 (2)To model the vessel wall motion, we shall assume this is made of a thinshell of a small thikness h � a and the theory of membranes is used to
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Figure 1. Cross setion of the tube (inner wall at the left, outer wall at the right) andtoroidal oordinates (r;  ; �).approximate it. For an elasti solid subjet to external fores, the balaneequation is16: divS = p � n� 2�D � n� �t�u (3)where S is the membrane stress tensor, D is the deformation gradient,u the wall displaement and �t the wall density. Owing to the small walldeformations, the membrane stress tensor S is expressed as a linear funtionof the strain tensor E:S = 0�hB(��� + ��  ) 2hG �� 2hG �� hB(�  + ����)1A (4)where E is the modulus of elastiity, � is Poisson's ratio, B = E1� �2 andG = E2(1 + �) the shear modulus16.Mathing between uid and wall veloities is imposed as interfae uid-wall ondition: v = _u (5)Beause of the geometry of the problem, it is onvenient to express theuid and wall equation in a toroidal oordinate system (r; �;  ) (see �g. 1).
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4We denote by v = (u; v; w) the radial (r), the tangential ( ) and the axial(�) omponents of the uid veloity, and by u = (�; �; �) the orrespondentomponents of the wall displaement.3. Wave solutionThe steady ow in a urved rigid tube has been analyzed by Dean whofound an analytial solution4. He used a perturbation approah based onthe urvature parameter " = aR , whih is supposed to be small, suh thatthe solution up to the �rst order is �� = ��0 + "��1 , being ��0 the steadystate solution in a straight rigid tube (Hagen-Poiseuille ow), and ��1 isthe orretion due to the urvaturea. It is well known that the vasularow an be deomposed in a steady dominant part and, due to the wallompliane, in a small osillatory omponent over it3. As a onsequene, itis reasonable to look for a solution made up of a wave (unsteady omponent)superimposed on the previous steady solution, namely:� = ��(r;  ) + ~�(r;  )ei(!t�kz) (6)where ! is the irular frequeny, k the wave number (onsequently  =!Re(k) is the wave speed) and z = R� a urvilinear axial oordinate.To simplify the mathematial problem, let us assume the unsteady so-lution is small enough suh that the the response of the system an belinearized, with respet to the wave amplitudes, over the steady state solu-tion. By means of some additional hypothesis on the wave harateristis, afurther simpli�ation onerning the relative magnitudes of some di�usiveterms is made13. The �nal equations are:Continuity equation:�u�r + ur + 1r �v� + u sin R+ r sin + v os R + r sin + RR + r sin �w�z = 0 (7)Flow equations:���u�t � 2 �ww sin R+ r sin � = ��p�r + ���2u�r2 + 1r �u�r + 1r2 �2u� 2 + sin R+ r sin �u�r+os r (R+ r sin ) �u� � ur2 � 2r2 �v� � vR os r (R+ r sin )2 � 2R sin (R+ r sin )2 �w�z �u sin2  (R+ r sin )2 � 2v sin os (R+ r sin )2� (8)a� denotes the global solution of the uid-struture interation problem.
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5���v�t � 2 �ww os R+ r sin � = �1r �p� + ���2v�r2 + 1r �v�r + 1r2 �2v� 2 + 2r2 �u� +uR os r (R+ r sin )2 + sin R+ r sin �v�r + os r (R+ r sin ) �v� � vr2 � 2R os (R+ r sin )2 �w�z �v os2  (R+ r sin )2� (9)��w�t = � RR+ r sin �p�z + ���2w�r2 + 1r �w�r + 1r2 �2w� 2 + sin R+ r sin �w�r +os r (R+ r sin ) �w� � w(R+ r sin )2� (10)Wall equations:�th�2��t2 = �p� 2��u�r �r=a � hB 2664� + ��� a2 + sin �� sin + � os +R���z�(R+ a sin )2 3775��hB 2664 sin �2� + ��� �+ � os +R���za(R+ a sin ) 3775 (11)

�th�2��t2 = �� �1r �u� � vr + �v�r �r=a + hB 2664 ��� + �2�� 2a2 + os 0BB� � + ��� a(R+ a sin )�� sin + � os +R���z(R+ a sin )2 1CA375+ �hB 2664�� sin + sin ��� +R �2�� �za(R+ a sin ) 3775+hG2664 R �2��z� a(R+ a sin ) + R2 �2��z2 �R os ���z(R+ a sin )2 3775 (12)
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6 �th�2��t2 = �� � RR+ a sin �u�z � w sin R+ a sin + �w�r �r=a+hB 2664R sin ���z +R os ���z +R2 �2��z2(R+ a sin )2 3775+ �hB 2664R���z +R �2�� �za(R+ a sin ) 3775+hG2664 1a2 �2�� 2 + R �2�� �z + � sin + os ��� a(R+ a sin ) + R os ���z � � os2  (R+ a sin )2 3775 (13)Interfae onditions:���t = u����r=a ���t = v����r=a ���t = w����r=a (14)4. Asymptoti analysisA perturbation method is used to study the inuene of a moderate urva-ture with respet to the straight ase. First of all, the governing equationsare written in terms of a normalized radial variable y = ra (0 � y � 1). Asthe urvature parameter " = aR is assumed to be small (� 1), the tildedquantities ~� (amplitudes) in Eqs. (6) are expanded as a power series of "over an axisymmetri solution �0(y). By omitting the ~ sign at the righthand side, we have:~�(y;  ) = �0(y) + "�1(y;  ) + "2�2(y;  ) + ::: (15)The series Eq. (15) is substituted in the uid and wall governing equations,and terms of the same power of ", up to the �rst order, are equated.In the asymptoti expansion Eq. (15), �0 orresponds to the axisymme-tri solution in a straight elasti tube (Womersley solution)8. By equatingthe 1st order terms in the governing Eqs. and separating the variables asfollows: u1 = û1(y) sin v1 = v̂1(y) os w1 = ŵ1(y) sin p1 = p̂1(y) sin �1 = �̂1 sin �1 = �̂1 os �1 = �̂1 sin (16)
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7the problem redues to a system of linear ordinary di�erential equations(by omitting the ^ sign):du1dy + u1y � v1y � ikaw1 = �(ikayw0 + u0) (17)d2u1dy2 + 1y du1dy �� 2y2 + i�2�u1 + 2v1y2 � a� dp1dy = ��du0dy + 2ikaw0 + 2a �w0� w0�(18)d2v1dy2 + 1y dv1dy �� 2y2 + i�2� v1 + 2u1y2 � ap1�y = ��u0y + 2ikaw0 + 2a �w0� w0�(19)d2w1dy2 + 1y dw1dy �� 1y2 + i�2�w1 + ika2� p1 = ��dw0dy � ika2y� p0� (20)�1� �ta2!2B � �1 � �1 � ika��1 = aBh �ap1 � 2�du1dy �y=1 � 2��0 + ika(1� �)�0(21)��1 + k2a2GB � �ta2!2B � �1 + �1 � ika�GB + �� �1 = a�Bh �u1 + dv1dy � v1�y=1��0 � ika�1 + GB� �0 (22)��GB + k2a2 � �ta2!2B � �1 � ika��1 + ika�GB + �� �1 = a�Bh �dw1dy � w0�y=1�ika(� � 1)�0 ��GB + 2k2a2� �0 (23)Beause of the ontinuity of the physial variables in y = 0, the followingboundary onditions are imposed in the origin:u1(0) = v1(0) u01(0) = v01(0) = 0 p1(0) = w1(0) = 0 (24)and the uid-wall mathing veloity onditions are set at the wall (fr. Eq.(14)): i!�1 = u1(1) i!�1 = v1(1) i!�1 = w1(1) (25)The uid-struture interation �rst order problem is similar to the zero-th order problem, but lak of geometrial symmetry makes the searh ofanalytial solutions hard. Therefore the non homogeneous system is solved
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8numerially. The ow Eqs. (17){(20) are disretized in [0; 1℄ by upwind�nite di�erenes17. Coupled with the ow equations, the wall motion Eqs.(21){(23) are solved together with the boundary onditions (24) in y = 0and with the interfae onditions (25) in y = 1. A numerial strategy isdevised to stabilize the ill-onditioned algebrai problem.5. Numerial results and disussionOne the 0th order solution is obtained analytially and 1st order solutionis omputed, the full solution is then reassembled as:� = ��+ ~�ei(!t�kz) = ��+ j~�j os �!t� Re(k) z + ��exp(Im(k) z) (26)with � = arg(~�) (see Eq. (6)). It follows that all the variables have anosillatory evolution in time, superimposed over the steady state solution,with amplitude j~�j and a phase lead or a phase lag �. Both amplitude andphase are independent of time, while the amplitude has a damping fatorgiven by exp(Im(k)z).The physial problem depends on a large number of parameters, eah ofthem may vary in a quite wide range, and there is an enormous variety ofdi�erent limiting ases. In the present work we will fous the attention onthe inuene of urvature { parametrized by " { and letting all the others�xed.In the simulations, we take the following numerial parameters, referredto the vasular ow in a medium sized arterial segment:! = 2� s�1 a = 0:5 m h = 0:05 m E = 107 dyne=m2� = 0:04g m�1 s�1 � = �t = 1 g=m3 � = 0:5A = 26000 dyne=m2 d�p0dz = 7 dyne=m3The mesh size has been taken as �y = 0:02 m.A ross setion of a urved tube with the inner wall at the left side isonsidered (Fig. 1). Eq. (26) is used to plot the ow pattern, the pressuredistribution and wall deformations for a given time (t = 0) and a �xed axialoordinate (z = 0).The e�et of the urvature is examined by letting " vary as " =0; 0:05; 0:1, and the orrespondent amplitudes of the unsteady solution�0 + "�̂1 are depited in Fig. 2. Note that in a urved tube the solu-tion beomes asymmetri and the degree of skewness inreases with ". Thestruture and the evolution of the seondary ow is shown in Fig. 3. For
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Figure 2. Amplitude of the unsteady solution �0 + "�̂1 for " = 0 (ontinuous line)," = 0:05 (dashed line) and " = 0:1 (dotted line) along [�1; 1℄.the values of the parameters onsidered, a single vortex appears at mosttimes, but a seond vortex detahes from the wall and develops at the endof eah half-yle in the opposite diretion. The strength of the seondarymotion is measured through the index � = maxr; p(Re~u)2 + (Re~v)2 (maxi-mum modulus of the ross setion veloity). Axial veloity peak is shiftedalternately inwardly and outwardly, and a reversal ow takes plae at someinstants.The amplitudes of the two omponents of the wall shear stress are ob-tained from the ow �eld as:~� = ~�0 + "~�1 = "~�1 = �"a �û1 + dv̂1dy � v̂1�y=1 os (27)~�z = ~�0z + "~�1z = �a �d ~w0dy + "�dŵ1dy � ŵ0� sin �y=1 (28)From Eq. (27) it follows that the irumferential stress ~� is present onlyin a urved tube and varies over a zero mean. On the other hand, the axial
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Figure 3. Streamlines and seondary ow (above) and ontour equispaed lines for axialveloity (below - ontinuous lines indiate positive levels, dashed lines negative levels,bold line zero levels) at eight times in a period at z = 0. The plot refers to the steadystate solution summed up to unsteady solution ��+ ~�ei(!t�kz), with " = 0:1. A doublevortex develops at the end of eah half-yle in orrespondene of a small �.
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Figure 4. Amplitude at t = 0; z = 0 of the axial (~�z) and hoop (~� ) wall shear stressesas funtions of ". The plots refer to the maximum values with respet to  .wall shear stress ~�z varies over the orrespondent value for the straight tube~�0z and its extrema are attained at  = ��2 (Eq. (28)). Both of them varylinearly with ", are opposite in sign, and the magnitude of the ~� is smallerthan ~�z (Fig. 4).Similarly to all the ow variables, the wall displaements are trigono-metri funtions of  (see Eq.(16)): as onsequene j~�j and j~� j are maximumat  = ��2 , while j~�j reahes its peaks at  = 0 and  = �), varying overtheir 0-th order mean. For a E . 106, the axial displaement amplitudebeomes exessively large and this model is not onsistent with the theoryof linear elastiity and hene no longer representative.For additional results and a more extensive disussion, see Ref. 15.AknowledgmentsThis work has been partially supported by the italian GNFM.
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