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Histology of saccular aneurysms

Part I

Aneurysms

1 Histology of saccular aneurysms
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Histology of saccular aneurysms

Intracranial saccular aneurysms are dilatations of the arterial wall.

[J.D. Humphrey, Cardiovascular Solid Mechanics, 2001]
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Histology of saccular aneurysms

[M. Yonekura, Neurologia medico-chirurgica, 2004]
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A mechanical model of saccular aneurysms

Part II

A mechanical model

2 A mechanical model of saccular aneurysms
Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Growth mechanics

Growth as change in the zero-stress reference state.

p : gross placement

∇p : gradient of the gross placement

P : prototype

F : warp (Kröner-Lee decomposition)

refined motion

(p,P) : D × T → E ×(VE ⊗VE )

(x , τ) 7→ (p(x , τ),P(x , τ))

(D: reference shape, T : time line)
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Saccular aneurysms

paragon shape D of the vessel

B(xo, ξ+)− B̄(xo, ξ−)

spherical coordinates

ξ̂(x), ϑ̂(x), ϕ̂(x)

spherically symmetric vector fields

v(x) = v(ξ) er(ϑ, ϕ)

spherically symmetric tensor fields

L(x) = Lr(ξ) Pr(ϑ, ϕ) + Lh(ξ) Ph(ϑ, ϕ)

orthogonal projectors

Pr := er ⊗ er

Ph := I− Pr
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Geometry & kinematics

gross placement

p = xo + ρ er

gradient of the gross placement

∇p = ρ′ Pr +
ρ

ξ
Ph

prototype

P = αr Pr + αh Ph

warp

F := (∇p)P−1 = λr Pr + λhPh
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Refined motion

Refined motion: (p,P)

Refined velocity: (ṗ, Ṗ P−1)

ṗ = ρ̇ er

Ṗ P
−1 =

α̇r

αr
Pr +

α̇h

αh
Ph

Test velocity: (v,V)

v = v er

V = Vr Pr + Vh Ph

(gross velocity and growth velocity)
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Working

The basic balance structure of a mechanical theory is encoded in
the way in which forces expend working on a general test velocity.∫

D

(
A
i · V− S ·∇v

)
+

∫
D
A
o · V +

∫
∂D

t
∂D
· v
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Balance laws

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0

Ai
r(ξ)−Ao

r(ξ) = 0

Ai
h(ξ)−Ao

h(ξ) = 0

 (ξ−< ξ <ξ+)

∓Sr(ξ∓) = t∓
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Energetics

Ψ(P)=

∫
P

Jψ , J := det(P) = αr α
2
h > 0

ψ free energy per unit prototypal volume
Jψ free energy per unit paragon volume

(H1): the value of the free energy ψ(x)
depends solely on the value of
the warp F(x)

ψ(x) = φ (λr(ξ), λh(ξ); ξ )
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Characterizing the passive mechanical response

(H2): incompressible elasticity

det F = λr λ
2
h = 1 ⇐⇒ λr = 1/λ2

h .

φ̃ : λ 7→ φ ( 1/λ2, λ )

Fung strain energy density

φ̃(λ) = (c/δ) exp
(
(Γ/2) (λ2 − 1)2

)
[J.D.Humphrey, Cardiovascular Solid Mechanics, 2001]
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Dissipation principle

S ·∇ṗ− A
i · Ṗ P−1 − (Jψ)· ≥ 0

Sr = Jφ,r/αr +
+

Sr Sh = Jφ,h/(2αh) +
+

Sh

Ai
r = J [ Sr αr λr/J− φ ] +

+

Ar Ai
h = J [Sh αh λh/J− φ ] +

+

Ah

reduced dissipation inequality

+

SP> · Ḟ−
+

A
i · Ṗ P−1 ≥ 0
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

+

SP> · Ḟ−
+

A
i · Ṗ P−1 ≥ 0

In this framework, in a homeostatic state (P = I), no dissipation is
associated with the remodeling.

But...

Even if the relaxed configuration does not evolve, some energy may
be dissipated.

How to explain that?
How to deal with that?
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Multiple (competing) remodeling mechanisms

(s) slipping, (c) recovery, and (p) tissue apposition

P = Pp Pc Ps

growth velocity

Ṗ P
−1 = Ṗp P

−1
p + Ṗc P

−1
c + Ṗs P

−1
s

test velocity
V = Vp + Vc + Vs

working ∫
D

(
A
i
p · Vp + A

i
c · Vc + A

i
s · Vs − S ·∇v

)
+

∫
D

(
A
o
p · Vp + A

o
c · Vc + A

o
s · Vs

)
+

∫
∂D

t
∂D
· v
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test velocity
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D
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A
i
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i
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Characterizing the remodeling mechanisms

(H3a): We assume that only Pp changes volume, while
neither Ps nor Pc affects volume

J := det(P) = det(Pp) , det(Pc) = 1 , det(Ps) = 1

(H3b): We assume that tissue apposition is only radial

Pp = αp
r Pr + Ph

Pc = αc
r Pr + αc

h Ph αc
r (α

c
h)

2 = 1

Ps = αs
r Pr + αs

h Ph αs
r(α

s
h)

2 = 1
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Dissipation principle

S · ∇ṗ−
(
A
i
p · Ṗp P

−1
p + A

i
c · Ṗc P

−1
c + A

i
s · Ṗs P

−1
s

)
− (Jψ)· ≥ 0

A
i
p =

(
F>SP> − Jφ I

)
+

+

A
i
p ,

A
i
c = F>SP> +

+

A
i
c ,

A
i
s = F>SP> +

+

A
i
s

reduced dissipation inequality

+

SP> · Ḟ−
+

A
i
p · Ṗp P

−1
p −

+

A
i
c · Ṗc P

−1
c −

+

A
i
s · Ṗs P

−1
s ≥ 0
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Characterizing the dissipation mechanisms

(H4): We assume that dissipation is only due to remodeling

+

S = 0
+

A
i
p = −J Dp

r α̇
p
r /α

p
r Pr

+

A
i
c = −J(Dc

r α̇
c
r/α

c
r Pr + Dc

h α̇
c
h/α

c
h Ph)

+

A
i
s = −J(Ds

r α̇
s
r/α

s
r Pr + Ds

h α̇
s
h/α

s
h Ph)
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Evolution equations

remodeling laws

Dp α̇p
r /α

p
r = (Tr − φ̃) + Qp

Dc α̇c
h/α

c
h = (Th − Tr) + Qc

Ds α̇s
h/α

s
h = (Th − Tr) + Qs

A
o
p/J = Qp

r Pr A
o
c/J = Qc

r Pr + Qc
h Ph A

o
s/J = Qs

r Pr + Qs
h Ph

Qp := Qp
r Qc := (Qc

h − Qc
r ) Qs := (Qs

h − Qs
r )

Dp := Dp
r Dc := (2Dc

r + Dc
h) Ds := (2Ds

r + Ds
h)

Tr =J−1Sr αr λr Th =J−1Sh αh λh
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Characterizing controls

(H5s): null control on slipping mechanism

Qs = 0

(H5c): recovery tuned with respect to slipping

Qc = −
(

1 +
Dc

Ds

)
(g (Th − Tr) + (1− g) (T�

h − T�
r ))

(H5p): radial apposition driven by hoop stress

Qp = Gp
(
Th − T�

h

)
−

(
Tr − φ̃

)
.

T�
h, T�

r : “target” values.
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A mechanical model of saccular aneurysms

Geometry & kinematics
Working & balance
Constitutive issues
Multiple remodeling mechanisms

Evolution equations

α̇r/αr = −2 ((Th − Tr)(1/D
c + 1/Ds) + Qc/Dc)

+ (Tr − φ̃)/Dp + Qp/Dp

α̇h/αh = (Th − Tr)(1/D
c + 1/Ds) + Qc/Dc

2
(
Sr(ξ)− Sh(ξ)

)
+ ξ S′r(ξ) = 0

∓Sr(ξ∓) = t∓
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Numerical simulations

Part III

Numerical simulations

3 Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Simulated natural histories

Let us assume that an aneurysm, subjected to a constant
intramural pressure p�, has reached a spherical shape in a
homeostatic state with hoop and radial stress:

T�
h T�

r

thanks to a full recovery control.

Let Q� be the value of the control Qc necessary to maintain this
homeostatic state:

Q� := −
(

1 +
Dc

Ds

) (
T�

h − T�
r

)
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Slipping

Ds α̇s
h/α

s
h = (Th − Tr) + Qs

1 passive slipping:
Qs(t) = 0 ,

α̇s
h/α

s
h = 1/Ds (Th − Tr) .
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Recovery

Dc α̇c
h/α

c
h = (Th − Tr) + Qc

1 sluggish recovery control–stationary control (g = 0):

Qc(t) = Q� ,

α̇c
h/α

c
h = 1/Dc (Th − Tr) + Qc/Dc ;

2 prompt recovery control–recovery immediately compensates
slipping (g = 1):

Qc(t) = −
(

1 +
Dc

Ds

)
(Th − Tr) ,

α̇c
h/α

c
h = −1/Ds (Th − Tr) .
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

Tissue apposition

Dp α̇p
r /α

p
r = (Tr − φ̃) + Qp

1 sluggish apposition control

Qp(t) = 0 ,

α̇p
r /α

p
r = 1/Dp (Tr − φ̃) ;

2 apposition control parameterized by Gp:

Qp(t) = Gp
(
Th − T�

h

)
−

(
Tr − φ̃

)
,

α̇p
r /α

p
r = Gp/Dp

(
Th − T�

h

)
.
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]1: slow recovery, null apposition

1 the intramural pressure experiences a short-time bump:

p(t) = p� + δp(t) ;

2 Qc is held fixed to the previous value for the rest of the time:

Qc(t) = Q� ,

simulating the inability of the recovery control to keep pace
with a sudden perturbation;

3 null tissue apposition:
Qp = 0 .
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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[case-42-001]

Dc/Ds 1000
Dc 0.01
Ds 1e-005

char time 10

δQc ampl 0
δQc period 0

δp ampl 0.25
δp period 2

Qc factor g 0

A recovery control, held
fixed to the previous
homeostatic value, is unable
to keep the aneurysm in a
homeostatic state in
response to a perturbation
of the intramural pressure.
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]2: fast recovery, null apposition

1 the intramural pressure experiences a short-time bump:

p(t) = p� + δp(t) ;

2 then Qc is set to a full recovery control:

Qc(t) = −
(

1 +
Dc

Ds

)
(Th − Tr) ,

simulating the capability of the recovery control to
immediately keep pace with a sudden perturbation;

3 null tissue apposition:
Qp = 0 .
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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Dc/Ds 1000
Dc 0.01
Ds 1e-005

char time 10

δQc ampl 0
δQc period 0

δp ampl 0.25
δp period 2

Qc factor g 1

After the end of a short
perturbation of the
intramural pressure, a full
recovery control drives the
aneurysm to a new
homeostatic state, with a
higher hoop stress.
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]3: impaired recovery, null apposition

1 the intramural pressure experiences a short-time bump:

p(t) = p� + δp(t) ;

2 then Qc is increased to a fraction of the value of a full
recovery control:

Qc = Q� − g
(

1 +
Dc

Ds

)
((Th − T�

h) + (Tr − T�
r )) ,

which is meant to simulate an impaired recovery control.

3 null tissue apposition:
Qp = 0 .
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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[case-41-003]

Dc/Ds 1000
Dc 0.01
Ds 1e-005

char time 10

δQc ampl 0
δQc period 0

δp ampl 0.25
δp period 2

Qc factor g 0.8

After the end of a short
perturbation of the
intramural pressure, a
recovery control, though
higher than the previous
homeostatic value but lower
than the optimal value,
cannot prevent the unlimited
increase of the radius.
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition

History ]4: slow recovery, tissue apposition

1 the intramural pressure experiences a short-time bump:

p(t) = p� + δp(t) ;

2 Qc is held fixed to the previous value for the rest of the time:

Qc(t) = Q� ;

3 radial tissue apposition goes into action through a
stress-driven control law:

Qp = Gp
(
Th − T�

h

)
−

(
Tr − φ̃

)
.
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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[case-42-004]

Dc/Ds 1000
Dc 0.01
Ds 1e-005

char time 10

δQc ampl 0
δQc period 0

δp ampl 0.25
δp period 2

Qc factor g 0

Gp 4000
Dp 0.002

After the end of a short
perturbation of the
intramural pressure, radial
tissue apposition goes into
action making the aneurysm
thicken and driving it to a
new homeostatic state at
the starting value of the
hoop stress.
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Numerical simulations
Natural histories
Passive slipping, recovery, null tissue apposition
Passive slipping, slow recovery, tissue apposition
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[case-42-005]

Dc/Ds 1000
Dc 0.01
Ds 1e-005

char time 10

δQc ampl 0
δQc period 0

δp ampl 0.25
δp period 2

Qc factor g 0

Gp 1000
Dp 0.002

After the end of a short
perturbation of the
intramural pressure, a radial
tissue apposition goes into
action making the aneurysm
thicken but failing to drive it
quickly to a new
homeostatic state.
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Summary

Growth of saccular aneurysms

elastic deformation;
change of relaxed configuration.

Multiple remodeling mechanisms

slipping: only passive;
recovery: slow/fast control;
tissue apposition: hoop stress driven control.

Numerical evidence

only recovery control is unable to keep the aneurysm in a
homeostatic state;
control on tissue apposition plays a central role.
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Future work

Better characterization of material properties

evolution of elastic stiffness;
non uniform remodeling parameters.

Weaker assumptions on symmetry

Quantitative calibration and model validation
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