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Saccular aneurysms

1 Histology and pathology
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Histology and pathology

Aneurysms

Intracranial saccular aneurysms are pouches of the arterial wall.
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Histology and pathology

Aneurysms

[J.D. Humphrey, Cardiovascular Solid Mechanics, 2001]
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Histology and pathology

Aneurysms

[M. Yonekura, Neurologia medico-chirurgica, 2004]
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Growth mechanics

Growth as change in the zero-stress state.

ex vivo zero-load zero-stress (?)
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Growth mechanics

Growth as change in the zero-stress state.

p : gross placement

∇p : gradient of the gross placement

G : growth

A : warp (purely elastic)

(p,G) : refined motion
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Mechanical model

Geometry & kinematics
Working & balance
Constitutive issues
Discussion

Saccular aneurysms

paragon shape D of the vessel

B(xo, ξ+)− B̄(xo, ξ−)

spherical coordinates

ξ̂(x), ϑ̂(x), ϕ̂(x)

spherically symmetric vector fields

v(x) = v(ξ) er(ϑ, ϕ)

spherically symmetric tensor fields

L(x) = Lr(ξ) Pr(ϑ, ϕ) + Lh(ξ) Ph(ϑ, ϕ)

orthogonal projectors

Pr := er ⊗ er

Ph := I− Pr
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Geometry & kinematics

gross placement

p = xo + ρ er

gradient of the gross placement

∇p = ρ′ Pr +
ρ

ξ
Ph

growth

G = γr Pr + γh Ph

warp

A := (∇p)G−1 = αr Pr + αhPh
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Mechanical model

Geometry & kinematics
Working & balance
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Geometry & kinematics

refined motion: (p,G)

refined velocity: (ṗ, Ġ G−1)

ṗ = ρ̇ er

Ġ G−1 =
γ̇r

γr
Pr +

γ̇h

γh
Ph

test velocity: (v,V)

v = v er

V = Vr Pr + Vh Ph

(gross and growth velocity)
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Working

Goal:

To describe the energetic balance of growth

Working

(brute) elasticity ∫
D
−S ·∇v +

∫
∂D

t
∂D
· v

growth + elasticity∫
D

(
Qi · V− S ·∇v

)
+

∫
D
Qo · V +

∫
∂D

t
∂D
· v
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Balance laws

balance of (brute) stress

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0

∓Sr(ξ∓) = t∓

balance of accretive stress

Qi
r(ξ)−Qo

r (ξ) = 0

Qi
h(ξ)−Qo

h(ξ) = 0
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Mechanical model

Geometry & kinematics
Working & balance
Constitutive issues
Discussion

Characterising the passive mechanical response

Energetics

Dissipation principle
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Mechanical model

Geometry & kinematics
Working & balance
Constitutive issues
Discussion

Energetics

Ψ(P)=

∫
P

Jψ , J := det(G) > 0

(H11): the value of ψ(x) depends solely
on the value of the warp A(x)

ψ(x) = φ (αr(ξ), αh(ξ); ξ )

(H12): incompressible elasticity

det A = αr αh
2 = 1

Fung strain energy density

φ̃(α) = (c/δ) exp
(
(Γ/2) (α2 − 1)2

)
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Mechanical model

Geometry & kinematics
Working & balance
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Dissipation principle

S ·∇ṗ− Qi · Ġ G−1 − (J φ̃)· ≥ 0

(
SG> − J

dφ̃
dA

)
· Ȧ−

(
Qi −A>SG> + Jφ̃ I

)
· Ġ G−1 ≥ 0

consistency

S = J
dφ̃
dA

G−> +
+

S , Qi = A>SG> + Jφ̃ I +
+

Qi

reduced dissipation inequality

+

SG> · Ȧ−
+

Qi · Ġ G−1 ≥ 0
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· Ȧ−

(
Qi −A>SG> + Jφ̃ I

)
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Mechanical model

Geometry & kinematics
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Mechanical model

Kinematics

gross placement p = xo + ρ er

growth G = γr Pr + γh Ph

warp A = αr Pr + αhPh

Working ∫
D

(
Qi · V− S ·∇v

)
+

∫
D
Qo · V +

∫
∂D

t
∂D
· v

(Reduced) dissipation inequality

+

SG> · Ȧ−
+

Qi · Ġ G−1 ≥ 0
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Mechanical model

Geometry & kinematics
Working & balance
Constitutive issues
Discussion

+

SG> · Ȧ−
+

Qi · Ġ G−1 ≥ 0

In this framework, in a homeostatic state (G = stat.), no
dissipation is associated with growth.

But...

Even if the relaxed configuration does not evolve, some energy may
be dissipated.

How to explain that?
How to deal with that?
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Part III

Multiple growth mechanisms

3 Multiple growth mechanisms
Mechanical model
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Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Multiple (competing) growth mechanisms

(s) slipping, (c) recovery, and (t) tissue apposition/resorption

G = Gt Gc Gs

s sliding of tissue constituents
passive

c any action directly
contrasting the slipping
active

t fiber deposition/removal,
cell proliferation/destruction
active
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Multiple growth mechanisms
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Multiple (competing) growth mechanisms

(s) slipping, (c) recovery, and (t) tissue apposition/resorption

G = Gt Gc Gs

growth velocity

Ġ G−1 = Ġt G
−1
t + Ġc G

−1
c + Ġs G

−1
s

test velocity
V = Vt + Vc + Vs

working ∫
D

(
Qi

t · Vt + Qi
c · Vc + Qi

s · Vs − S ·∇v
)

+

∫
D

(Qo
t · Vt + Qo

c · Vc + Qo
s · Vs) +

∫
∂D

t
∂D
· v
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Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Dissipation principle

S · ∇ṗ−
(
Qi

t · Ġt G
−1
t + Qi

c · Ġc G
−1
c + Qi

s · Ġs G
−1
s

)
− (J φ̃)· ≥ 0

consistency

S = J
dφ̃
dA

G−> +
+

S

Qi
• =

(
A>SG> − Jφ I

)
+

+

Qi
• , • ∈ {s, c, t}

reduced dissipation inequality

+

SG> · Ȧ−
+

Qi
t · Ġt G

−1
t −

+

Qi
c · Ġc G

−1
c −

+

Qi
s · Ġs G

−1
s ≥ 0
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Mechanical model
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Multiple (competing) growth mechanisms

(s) slipping, (c) recovery, and (p) tissue apposition

G = Gt Gc Gs

growth velocity

Ġ G−1 = Ġt G
−1
t + Ġc G

−1
c + Ġs G

−1
s

test velocity
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Multiple growth mechanisms
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Biomechanical characterisation

Characterising the accretive couples

Inner Outer

“stress” Qi
t ,Q

i
c ,Q

i
s Qo

t ,Q
o
c ,Q

o
s active control

⇑
...

Gt ,Gc ,Gs

+

Qi
t ,

+

Qi
c ,

+

Qi
s
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Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Characterising the growth mechanisms

(H21): We assume that only Gt changes volume, while
neither Gs nor Gc affects volume

(H22): We assume that tissue apposition is only radial

Gt = γt
r Pr + Ph

Gc = γc
r Pr + γc

h Ph γc
r (γ

c
h)

2 = 1

Gs = γs
r Pr + γs

h Ph γs
r (γ

s
h)

2 = 1

V. Sansalone Competing growth mechanisms in saccular aneurysms



Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Characterising the growth mechanisms

(H21): We assume that only Gt changes volume, while
neither Gs nor Gc affects volume

(H22): We assume that tissue apposition is only radial

Gt = γt
r Pr + Ph

Gc = γc
r Pr + γc

h Ph γc
r (γ

c
h)

2 = 1

Gs = γs
r Pr + γs

h Ph γs
r (γ

s
h)

2 = 1

V. Sansalone Competing growth mechanisms in saccular aneurysms



Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Characterising the dissipation

(H31): We assume that dissipation is only due to growth

(H32): Linear viscous dissipation

+

S = 0
+

Qi
t = −J Dt

r γ̇
t
r/γ

t
r Pr

+

Qi
c = −J(Dc

r γ̇
c
r /γ

c
r Pr + Dc

h γ̇
c
h/γ

c
h Ph)

+

Qi
s = −J(Ds

r γ̇
c
r /γ

s
r Pr + Ds

h γ̇
s
h/γ

s
h Ph)
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Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Evolution equations

growth

Dt γ̇t
r/γ

t
r = (Tr − φ̃) + Q t

Dc γ̇c
h/γ

c
h = (Th − Tr) + Q c

Ds γ̇s
h/γ

s
h = (Th − Tr) + Q s

Qo
t /J = Qt

r Pr Qo
c /J = Qc

r Pr + Qc
h Ph Qo

s /J = Qs
r Pr + Qs

h Ph

Q t := Qt
r Q c := (Qc

h − Qc
r ) Q s := (Qs

h − Qs
r )

Dt := Dt
r Dc := (2Dc

r + Dc
h) Ds := (2Ds

r + Ds
h)

Tr =J−1Sr γr αr Th =J−1Sh γh αh
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Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Characterising the controls

T�
h, T�

r : physiological “target” values.

V. Sansalone Competing growth mechanisms in saccular aneurysms



Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Characterising the controls

(H4s): null control on slipping mechanism

Q s = 0

(H4c): recovery tuned with respect to slipping

Q c ∼ Gc (Th − Tr) + (1− Gc) (T�
h − T�

r )

(H4t): radial apposition driven by hoop stress

Q t ∼ Gt
(
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h

)
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Multiple growth mechanisms
Mechanical model
Biomechanical characterisation

Evolution equations

gross motion

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0

∓Sr(ξ∓) = t∓

growth

γ̇h/γh = κh (∆Th −∆Tr)

γ̇r/γr = −2γ̇h/γh + κr ∆Th

∆Th := Th − T�h ∆Tr := Tr − T�r

κh := (1/Dc + 1/Ds) (1− Gc) κr := Gt/Dt
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Part IV

Numerical simulations

4 Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Simulated natural histories

Let us assume that an aneurysm, subjected to a constant
intramural pressure p�, has reached a spherical shape in a
homeostatic state with hoop and radial stress:

T�
h , T�

r .

Let Q� be the value of the control Qc necessary to maintain
this homeostatic state:

Q� ∼ T�
h − T�

r .

Thus, let the intramural pressure experience a short-time
bump:

p(t) = p� + δp(t) .
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Simulated natural histories

Let us assume that an aneurysm, subjected to a constant
intramural pressure p�, has reached a spherical shape in a
homeostatic state with hoop and radial stress:

T�
h , T�

r .

Let Q� be the value of the control Qc necessary to maintain
this homeostatic state:
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bump:
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Simulated natural histories

Efficient vs. Inefficient recovery

Negligible vs. Non-negligible tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]1: slow recovery, null apposition

1 Qc is held fixed to the previous value for the rest of the time:

Q c = Q� ∼ T�
h − T�

r

simulating the inability of the recovery control to keep pace
with a sudden perturbation

2 negligible tissue apposition:

Q t ∼ 0
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

SLOW RECOVERY (Gc = 0), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

SLOW RECOVERY (Gc = 0), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]2: fast recovery, null apposition

1 Qc is set to a full recovery control:

Q c ∼ Th − Tr

simulating the capability of the recovery control to
immediately keep pace with a sudden perturbation

2 negligible tissue apposition:

Q t ∼ 0
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

FAST RECOVERY (Gc = 1), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

FAST RECOVERY (Gc = 1), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]3: delayed recovery, null apposition

1 Qc is a fraction of the full recovery control:

Q c ∼ Gc (Th − Tr) + (1− Gc) (T�
h − T�

r )

which is meant to simulate an impaired recovery control

2 negligible tissue apposition:

Q t ∼ 0
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

DELAYED RECOVERY (Gc = 0.8), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

DELAYED RECOVERY (Gc = 0.8), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

DELAYED RECOVERY (Gc = 0.8), null tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]4: slow recovery, tissue apposition

1 Qc is held fixed to the previous value for the rest of the time:

Q c(t) = Q�

2 radial tissue apposition goes into action through a
stress-driven control law:

Q t ∼ Gt
(
Th − T�

h

)
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery (Gc = 0), FAST TISSUE APPOSITION (Gt �)
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery (Gc = 0), FAST TISSUE APPOSITION (Gt �)
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery (Gc = 0), SLOW TISSUE APPOSITION (Gt �)
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery (Gc = 0), SLOW TISSUE APPOSITION (Gt �)
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Summary

Evolution of saccular aneurysms

elastic deformation;
growth, i.e. change of relaxed configuration.

Multiple remodelling mechanisms

slipping: only passive;
recovery: slow/fast control;
tissue apposition: hoop stress driven control.

Numerical evidence

recovery control is unable to maintain homeostatis;
tissue apposition plays a central role.
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Future work

In tight connection with biologists, physicists and clinicians...

Better characterisation of the biological system

description of the growth mechanisms;
evolution of elastic properties;
non uniform material properties.

Weaker assumptions on symmetry

Quantitative calibration and model validation
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