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Histology of saccular aneurysms

Intracranial saccular aneurysms are dilatations of the arterial wall.
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Histology of saccular aneurysms

[J.D. Humphrey, Cardiovascular Solid Mechanics, 2001]
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Histology of saccular aneurysms

[M. Yonekura, Neurologia medico-chirurgica, 2004]

V. Sansalone Competing growth mechanisms in saccular aneurysms



Single remodelling mechanism
Multiple remodelling mechanisms

Part II

Biomechanical model

2 Single remodelling mechanism
Mechanical model
Discussion

3 Multiple remodelling mechanisms
Mechanical model
Biomechanical characterisation

V. Sansalone Competing growth mechanisms in saccular aneurysms



Single remodelling mechanism
Multiple remodelling mechanisms

Growth mechanics

Growth as change in the zero-stress reference state.

p : gross placement

∇p : gradient of the gross placement

P : prototype

F : warp (Kröner-Lee decomposition)

refined motion

(p,P) : D × T → E ×(VE ⊗VE )

(x , τ) 7→ (p(x , τ),P(x , τ))

(D: reference shape, T : time line)
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Single remodelling mechanism
Multiple remodelling mechanisms

Saccular aneurysms

paragon shape D of the vessel

B(xo, ξ+)− B̄(xo, ξ−)
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Discussion

Mechanical model

Kinematics

gross placement p = xo + ρ er

prototype P = αr Pr + αh Ph

warp F = λr Pr + λhPh

Working ∫
D

(
A
i · V− S ·∇v

)
+

∫
D
A
o · V +

∫
∂D

t
∂D
· v

(Reduced) dissipation inequality

+

SP> · Ḟ−
+

A
i · Ṗ P−1 ≥ 0
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Discussion

+

SP> · Ḟ−
+

A
i · Ṗ P−1 ≥ 0

In this framework, in a homeostatic state (P = stat.), no
dissipation is associated with the remodelling.

But...

Even if the relaxed configuration does not evolve, some energy may
be dissipated.

How to explain that?
How to deal with that?
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+

A
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Biomechanical characterisation

Multiple (competing) remodelling mechanisms

(s) slipping, (c) recovery, and (p) tissue apposition

P = Pt Pc Ps

working ∫
D

(
A
i
t · Vt + A

i
c · Vc + A

i
s · Vs − S ·∇v

)
+

∫
D

(Ao
t · Vt + A

o
c · Vc + A

o
s · Vs) +

∫
∂D

t
∂D
· v

reduced dissipation inequality

+

SP> · Ḟ−
+

A
i
t · Ṗt P

−1
t −

+

A
i
c · Ṗc P

−1
c −

+

A
i
s · Ṗs P

−1
s ≥ 0
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Biomechanical characterisation

Characterising the remodelling mechanisms

(H11): We assume that only Pt changes volume, while
neither Ps nor Pc affects volume

(H12): We assume that tissue apposition is only radial

Pt = αt
r Pr + Ph

Pc = αc
r Pr + αc

h Ph αc
r (α

c
h)

2 = 1

Ps = αs
r Pr + αs

h Ph αs
r(α

s
h)

2 = 1
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Biomechanical characterisation

Characterising the dissipation

(H21): We assume that dissipation is only due to
remodelling

(H22): Linear viscous dissipation to remodelling

+

S = 0
+

A
i
t = −J Dt

r α̇t
r/αt

r Pr

+

A
i
c = −J(Dc

r α̇c
r/αc

r Pr + Dc
h α̇c

h/αc
h Ph)

+

A
i
s = −J(Ds

r α̇s
r/αs

r Pr + Ds
h α̇s

h/αs
h Ph)
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Biomechanical characterisation

Characterising the controls

(H3s): null control on slipping mechanism

Qs = 0

(H3c): recovery tuned with respect to slipping

Qc ∼ Gc (Th − Tr) + (1−Gc) (T�
h − T�

r )

(H3t): radial apposition driven by hoop stress

Qt ∼ Gt
(
Th − T�

h

)
T�

h, T�
r : “target” values.
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Single remodelling mechanism
Multiple remodelling mechanisms

Mechanical model
Biomechanical characterisation

Evolution equations

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0

∓Sr(ξ∓) = t∓

α̇h/αh = γh (∆Th −∆Tr)

α̇r/αr = −2α̇h/αh + γr ∆Th

∆Th := Th − T�
h ∆Tr := Tr − T�

r

γh := (1/Dc + 1/Ds) (1−Gc) γr := Gt/Dt
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Part III

Numerical simulations

4 Natural histories

5 Passive slipping, recovery, null tissue apposition
Slow recovery
Fast recovery
Delayed recovery

6 Passive slipping, slow recovery, tissue apposition
Fast apposition
Slow apposition
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Simulated natural histories

Let us assume that an aneurysm, subjected to a constant
intramural pressure p�, has reached a spherical shape in a
homeostatic state with hoop and radial stress:

T�
h , T�

r .

Let Q� be the value of the control Qc necessary to maintain
this homeostatic state:

Q� ∼ T�
h − T�

r .

Thus, the intramural pressure experiences a short-time bump:

p(t) = p� + δp(t) .
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Simulated natural histories

Inefficient vs. Efficient recovery

Negligible vs. Non-negligible tissue apposition
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery
Fast recovery
Delayed recovery

History ]1: slow recovery, null apposition

1 Qc is held fixed to the previous value for the rest of the time:

Qc = Q� ∼ T�
h − T�

r

simulating the inability of the recovery control to keep pace
with a sudden perturbation;

2 negligible tissue apposition:

Qt ∼ 0

V. Sansalone Competing growth mechanisms in saccular aneurysms



Natural histories
Passive slipping, recovery, null tissue apposition
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Slow recovery
Fast recovery
Delayed recovery

SLOW RECOVERY (Gc = 0), null tissue apposition
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery
Fast recovery
Delayed recovery

History ]2: fast recovery, null apposition

1 Qc is set to a full recovery control:

Qc ∼ Th − Tr

simulating the capability of the recovery control to
immediately keep pace with a sudden perturbation;

2 negligible tissue apposition:

Qt ∼ 0
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery
Fast recovery
Delayed recovery

FAST RECOVERY (Gc = 1), null tissue apposition
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery
Fast recovery
Delayed recovery

History ]3: delayed recovery, null apposition

1 Qc is a fraction of the full recovery control:

Qc ∼ Gc (Th − Tr) + (1−Gc) (T�
h − T�

r )

which is meant to simulate an impaired recovery control.

2 negligible tissue apposition:

Qt ∼ 0
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slow recovery
Fast recovery
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DELAYED RECOVERY (Gc = 0.8), null tissue apposition
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Fast apposition
Slow apposition

History ]4: slow recovery, tissue apposition

1 Qc is held fixed to the previous value for the rest of the time:

Qc(t) = Q�

2 radial tissue apposition goes into action through a
stress-driven control law:

Qt ∼ Gt
(
Th − T�

h

)
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Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Fast apposition
Slow apposition

Slow recovery (Gc = 0), FAST TISSUE APPOSITION (Gt �)
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Summary

Growth of saccular aneurysms

elastic deformation;
change of relaxed configuration.

Multiple remodelling mechanisms

slipping: only passive;
recovery: slow/fast control;
tissue apposition: hoop stress driven control.

Numerical evidence

only recovery control is unable to keep the aneurysm in a
homeostatic state;
control on tissue apposition plays a central role.
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Open problems

Better characterisation of material properties

evolution of elastic stiffness;
non uniform remodelling parameters.

Weaker assumptions on symmetry

Quantitative calibration and model validation
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