Competing growth mechanisms in the development of saccular aneurysms

V. Sansalone ^a,

A. Di Carlo^b, A. Tatone^c, V. Varano^b

^a Université Paris 12 – Val de Marne, France
 ^b Università degli Studi "Roma Tre", Italy
 ^c Università degli Studi dell'Aquila, Italy

Rencontres de Modélisation en Physiopathologie ENS Cachan, June 16-17, 2008 Intracranial saccular aneurysms are dilatations of the arterial wall.

(日) (同) (三) (三)

[J.D. Humphrey, Cardiovascular Solid Mechanics, 2001]

- - ◆ 同 ▶ - ◆ 目 ▶

э

[M. Yonekura, Neurologia medico-chirurgica, 2004]

(日) (同) (三) (三)

Part II

Biomechanical model

2 Single remodelling mechanism

- Mechanical model
- Discussion

3 Multiple remodelling mechanisms

- Mechanical model
- Biomechanical characterisation

- **→** → **→**

Growth as change in the zero-stress reference state.

- p: gross placement
- ∇p : gradient of the gross placement
 - \mathbb{P} : prototype
 - F: warp (Kröner-Lee decomposition)

refined motion

 $\begin{aligned} (\mathsf{p},\mathbb{P}): \mathcal{D} \,\times\, \mathscr{T} &\to\, \mathscr{E} \times (\mathrm{V}\mathscr{E} \otimes \mathrm{V}\mathscr{E}) \\ (x,\tau) &\mapsto\, (\mathsf{p}(x,\tau),\mathbb{P}(x,\tau)) \end{aligned}$

イロト イポト イラト イラト

Growth as change in the zero-stress reference state.

- p: gross placement
- abla p: gradient of the gross placement
 - \mathbb{P} : prototype
 - F: warp (Kröner-Lee decomposition)

refined motion

 $\begin{aligned} (\mathsf{p},\mathbb{P}): \mathcal{D} \ \times \ \mathscr{T} \ & \to \ \mathscr{E} \times (\mathsf{V}\mathscr{E} \otimes \mathsf{V}\mathscr{E}) \\ (x,\tau) \mapsto \ (\mathsf{p}(x,\tau),\mathbb{P}(x,\tau)) \end{aligned}$

イロト イポト イラト イラト

Growth as change in the zero-stress reference state.

- p: gross placement
- abla p: gradient of the gross placement
 - \mathbb{P} : prototype
 - F: warp (Kröner-Lee decomposition)

refined motion

$$egin{aligned} (\mathsf{p},\mathbb{P}): \mathfrak{D} \ imes \ \mathscr{T} &
ightarrow \ \mathscr{E} imes (\mathrm{V}\mathscr{E} \otimes \mathrm{V}\mathscr{E}) \ & (x, au) \mapsto \ (\mathsf{p}(x, au),\mathbb{P}(x, au)) \end{aligned}$$

A 3 3 4 4

Growth as change in the zero-stress reference state.

- p: gross placement
- abla p: gradient of the gross placement
 - \mathbb{P} : prototype
 - F: warp (Kröner-Lee decomposition)

refined motion

$$egin{aligned} (\mathsf{p},\mathbb{P}):\mathcal{D}\, imes\,\mathscr{T} o\,\mathscr{E} imes(\mathrm{V}\mathscr{E}\otimes\mathrm{V}\mathscr{E})\ &(x, au)\mapsto\,(\mathsf{p}(x, au),\mathbb{P}(x, au)) \end{aligned}$$

Single remodelling mechanism Multiple remodelling mechanisms

Saccular aneurysms

paragon shape ${\mathfrak D}$ of the vessel

$$\mathcal{B}(x_{o},\xi_{+})-\bar{\mathcal{B}}(x_{o},\xi_{-})$$

□→ < □→</p>

-

Mechanical model Discussion

Mechanical model

Kinematics

Working

$$\int_{\mathcal{D}} \left(\mathbb{A}^{i} \cdot \mathbb{V} - S \cdot \nabla v \right) + \int_{\mathcal{D}} \mathbb{A}^{\circ} \cdot \mathbb{V} + \int_{\partial \mathcal{D}} t_{\partial \mathcal{D}} \cdot v$$

(Reduced) dissipation inequality

$$\overset{+}{\mathrm{S}} \mathbb{P}^\top \cdot \dot{\mathrm{F}} - \overset{+}{\mathbb{A}^{i}} \cdot \dot{\mathbb{P}} \, \mathbb{P}^{-1} \geq \underbrace{\mathbf{0}}_{\overset{\bullet}{} \mathbf{0}} , \quad \overset{\bullet}{} \overset{\bullet}{$$

Mechanical model Discussion

Mechanical model

Kinematics

gross placement	р	=	$x_{o} + \rho \mathbf{e}_{r}$
prototype	\mathbb{P}	=	$\frac{\alpha_{r}}{P_{r}} + \frac{\alpha_{h}}{P_{h}} P_{h}$
warp	\mathbf{F}	=	$\lambda_{\rm r} {\rm P_r} + \lambda_{\rm h} {\rm P_h}$

Working

$$\int_{\mathcal{D}} \Big(\mathbb{A}^{\!\mathbf{i}} \cdot \mathbb{V} - S \cdot \nabla v \Big) \, + \int_{\mathcal{D}} \mathbb{A}^{\!\mathbf{0}} \cdot \mathbb{V} \, + \int_{\partial \mathcal{D}} \! t_{\partial \mathcal{D}} \cdot v$$

(Reduced) dissipation inequality

Mechanical model Discussion

Mechanical model

Kinematics

gross placement	р	=	$x_{o} + \rho \mathbf{e}_{r}$
prototype	₽	=	$\frac{\alpha_{r}}{P_{r}} + \frac{\alpha_{h}}{P_{h}} P_{h}$
warp	\mathbf{F}	=	$\lambda_{\rm r} P_{\rm r} + \lambda_{\rm h} P_{\rm h}$

-

э

Working

$$\int_{\mathcal{D}} \Big(\, \mathbb{A}^{\mathsf{i}} \cdot \mathbb{V} - S \cdot \nabla v \Big) \, + \int_{\mathcal{D}} \mathbb{A}^{\mathsf{o}} \cdot \mathbb{V} \, + \int_{\partial \mathcal{D}} t_{\partial \mathcal{D}} \cdot v$$

(Reduced) dissipation inequality

$$\frac{}{\mathbf{S}}^{\mathsf{+}} \mathbb{P}^{\mathsf{T}} \cdot \dot{\mathbf{F}} - \overset{\mathsf{+}}{\overset{\mathsf{+}}{\mathbb{A}^{\mathsf{i}}}} \cdot \dot{\mathbb{P}} \mathbb{P}^{-1} \geq \mathbf{0}$$

$$\overset{+}{\mathrm{S}} \mathbb{P}^{\top} \cdot \dot{\mathrm{F}} - \overset{+}{\mathbb{A}^{i}} \cdot \dot{\mathbb{P}} \mathbb{P}^{-1} \geq 0$$

In this framework, in a homeostatic state ($\mathbb{P} = \text{stat.}$), no dissipation is associated with the remodelling.

(日) (同) (三) (三)

-

$$\overset{+}{\mathrm{S}} \mathbb{P}^\top \cdot \dot{\mathrm{F}} - \overset{+}{\mathbb{A}^i} \cdot \dot{\mathbb{P}} \mathbb{P}^{-1} \geq 0$$

In this framework, in a homeostatic state ($\mathbb{P} = \text{stat.}$), no dissipation is associated with the remodelling.

But...

Even if the relaxed configuration does not evolve, some energy may be dissipated.

How to explain that? How to deal with that?

.

Multiple (competing) remodelling mechanisms

(s) slipping, (c) recovery, and (p) tissue apposition

 $\mathbb{P}=\mathbb{P}_t\,\mathbb{P}_c\,\mathbb{P}_s$

working

$$\begin{split} &\int_{\mathcal{D}} \Big(\mathbb{A}_{t}^{i} \cdot \mathbb{V}_{t} + \mathbb{A}_{c}^{i} \cdot \mathbb{V}_{c} + \mathbb{A}_{s}^{i} \cdot \mathbb{V}_{s} - S \cdot \nabla v \Big) \\ &+ \int_{\mathcal{D}} \big(\mathbb{A}_{t}^{o} \cdot \mathbb{V}_{t} + \mathbb{A}_{c}^{o} \cdot \mathbb{V}_{c} + \mathbb{A}_{s}^{o} \cdot \mathbb{V}_{s} \big) + \int_{\partial \mathcal{D}} t_{\partial \mathcal{D}} \cdot v \end{split}$$

reduced dissipation inequality

$$\overset{+}{\mathrm{S}} \mathbb{P}^\top \cdot \dot{\mathrm{F}} - \overset{+}{\mathbb{A}^i_t} \cdot \dot{\mathbb{P}}_t \mathbb{P}_t^{-1} - \overset{+}{\mathbb{A}^i_c} \cdot \dot{\mathbb{P}}_c \mathbb{P}_c^{-1} - \overset{+}{\mathbb{A}^i_s} \cdot \dot{\mathbb{P}}_s \mathbb{P}_s^{-1} \geq 0$$

(日) (同) (三) (三)

-

Multiple (competing) remodelling mechanisms

(s) slipping, (c) recovery, and (p) tissue apposition

 $\mathbb{P} = \mathbb{P}_t \mathbb{P}_c \mathbb{P}_s$

working

$$\begin{split} &\int_{\mathcal{D}} \Big(\mathbb{A}_{t}^{i} \cdot \mathbb{V}_{t} + \mathbb{A}_{c}^{i} \cdot \mathbb{V}_{c} + \mathbb{A}_{s}^{i} \cdot \mathbb{V}_{s} - S \cdot \nabla v \Big) \\ &+ \int_{\mathcal{D}} \big(\mathbb{A}_{t}^{o} \cdot \mathbb{V}_{t} + \mathbb{A}_{c}^{o} \cdot \mathbb{V}_{c} + \mathbb{A}_{s}^{o} \cdot \mathbb{V}_{s} \big) + \int_{\partial \mathcal{D}} t_{\partial \mathcal{D}} \cdot v \end{split}$$

reduced dissipation inequality

$$\overset{+}{\mathbf{S}} \mathbb{P}^{\top} \cdot \dot{\mathbf{F}} - \overset{+}{\mathbb{A}^{i}_{t}} \cdot \dot{\mathbb{P}}_{t} \mathbb{P}_{t}^{-1} - \overset{+}{\mathbb{A}^{i}_{c}} \cdot \dot{\mathbb{P}}_{c} \mathbb{P}_{c}^{-1} - \overset{+}{\mathbb{A}^{i}_{s}} \cdot \dot{\mathbb{P}}_{s} \mathbb{P}_{s}^{-1} \geq 0$$

(日) (同) (日) (日) (日)

-

Characterising the remodelling mechanisms

- (H1_1): We assume that only \mathbb{P}_t changes volume, while neither \mathbb{P}_s nor \mathbb{P}_c affects volume
- (H1₂): We assume that tissue apposition is only radial

| 4 同 6 4 回 6 4 回 6

Characterising the dissipation

(H2₁): We assume that dissipation is only due to remodelling

(H2₂): Linear viscous dissipation to remodelling

$$\mathbf{\dot{S}} = \mathbf{0}$$

$$\mathbf{\dot{A}^{i}}_{t} = -J D_{r}^{t} \dot{\alpha}_{r}^{t} / \alpha_{r}^{t} P_{r}$$

$$\mathbf{\dot{A}^{i}}_{c} = -J (D_{r}^{c} \dot{\alpha}_{r}^{c} / \alpha_{r}^{c} P_{r} + D_{h}^{c} \dot{\alpha}_{h}^{c} / \alpha_{h}^{c} P_{h})$$

$$\mathbf{\dot{A}^{i}}_{s} = -J (D_{r}^{s} \dot{\alpha}_{r}^{s} / \alpha_{r}^{s} P_{r} + D_{h}^{s} \dot{\alpha}_{h}^{s} / \alpha_{h}^{s} P_{h})$$

Characterising the controls

(H3_s): null control on slipping mechanism

$$\mathrm{Q}^{s}=\mathbf{0}$$

 $(H3_c)$: recovery tuned with respect to slipping

$$\mathrm{Q}^{\mathsf{c}} \sim \frac{\mathrm{G}^{\mathsf{c}}}{\mathrm{G}^{\mathsf{c}}} \left(\mathrm{T}_{\mathsf{h}} - \mathrm{T}_{\mathsf{r}} \right) + \left(1 - \frac{\mathrm{G}^{\mathsf{c}}}{\mathrm{G}^{\mathsf{c}}} \right) \left(\mathrm{T}_{\mathsf{h}}^{\diamond} - \mathrm{T}_{\mathsf{r}}^{\diamond} \right)$$

(H3_t): radial apposition driven by hoop stress

$$Q^{t} \sim G^{t} (T_{h} - T_{h}^{\diamond})$$

 T_{h}^{\diamond} , T_{r}^{\diamond} : "target" values.

・ロト ・同ト ・ヨト ・ヨト

Evolution equations

$$2(\operatorname{Sr}(\xi) - \operatorname{Sh}(\xi)) + \xi \operatorname{Sr}'(\xi) = 0$$

$$\mp \operatorname{Sr}(\xi_{\mp}) = t_{\mp}$$

$$\begin{split} \dot{\alpha}_{h}/\alpha_{h} &= \gamma_{h} \left(\Delta T_{h} - \Delta T_{r} \right) \\ \dot{\alpha}_{r}/\alpha_{r} &= -2\dot{\alpha}_{h}/\alpha_{h} + \gamma_{r} \Delta T_{h} \\ \Delta T_{h} &:= T_{h} - T_{h}^{\diamond} \qquad \Delta T_{r} := T_{r} - T_{r}^{\diamond} \end{split}$$

 $\gamma_{\text{h}}\! :=\! \left(1/\mathrm{D}^{\text{c}}+1/\mathrm{D}^{\text{s}}\right) \left(1-\mathrm{G}^{\text{c}}\right) \qquad \gamma_{\text{r}}\! :=\! \mathrm{G}^{\text{t}}/\mathrm{D}^{\text{t}}$

イロン 不同 とくほう イロン

Part III

Numerical simulations

- 4 Natural histories
- 6 Passive slipping, recovery, null tissue apposition
 - Slow recovery
 - Fast recovery
 - Delayed recovery
- 6 Passive slipping, slow recovery, tissue apposition
 - Fast apposition
 - Slow apposition

Simulated natural histories

 Let us assume that an aneurysm, subjected to a constant intramural pressure p[◊], has reached a spherical shape in a homeostatic state with hoop and radial stress:

 $\mathrm{T}^{\diamond}_{\mathsf{h}}\,,\qquad \mathrm{T}^{\diamond}_{\mathsf{r}}\,.$

Let Q^{\diamond} be the value of the control Q^{c} necessary to maintain this homeostatic state:

$$Q^\diamond \sim \mathrm{T}_{\mathsf{h}}^\diamond - \mathrm{T}_{\mathsf{r}}^\diamond$$
.

• Thus, the intramural pressure experiences a short-time bump:

$$p(t) = p^{\diamond} + \delta p(t).$$

Natural histories

Passive slipping, recovery, null tissue apposition Passive slipping, slow recovery, tissue apposition

Simulated natural histories

- Inefficient vs. Efficient recovery
- Negligible vs. Non-negligible tissue apposition

A B > A B >

 Natural histories
 Slow rec

 Passive slipping, recovery, null tissue apposition
 Fast rec

 Passive slipping, slow recovery, tissue apposition
 Delayed

Slow recovery Fast recovery Delayed recovery

History #1: slow recovery, null apposition

Q Q^{c} is held fixed to the previous value for the rest of the time:

$$Q^{\mathsf{c}} = Q^{\diamond} \sim T^{\diamond}_{\mathsf{h}} - T^{\diamond}_{\mathsf{r}}$$

simulating the inability of the recovery control to keep pace with a sudden perturbation;

 ${\rm Q}^t \sim 0$

 Natural histories
 Slow recovery

 Passive slipping, recovery, null tissue apposition
 Fast recovery

 Passive slipping, slow recovery, tissue apposition
 Delayed recovery

SLOW RECOVERY ($G^c = 0$), null tissue apposition

V. Sansalone Competing growth mechanisms in saccular aneurysms

(日)

3

Slow recovery Fast recovery Delayed recovery

History #2: fast recovery, null apposition

• Q^c is set to a full recovery control:

 $\mathrm{Q}^{\mathsf{c}} \sim \mathrm{T}_{\mathsf{h}} - \mathrm{T}_{\mathsf{r}}$

simulating the capability of the recovery control to immediately keep pace with a sudden perturbation;

e negligible tissue apposition:

 $\mathrm{Q}^t \sim 0$

Fast recovery

FAST RECOVERY ($G^{c} = 1$), null tissue apposition

(日) (同) (日) (日) (日)

3

 Natural histories
 Slow re

 Passive slipping, recovery, null tissue apposition
 Fast rec

 Passive slipping, slow recovery, tissue apposition
 Delayed

Slow recovery Fast recovery Delayed recovery

History #3: delayed recovery, null apposition

• Q^{c} is a fraction of the full recovery control:

$$\mathrm{Q}^{\mathsf{c}} \sim \frac{\mathrm{G}^{\mathsf{c}}\left(\mathrm{T}_{\mathsf{h}} - \mathrm{T}_{\mathsf{r}}\right) + \left(1 - \frac{\mathrm{G}^{\mathsf{c}}}{\mathrm{G}^{\mathsf{c}}}\right)\left(\mathrm{T}_{\mathsf{h}}^{\diamond} - \mathrm{T}_{\mathsf{r}}^{\diamond}\right)$$

which is meant to simulate an impaired recovery control.

2 negligible tissue apposition:

 $\mathrm{Q}^t \sim 0$

4 3 6 4 3

 Natural histories
 Slow recovery

 Passive slipping, recovery, null tissue apposition
 Fast recovery

 Passive slipping, slow recovery, tissue apposition
 Delayed recovery

DELAYED RECOVERY ($G^c = 0.8$), null tissue apposition

(日) (同) (三) (三)

3

ast apposition

History #4: slow recovery, tissue apposition

Q Q^{c} is held fixed to the previous value for the rest of the time:

 $Q^{c}(t) = Q^{\diamond}$

a radial tissue apposition goes into action through a stress-driven control law:

$$\mathrm{Q}^{\mathsf{t}} \sim \frac{\mathrm{G}^{\mathsf{t}}}{\mathrm{G}^{\mathsf{t}}} \big(\mathrm{T}_{\mathsf{h}} - \mathrm{T}_{\mathsf{h}}^{\diamond} \big)$$

- 同 ト - ヨ ト - - ヨ ト

Fast apposition Slow apposition

Slow recovery ($G^{c} = 0$), FAST TISSUE APPOSITION ($G^{t} \gg$)

(日) (同) (日) (日) (日)

3

Fast apposition Slow apposition

Slow recovery (Gc = 0), SLOW TISSUE APPOSITION (Gt \ll)

(日) (同) (日) (日) (日)

3

Summary

- Growth of saccular aneurysms
 - elastic deformation;
 - change of relaxed configuration.
- Multiple remodelling mechanisms
 - *slipping*: only passive;
 - recovery: slow/fast control;
 - *tissue apposition*: hoop stress driven control.
- Numerical evidence
 - only recovery control is unable to keep the aneurysm in a homeostatic state;
 - control on tissue apposition plays a central role.

References

• A. DiCarlo, V. Sansalone, A. Tatone, and V. Varano, Living Shell-Like Structures, in *Applied and Industrial Mathematics In Italy - II*, World Scientific, 2007.

Open problems

- Better characterisation of material properties
 - evolution of elastic stiffness;
 - non uniform remodelling parameters.
- Weaker assumptions on symmetry
- Quantitative calibration and model validation