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@ Growth driven by mean hoop stress value
@ a single case
o different cases compared

© Growth driven by local hoop stress value
@ a first case
@ high hoop resistance
@ higher hoop gain
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survey in Japan
A possible natural history for saccular aneurysms
Remarks

A possible natural history for saccular aneurysms

Intracranial saccular aneurysms are dilatations of the arterial wall.

i
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[J.D.Humphrey, Cardiovascular Solid Mechanics, 2001]
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A possible natural history for saccular aneurysms g
Remarks

A possible natural history for saccular aneurysms

@ An initial insult may cause a local
weakening of the wall and thus a
mild dilatation.

@ This raises the local stress field
above normal values, thus setting

A— into motion a growth and

Pathogenesis Gre H
g N?mhfal"ung remodeling process that attempts
—

= to reduce the stress toward values

. Rumu,e/ that are homeostatic for the parent
& (= P

Complications

RS
o Q/—\&{ @ If degradation and deposition of

collagen are well balanced, this
Q/sm"ze? could produce a larger, but stable

lesion.

vessel.

@ If degradation exceedes deposition
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A recent survey in Japan
A possible natural history for saccular aneurysms Histology
Remark

recent survey in Japan

EBM of Neurosurgical Disease in Japan

Table 2 Summary of patients with ruptured aneurysms

Size of aneurysm (mm)

Case Location of Motive for .
Noe sex Age anourysm e Past history o At Treatment
months months months rupture
1 F 53 single rt ICA ex. for intracranial hypertension 2.9 2.9 2.9 57  embolization
disease (27 months)
2 F 71 multiple AcomA ex.for intracranial hypertension, 4.9 4.9 4.9 5.9  clipping
disease pituitary adenoma (7 months)
3 F 77 multiple 1tMCA ex. for anxiety hypertension, 4.5 4.5 45  dead
heart disease (7 months)
4 F 42 multiple It MCA ex. for anxiety hypertension 4 4 7.0 clipping
(18 months)

AcomA: anterior communicating artery, ex.: examination, ICA: internal carotid artery, MCA: middle cerebral artery.

Clinical presentation

Multiple Single With SAH Total
Tim of development (148 aneurysms) (232 aneurysms) (30 aneurysms) (380 ancurysms)
Mean follow up (months)
Days-Months Years Decades 13.3 118 142 138

Ale
Type | g
T2
Twel g MR _._ i 3(2.0%) 1(0.4%) 4(1.0%)
el g R ... .._ .. 9(6.1%) 9(3.9%) 4033%)  1847%)

el @ B B B B 136 (91.9%)

(95.7%) 26(86.7%) 358 (94.2%)

Fig. 1 Process of growth and rupture of aneurysms. Type 1: aneurysm ruptures within a time span as short as several days to several
months after formation, Type 2: aneurysm builds up slowly for a few years after formation and ruptures in this process, Type 3:
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A recent survey in Japan
A possible natural history for saccular aneurysms Histology
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A recent survey in Japan

Multiple Single With SAH Total
Time scale of development (148 aneurysms) (232 aneurysms) {30 aneurysms) (380 ancurysms)
Mean follow up (months)
Days-Maonths Years Decades 13.3 11.8 14.2 13.8
Aia
Ay

2 8 i 3(2.0%) 1(0.4%) 4(1.0%)
2 8 ... ! 9 (6.1%) 9(3.9%) 4(330%)  18(47%)
A 2 .8 .8 136 (91.9%) 222 (95.7%) 26(86.7%) 358 (94.2%)

PP PP

~th and rupture of aneurysms. Type 1: aneurysm ruptures within a time span as short as several d:
yrmation, Type 2: aneurysm builds up slowly for a few years after formation and ruptures in this pro
s growing slowly for many years without rupturing, Type 4: aneurysm grows up to a certain size, prol
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A recent su in Japan
A possible natural history for saccular aneurysms Histology

Remarks

Amerti Strok
Stroke erican Stroke.

) (2
A Division of American
JOURNAL OF THE AMERICAN HEART ASSOCIATION Heart Association

Remodeling of Saccular Cerebral Artery Aneurysm Wall Is Associated With
Rupture: Histological Analysisof 24 Unruptured and 42 Ruptured Cases
Juhana Frosen, Anna Piippo, Anders Paetau, Marko Kangasniemi, Mika Niemela,
Juha Hernesniemi and Juha Jaaskelainen
Sroke 2004;35;2287-2293; originally published online Aug 19, 2004;
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A possible natural history for saccular aneurysms Histology
Remarks
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survey in Japan

A possible natural history for saccular aneurysms

Remarks

Before rupture, the wall of saccular cerebral artery
aneurysms undergoes morphological changes associated
with remodeling of the aneurysm wall. Some of these
changes, like SMC [smooth muscle cell | proliferation and
macrophage infiltration, likely reflect ongoing repair
attempts that could be enhanced with pharmacological
therapy.
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survey in Japan

A possible natural history for saccular aneurysms

Remarks

The morphological changes that result from the MH

[ myointimal hyperplasia] and matrix destruction are
collectively referred to as remodeling of the vascular wall.
Although MH is an adaptation mechanism of arteries to
hemodynamic stress, in SAH [subarachnoid hemorrhage |
patients, for undefined reasons, vascular wall remodeling
[is] insufficient to prevent SCAA [saccular cerebral artery
aneurysm | rupture.
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Part Il

Mechanical Model
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General framework

& constitutive issues

Kinematics: gross and refined motions

gross placement
p:B—E&

body gradient
Vp‘b . Tbgg — V&

element-wise configuration (prototype)

]P)|b : Te%’b — V@@,
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Kinematics

General framework

refined motion
(p(7),P(7)) : B — EX(VERVE)
realized velocity
(p(T),P(T)P(1) 1) : Z — VEX (VERVE).
test velocities
(v,V): B — VEX(VERVE)

(gross velocity, growth velocity)
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General framework Kineeits
Working & balance
Energetics & constitutive issues

Working

total working

/ (Ai.V—s-Dv) +/ (b-v+A°V) +/ t,p V
B B 0B

(integrals taken with respect to prototypal volume and prototypal
area)

prototypal gradient
Dv:=(Vv)P!
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General framework Kineeits
Working & balance
Energetics & constitutive issues

Balance principle

/(Ai-V—S-DV> —I—/ (b-v+A°V) +/ tyy V=0
B B 0A

balance of brute forces

DivS+b=0 on #
Sn,,=t,, on 0%

balance of accretive couples

A+ A°=0 on &
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General framework
balance

Energetics & constitutive issues

Energetics

free energy
W)= v
&

(¢ free energy per unit prototypal volume)
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Kinemati
Working &
Energetics & constitutive issues

General framework

Constitutive issues: theory and recipes

The constitutive theory of inner forces rests on two main pillars,
altogether independent of balance:

@ the principle of material indifference to change in observer

@ the dissipation principle

Both of them deliver strict selection rules on admissible constitutive
recipes for the inner force. None of them applies to the outer force,
which has to be regarded as an adjustable control on the motion.
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Kinemati
Work &
Energetics & constitutive issues

General framework

Constitutive issues: theory and recipes

/(Ai'V—S-DV> —I—/ (b-v+A"V) +/ tyy V=0
B B oA

In our theory of the biomechanics of growth, the outer accretive
couple A° plays a primary role, representing the mechanical effects
of the biochemical control system, smartly distributed within the
body itself: ignoring the chemical degrees of freedom does not
make negligible their feedback on mechanics.
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Kinematics
Working & balance
Energetics & constitutive issues

General framework

Material indifference to change in observer

Change in observer

(b, T) = %(7) + Q(7) (P (b, 7) — %o(T))
P(b,7) = P(b, )

¥(b) = Q(7) v(b) +W(r) + W(r) (B (b,7) — %(T))
V(b) = V(b)
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Kinemati
Work &
Energetics & constitutive issues

General framework

Material indifference to change in observer

The working expended over each body-part on each test velocity
(v, V) by the inner force constitutively related to each refined
motion (p,P) should be invariant under all change in observer.

The free energy W should be constitutively prescribed in such a
way as to be invariant under all change in observer.
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General framework
alance

& constitutive issues

Material indifference to change in observer

brute Cauchy stress
T:=(detF)"1SF'
TN =T

warp
F:=Dp=(Vp)P!

(measures how the body gradient of the gross placement differs
from the prototypal stance)
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General framework
alance

& constitutive issues

Material indifference to change in observer

If we further assume that the response of the body element at b
filters off from (p,P) all information other than

Plo, Vb, Plo
we obtain the following reduction theorem: there are constitutive
mappings Sp, A} and v, such that

~

S(b,7) = R(b, T)Sp
Al(b,7) = AL (0y,7)
W(b,7) = (Lo, T)

lp:=(Ulp,Plp)
F=RU

(gbv 7_)
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Kinemati
Working & balance
Energetics & constitutive issues

General framework

Dissipation principle

(S-(Dp) — A (PPTH)) — (¢ + 91 (PP1)) >0

power expended : —{working expended by the inner force
constitutively related to the motion on the velocity realized along
the motion}

power dissipated : {power expended along a refined motion}
—{time derivative of the free energy along that motion}

Dissipation principle : the power dissipated should be
non-negative, for all body-parts, at all times
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General framework

Time derivative of the free energy

2)=([ ve)=[ @)

/y(w T po)

- /@(lﬂm (PPY)) w.

(the prototypal-volume form w evolves in time with PP~1)
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Kine
Wor E
Energetics & constitutive issues

General framework

Constitutive assumptions: free energy and inner force

(b, 7)=Pp(Ulp, Plp, 7) = ¢ (F(b, 7))
The dissipation principle is fulfilled if and only if for each b the
mappings S and A satisfy

o~ + o~ +

S=0¢+8S, A'=E+A

together with the reduced dissipation inequality
A(t7) - (B(r)P(r) 1) = S(6,7) - F(7) < 0

Eshelby couple R
=F'S— ¢l
extra-energetic responses

S, A
A. Tatone Stress-driven growth laws as a control design problem



kinematics
balance

Saccular aneurysms 3 S
Y & constituti

Saccular aneurysms
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Geometry & kinematics
Working & balance

Saccular aneurysms 5 I
Y Energetics & constitutive issues

Geometry & kinematics

paragon shape D of % centered at
Xo €8

spherical coordinates

(6().0(x). 8(x))
radius of x R

§(x) =[x = ol
gross placement

p:D — &
x = %o+ p (€(x)) er(D(x), B(x))

actual radius
p - [§—7§+] —-R
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kinematics
ance

Saccular aneurysms S
Y & constitutive issues

Geometry & kinematics

spherically symmetric vector fields
v:D — V&
radial component of v
vi[—.&4] =R

v(x) = v(§) e, ).
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Saccular aneurysms

Geometry & kinematics

spherically symmetric tensor fields
Z.: D - VERVE
Z(x) = Le(§) P (0, ) + Ln(&) Pr(?, )
orthogonal projectors

P.(x) = (9, @) @ e, @)
Ph(x)=1-PR(x)
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Saccular aneurysms

Refined motion

gradient of the gross placement

Vol = 0/(6) P(9.9) + ’Jf) Pu(0. ),

prototype
]P)(X7 T) - Oér(f, T) Pr(ﬁa SO) + ah(§7 T) Ph(197 80) :
warp (Kréner-Lee decomposition)

F:= (Vp)P 1= AP + APy

M(ET) = (€, 7) = ggfig)) ,
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Saccular aneurysms

Refined motion

gross velocity and growth velocity
PO, 1) = p(&,7)er(V, )

b p- _ (&) (€ 7)
PP T) = S R0 9 + e
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Geometry & kinematics
Working & balance

Saccular aneurysms 2 = P
Y getics & constitutive issues

Dynamics: brute and accretive forces; balance principle

working

/ (Ai.V—S-vv) +/A°-V+/ f0 V)
D D oD

(integrals taken with respect to the paragon volume and paragon
area)

/5+ (ArVr+2Ath—Sr V=28, v/g) 47 €2de + (47rg2 tv)

&r

A=A+ A=A P +A,P,.
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Geo ry & ki
Working & balance

Saccular aneurysms 2 = P
Y Energetics & constitutive issues

Balance laws

2(Se(€) — Sh(€)) +¢81(8) =
A =An(§) =

FS5(&5) = tx
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\‘“\/Vo rkin

Saccular aneurysms ance
Y Energetics & constitutive issues

Energetics

W(P)= / T
K
(¢ free energy per unit prototypal volume)
J:=det(P) = a,a? >0

(J 4 free energy per unit paragon volume)
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lance

d (5]
Saccular aneurysms T
Y Energetics & constitutive issues

Dissipation principle

S-(Vp)— A (PP 1) — (Jy) >0
¢(X77—) = ¢()‘r(£a7)a>‘h(€v7—);§)

+ +

Sr :J(bﬁ/ar +Sr Sh :J(b,h/ah +Sh
A= J[Sran A /T — &] +A, Al = J[Shan /T — 6] +A,
reduced dissipation inequality

+ . + . + +
Srar)\r+28hah /\h —Ardr/ar—ZAhdh/ah Z 0

A. Tatone Stress-driven growth laws as a control design problem



nematics
ance

Saccular aneurysms ; ST
Y Energetics & constitutive issues

Constitutive prescriptions

+ . + . + +
Sray Ar + 2SH ap An —Ardr/a,—2Ahdh/ah >0

+ +
Sr:Sh:O
+ +
Ar:—JDrdr/ar, Ah:—Jthh/ah
D >0, D, >0
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nematics
ance

Saccular aneurysms ; ST
Y Energetics & constitutive issues

Incompressible elasticity

incompressibility
detF =M\ M=1 < \=1/)\2.

reactive inner force

> w1 1 I >
—J P, Py ), A=J7
S i (ar)\r i Qh Ap h) i

free-energy restriction

G A d(1/02N)
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& kinematics
lance

Saccular aneurysms T
Y constitutive issues

Incompressible elasticity

active and reactive components

Sr = a,J)\r <? - ()\h/3)$/) Sh = ahJ)\h (?Jr (>\h/6)<l~5')
Ai:J(Tr—qZ—Drar/ar> ;:J(Th—qi—Dhah/ah)

Cauchy stress
T = (J det(F))"!SPTFT

radial and hoop components

T, =J 'S ar A
Th :J_ISh Qh )\h
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Saccular aneurysms

Fung strain energy

o(\) = (c/8) exp((T/2) (N — 1)?),

c:=0.88N/m
§:=278x10°m
M:=12.99
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lance

Saccular aneurysms ST
Y s & constitutive issues

Evolution laws

Dréwfow = (Tr — @) + A}/J
thh/ah = (Th —(Z) —l—Aﬁ/J

2(S, —Sh) +£S,=0
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Part I11

Control laws and numerical simulations

A. Tatone Stress-driven growth laws as a control design problem



Growth driven by mean hoop stress value a single case
different cases compared

Growth driven by mean hoop stress value

Outer accretive couple

AU

(G (g =T =T, +5)
AP :J(Gh(TG—T,T)—Th+$)
Evolution laws
dr/ar = (G/Dr) (TN — T®)
an/an = (Gn/Dn) (T® —TY")

(T mean hoop stress, T® target hoop stress)
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Growth driven by mean hoop stress value a single case

different cases compared

2 radius
18 thickness
1.6

G /D, 2000
Gh/Dh 5000
D,/ D, 1
Dy 0.01
Dy, 0.01
[case-15-k]

Tatone Stress-driven growth laws as a control design problem



Growth driven by mean hoop stress value a single case

different cases compared

— mean hoop stress

0.4
02
% 02 04 06 08 1 12 14 16
><104

G./D; 2000

Gh/Dh 5000

D./Dt 1

D, 0.01

Dy 0.01

[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

hoop accr.

radial accr.

0.6 0.8 1 1.2 1.4 1.6
x10%
G /D, 2000
Gh/Dh 5000
D./Dy 1
Dy 0.01
Dy, 0.01
[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

hoop accr. vel.

- -radial accr. vel.

-1
-2
) 02 0.4 0.6 038 1 12 14 16
xlO4
G./D; 2000
Gh/Dn 5000
Dy/D 1
D, 0.01
D, 0.01
[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

Hoop accretion

1.09 —0
—2000
1.08 4000
6000
1.07 —8000
10000
— 12000
1.06 — 14000
1.05
1.04
1.03
1.02
1.01
1
=15 -10 -5 0 5 10 15
G, /Dy 2000
G/ Dy, 5000
D, /Dy, 1
D, 0.01
Dy, 0.01
[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

Radial accretion

1.55 —0
—2000
1.5 4000
145 6000
—8000
1.4 10000
— 12000
1.35 — 14000
1.3
1.25
1.2
1.15
1.1
1.05
1
=15 -10 -5 0 5 10 15
G /D, 2000
Gh/Dh 5000
Dr /Dy 1
Dy 0.01
Dy, 0.01
[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

Hoop stress

l J—
— 2000
0.9 4000
6000
08 —8000
10000
0.7 — 12000
— 14000
0.6
05
0.4
0.3
0.2
0.1
0
~15 -10 -5 0 5 10 15
G /D, 2000
G/ Dh 5000
Dy /Dy 1
Dy 0.01
Dy, 0.01
[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

Hoop stress

0.615 —
— last
0.61
0.605
0.6
0.595
0.59
0'58515 -10 -5 0 5 10 15
G, /Dy 2000
G /D 5000
D./Dy 1
Dr 0.01
Dy, 0.01
[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

— mean hoop stress
1.2
1
0.8
0.6
0.4
0.2
% 02 04 06 08 1 12 14 16
x10%

G /D, 100

G/ Dh 1000

D, /Dy 10

Dr 0.1

Dy 0.01

[case-19-k]
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Growth driven by mean hoop stress value a single case

different cases compared

— mean hoop stress

0.4
02
% 02 04 06 08 1 12 14 16
><104

G./D; 1000

Gh/Dh 2500

D./Dt 1

D, 0.01

Dy 0.01

[case-20-k]
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Growth driven by mean hoop stress value a single case

different cases compared

— mean hoop stress

0.4
02
% 02 04 06 08 1 12 14 16
><104

G./D; 2000

Gh/Dh 5000

D./Dt 1

D, 0.01

Dy 0.01

[case-15-k]
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Growth driven by mean hoop stress value a single case

different cases compared

— mean hoop stress
1.2
1
0.8
0.6
0.4
0.2
% 02 04 06 08 1 12 14 16
x10%

G /D, 100

G/ Dh 1000

D, /Dy 10

Dr 0.1

Dy 0.01

[case-19-k]
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Growth driven by mean hoop stress value a single case

different cases compared

— mean hoop stress
1.2

0.4
02
% 02 04 06 08 1 12 14 16
><104

G./D; 100

Gh/Dh 100

D./Dt 0.1

D, 0.01

Dy 0.1

[case-17-k]
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Growth driven by mean hoop stress value

a single case
different cases compared

— mean hoop stress

1.2
1
0.8
0.6
0.4
0.2
0
0.2 0.4 0.6 0.8 1.2 14 1.6
x10%

G./Dr 1000

Gh /Dy 100

D, /Dy, 0.1

D, 0.01

Dy 0.1

[case-18-k]
Tatone Stress-driven growth laws as a control design problem




Growth driven by mean hoop stress value

a single case
different cases compared

— mean hoop stress

1.2
1
0.8
0.6
0.4
0.2
0
0.2 0.4 0.6 0.8 1.2 14 1.6
x10%

G./Dr 10000

Gh /Dy 100

D, /Dy, 0.1

D, 0.01

Dy 0.1

[case-16-k]
Tatone Stress-driven growth laws as a control design problem




op resistance

Growth driven by local hoop stress value e
- noop gain

Growth driven by local hoop stress value

Outer accretive couple

A =1 (G(Ty ~T%) ~ T, + )
A5 =3 (Gh(T9 = Ty) = Ty +6)
Evolution laws
ér/or = (Gi/Dy) (Th —T?)
an/an = (Gn/Dn) (T® — Th)

(T}, hoop stress, T® target hoop stress)
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a first case
high hoop resistance

Growth driven by local hoop stress value : ! e
gher hoop gain

radius

12 - -thickness

0'60 0.2 0.4 0.6 0.8 1 1.2
x10*
G, /D, 2000
Gh /Dy 80
D, /Dy 0.001
D, 0.01
D, 10

[case-15e-kp]
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a first case
high hoop resistance

Growth driven by local hoop stress value e
hoop gain

—mean hoop stress

12

1 12
x10%
G, /Dy 2000
Gh /Dy 80
D, /Dy 0.001
Dy 0.01
D, 10

[case-15e-kp]
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a first case
high hoop resista

hoop gain

Growth driven by local hoop stress value

nce

hoop accr.

- -radial accr.

80
70
60
1
1
1
50 ]
1
1
40 !
1
1
!
30 i
]
1
20 ’
[
!
/
10 ¢
) P
0 0.2 0.4 0.6 0.8 1.2
x10%
G, /Dy 2000
Gy /Dy 80
0.001
0.01

Dr/Dh
Dy
Dy 10
[case-15e-kp]
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a first case
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a first case
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a first case
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a first case
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