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c Università degli Studi de L’Aquila, L’Aquila, Italy

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]



Abstract

Our study focusses precisely on the two-way coupling between growth and stress, which we
model within the theoretical framework set forth in [1], [2]. In this dynamical theory, bulk
growth is governed by a novel balance law (the balance of remodelling couples). We develop
and implement a layered shell theory, in order to eschew unduly restrictive hypotheses on
growth distribution across the thickness.
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Chapter 1

Introduction

Soft shell-like structures are ubiquitous in living organisms, ranging from organelles and cell
membranes to lymph and blood vessels, the alimentary canal and respiratory ducts, the uri-
nary tract, and the uterus. The mechanical response of all of these structures—a key feature
of their physiological and pathological functioning—is subtle and elusive. Another critical
issue is their ability to grow and remodel, in a way which is both biochemically controlled
and strongly coupled with the prevailing mechanical conditions. While the characterization
of the mechanical response of soft tissue is progressing at a reasonably fast pace nowa-
days, we find that growth mechanics is definitely the weakest link in the modelling chain.
Our study focusses precisely on the two-way coupling between growth and stress, which we
model within the theoretical framework set forth in [1], [2]. In this dynamical theory, bulk
growth is governed by a novel balance law (the balance of remodelling couples). We develop
and implement a layered shell theory, in order to eschew unduly restrictive hypotheses on
growth distribution across the thickness. As a first application, we consider toy problems
inspired by the evolution of saccular aneurisms [3] and by the enlargement of the uterus
during pregnancy [8].
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Chapter 2

Growing body (3D)

Following [1] and [2], we define a body as a smooth manifold B with boundary ∂B and call
complete placement any smooth embedding

p : B → E (2.1)

together with
P : TB → VE (2.2)

such that for any body point b ∈ B, p(b) is a place in the three-dimensional Euclidean
space E. Here VE is the translation vector space of E.

A complete motion is a family of complete placements smoothly parametrized by the
time line R. In such a motion the velocity is described by a base velocity

v|b := ṗ|b (2.3)

and a remodelling velocity
V|b := Ṗ|bP|−1

b (2.4)

Denoting by a tilde any test velocity field (any field belonging to the corresponding space
of realizable velocities), we assume the total working be zero

∫

B

(
b · ṽ + B · Ṽ

)
+

∫

∂B
t · ṽ +

∫

B
−

(
s · ṽ + C · Ṽ + 〈S,∇ṽ〉

)
= 0. (2.5)

Let us assume1

∫

B
C · Ṽ =

∫

D
C · Ṽ (2.6)

∫

B
〈S,∇ṽ〉 =

∫

D
〈S,∇ṽ〉 (2.7)

Different test velocity gradients give rise to different definitions of stress
∫

D
〈S,∇ṽ〉 =

∫

D
S · (∇ṽ∇b) =

∫

D
(S ·Dṽ)J (2.8)

1D is the image of B through a chart χ, while b := χ−1 . For these definitions and more take a look at
Appendix A.
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growing shells (draft) 4

where J := detP and

Dv := ∇v|b P|−1
b = (∇v|b∇b|x)

(∇b|−1
x P|−1

b

)
(2.9)

We define the warp
F |b := ∇p|b P|−1

b (2.10)

The Cauchy stress T is defined by the following relation
∫

D
(S ·Dṽ)J =

∫

p(D)
(S ·Dṽ)

J
det∇p

=
∫

p(D)
T · ∇ṽ∇p−1 (2.11)

Note that

T · ∇ṽ∇p−1 = T · ∇ṽ∇b∇p−1 (2.12)

and
(S ·Dṽ)

J
det∇p

= (S · ∇ṽP−1)
1

detF
= (S · ∇ṽ∇b (P∇b)−1)

1
detF

(2.13)

Hence
T ∇p−T =

1
detF

S (P∇b)−T (2.14)

from which we arrive at the classical formula

T =
1

detF
SFT (2.15)

The stress S is a Piola-like stress tensor, like the stress S in (2.8). The two stress tensors
are related by

S · (∇ṽ∇b) = (S ·Dṽ)J (2.16)

Substituting (2.9) we get

S · (∇ṽ∇b) = (S ·Dṽ)J = S · ∇ṽ∇b(P∇b)−1J (2.17)

Hence
S =

1
J S (P∇b)T (2.18)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]



Chapter 3

Spherical shapes of a thick
spherical shell (3D model)

3.1 Placements and gradients

Let us consider a family of placements defined by1

p(b) = p(x) = pκ(ξ, θ, φ) := xo + ρ(ξ) ar(κ(ξ, θ, φ)), (3.1)

with x = κ(ξ, θ, φ) and b = b(x). The gradient of p turns out to be such that

∇p|b γθ(b) = ∇p|x aθ(x) =
ρ(ξ)
ξ

aθ(x), (3.2)

∇p|b γφ(b) = ∇p|x aφ(x) =
ρ(ξ)
ξ

aφ(x), (3.3)

∇p|b γr(b) = ∇p|x ar(x) = ρ′(ξ) ar(x). (3.4)

By using the orthogonal projectors in VE

N(x) := ar(x)⊗ ar(x), (3.5)
P (x) := I −N(x), (3.6)

the gradient of p can be given the expression

∇p|b∇b|x = ∇p|x =
ρ(ξ)
ξ
P (x) + ρ′(ξ)N(x). (3.7)

The relaxed stance, resembling ∇p, will be given as

P|b∇b|x = αh(ξ)P (x) + αr(ξ)N(x) (3.8)

From the inverse
∇b|−1

x P|−1
b =

1
αh(ξ)

P (x) +
1

αr(ξ)
N(x) (3.9)

1For definitions of b, p, pκ see appendix A.
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growing shells (draft) 6

we can obtain the warp expression

F |b = (∇p|b∇b|x)
(∇b|−1

x P|−1
b

)

=
(
ρ(ξ)
ξ
P (x) + ρ′(ξ)N(x)

)(
1

αh(ξ)
P (x) +

1
αr(ξ)

N(x)
)

=
ρ(ξ)
ξαh(ξ)

P (x) +
ρ′(ξ)
αr(ξ)

N(x)

= λh(ξ)P (x) + λr(ξ)N(x) (3.10)

with

λh(ξ) :=
ρ(ξ)
ξαh(ξ)

, λr(ξ) :=
ρ′(ξ)
αr(ξ)

. (3.11)

Hence
(F |b)TF |b = λh(ξ)2 P (x) + λr(ξ)2N(x). (3.12)

Let us consider in a complete motion the expression of the relaxed stance

P(τ)|b∇b|x = αh(ξ, τ)P (x) + αr(ξ, τ)N(x) (3.13)

By differentiating with respect to time

Ṗ(τ)|b∇b|x = α̇h(ξ, τ)P (x) + α̇r(ξ, τ)N(x) (3.14)

we get the expression for the corresponding velocity field (2.4)

V|b = Ṗ|bP|−1
b = (Ṗ|b∇b|x)(P|b∇b|x)−1 = βh(ξ, τ)P (x) + βr(ξ, τ)N(x) (3.15)

with
βh(ξ, τ) :=

α̇h(ξ, τ)
αh(ξ, τ)

, βr(ξ, τ) :=
α̇r(ξ, τ)
αr(ξ, τ)

. (3.16)

By differentiating (3.7) with respect to time and using (2.3) we get

∇v|b∇b|x = ∇ṗ|b∇b|x = ∇ṗ|x =
ρ̇(ξ)
ξ
P (x) + ρ̇′(ξ)N(x). (3.17)

The gradient (2.9) has the following expression

Dv = (∇v|b∇b|x)
(∇b|−1

x P|−1
b

)
(3.18)

=
(
ρ̇(ξ)
ξ
P (x) + ρ̇′(ξ)N(x)

)(
1

αh(ξ)
P (x) +

1
αr(ξ)

N(x)
)

=
ρ̇(ξ)
ξαh(ξ)

P (x) +
ρ̇′(ξ)
αr(ξ)

N(x)

=
v(ξ)
ξαh(ξ)

P (x) +
v′(ξ)
αr(ξ)

N(x)

= (λ̇h + λhβh)P (x) + (λ̇r + λrβr)N(x) (3.19)

= (gh + λhβh)P (x) + (gr + λrβr)N(x) (3.20)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]



growing shells (draft) 7

with
v(ξ, τ) := ρ̇(ξ, τ) (3.21)

and
gh(ξ, τ) := λ̇h(ξ, τ), gr(ξ, τ) := λ̇r(ξ, τ). (3.22)

Hence2

∫

D

(
C · Ṽ + (S ·Dṽ)J

)
=

∫

D

(
2sh(g̃h + λhβ̃h)J + sr(g̃r + λrβ̃r)J + 2ch β̃h + cr β̃r

)

=
∫

D

(
2shJg̃h + srJg̃r + 2(ch + λhshJ)β̃h + (cr + λrsrJ)β̃r

)

=
∫

D

(
2λhshJ

ṽ

ρ
+ λrsrJ

ṽ′

ρ′
+ 2ch β̃h + cr β̃r

)
(3.23)

where J = α2
hαr.

3.2 Energetic response

We look at the power of the hyperelastic part of the stress, which we denote by Č and Š,
as the time derivative of a potential along any trajectory

∫

D
$̌(F,P) =

∫

D

(
Č · V + (Š ·Dv)J

)
=

∫

D
ψ̇(F,P) (3.24)

From (3.23) we get

ψ̇(λh, λr;αh, αr) = 2šhJgh + šrJgr + 2(čh + λhšhJ)βh + (čr + λr šrJ)βr

= 2šhJλ̇h + šrJλ̇r + 2(čh + λhšhJ)
α̇h

αh
+ (čr + λr šrJ)

α̇r

αr
(3.25)

In order for a potential ψ to exist, the following relations should hold

šh =
1
2
∂ψ

∂λh
J−1 (3.26)

šr =
∂ψ

∂λr
J−1 (3.27)

čh =
αh

2
∂ψ

∂αh
− λhšhJ (3.28)

čr = αr
∂ψ

∂αr
− λr šrJ (3.29)

Note how the last two conditions relate the stress Č to the stress Š. Now let us assume
that3

ψ(λh, λr;αh, αr) = ϕ(λh, λr)J = ϕ(λh, λr)α2
hαr (3.30)

2For safe transformations of the expression of the inner working we used a Mathematica Notebook
[math/stress-dec/decomp-13.nb]. One may look at [math/stress-dec/decomp-13.nb.pdf].

3This assumption deserves at least some motivation.

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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The previous expressions get the simpler form

šh =
1
2
∂ϕ

∂λh
(3.31)

šr =
∂ϕ

∂λr
(3.32)

čh = J(ϕ− λhšh) (3.33)

čr = J(ϕ− λr šr) (3.34)

3.3 Dissipation inequality

$(F,P) = ψ̇(F,P) +$+ (3.35)

where
$(F,P) := C · V + (S ·Dv)J (3.36)

sh =
1
2
∂ϕ

∂λh
+ s+h (3.37)

sr =
∂ϕ

∂λr
+ s+r (3.38)

ch = J(ϕ− λhsh) + c+
h (3.39)

cr = J(ϕ− λrsr) + c+
r (3.40)

3.4 Incompressibility and reactive stress

Biological materials are usually incompressible. From the incompressibility condition

detF = λ2
hλr = 1 (3.41)

we get the following relations for any isochoric motion

λr =
1
λ2

h

,
λ̇r

λr
= −2

λ̇h

λh
,

gr

λr
= −2

gh

λh
(3.42)

Because of the incompressibility the stress has a reactive part, which we denote by Ĉ and
Ŝ, whose working vanishes for any isochoric test velocity. From (3.23)
∫

D

(
Ĉ · Ṽ + (Ŝ ·Dṽ)J

)
=

∫

D

(
2ŝhJg̃h + ŝrJg̃r + 2(ĉh + λhŝhJ)β̃h + (ĉr + λr ŝrJ)β̃r

)

=
∫

D

(
2J(λhŝh − λr ŝr)

g̃h

λh
+ 2(ĉh + λhŝhJ)β̃h + (ĉr + λr ŝrJ)β̃r

)
= 0

(3.43)

Hence the reactive stress is characterized by

λhŝh = λr ŝr (3.44)
ĉh = −λhŝhJ (3.45)
ĉr = −λr ŝrJ = ĉh (3.46)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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Note how the last two conditions relate the stress Ĉ to the stress Ŝ. This allows us to give
the reactive stress the general form

ŝh = π̂/λh (3.47)
ŝr = π̂/λr (3.48)
ĉh = −π̂J (3.49)
ĉr = −π̂J (3.50)

where π is a pressure.

3.5 Energetic response for an incompressible material

The power of the hyperelastic part of the stress is the time derivative of a potential along a
trajectory in any isochoric motion. Let us consider the restriction of the energy to isochoric
motions

ψI(λh;αh, αr) := ψ(λh,
1
λ2

h

;αh, αr) (3.51)

From (3.25) we get

ψ̇I(λh;αh, αr) = 2šhJgh + šrJgr + 2(čh + λhšhJ)βh + (čr + λr šrJ)βr

= 2šhJλ̇h + šrJλ̇r + 2(čh + λhšhJ)
α̇h

αh
+ (čr + λr šrJ)

α̇r

αr

= 2šhJλ̇h − 2šrJλ̇h
λr

λh
+ 2(čh + λhšhJ)

α̇h

αh
+ (čr + λr šrJ)

α̇r

αr

= 2J(λhšh − λr šr)
λ̇h

λh
+ 2(čh + λhšhJ)

α̇h

αh
+ (čr + λr šrJ)

α̇r

αr
(3.52)

For the hyperelastic stress let us consider the decomposition

λhšh = λhšoh + π̌

λr šr = λr šor + π̌
(3.53)

where
π̌ :=

2λhšh + λr šr
3

(3.54)

is the spherical part, while the deviatoric part have the property

2λhšoh + λr šor = 0 (3.55)

It is convenient to define also

čo
h := čh + π̌J
čo
r := čr + π̌J

(3.56)

By substituting decompositions (3.53) and (3.56) into (3.52) we get

ψ̇I(λh;αh, αr) = 6Jλhšoh
λ̇h

λh
+ 2(čo

h + λhšohJ)
α̇h

αh
+ (čo

r − 2λhšohJ)
α̇r

αr
(3.57)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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In order for the potential ψI to exist the following relations should hold

šoh =
1
6
∂ψI

∂λh
J−1 (3.58)

šor = −λ
3
h

3
∂ψI

∂λh
J−1 (3.59)

čo
h =

αh

2
∂ψI

∂αh
− λhšohJ (3.60)

čo
r = αr

∂ψI

∂αr
+ 2λhšohJ (3.61)

Note how the last two conditions relate the stress Č to the stress Š. Note also that the
spherical part π̌ of the stress is not determined by ψI. Now let us consider the restriction

ϕI(λh) := ϕ(λh,
1
λ2

h

) (3.62)

and assume that
ψI(λh;αh, αr) = ϕI(λh)J = ϕI(λh)α2

hαr (3.63)

The previous expressions become

šoh =
1
6
∂ϕI

∂λh
(3.64)

šor = −λ
3
h

3
∂ϕI

∂λh
(3.65)

čo
h = J(ϕI − λhšoh) (3.66)

čo
r = J(ϕI + 2λhšoh) (3.67)

3.6 Spherical and deviatoric stress (a summary)

As a consequence of the characterization of energy and stress for an incompressible material
it is useful to derive a new version of expression (3.23) in terms of spherical and deviatoric
parts of both stress and velocity gradient.

Whatever the stress be, hyperelastic or reactive, we can consider the decomposition

λhsh = λhsoh + π

λrsr = λrsor + π
(3.68)

where
π :=

2λhsh + λrsr
3

(3.69)

is the spherical part, while the deviatoric part have the property

2λhsoh + λrsor = 0 (3.70)

It is conveniet to define also the following decomposition for the remodelling stress

ch = co
h − πJ

cr = co
r − πJ

(3.71)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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The same kind of decomposition can be conceived for the velocity gradients as well. Let us
define

d :=
1
3

(
2
gh

λh
+
gr

λr

)
(3.72)

e :=
2βh + βr

3
(3.73)

and consider the decompositions

gh = go
h + λh d

gr = go
r + λr d

(3.74)

βh = βo
h + e

βr = βo
r + e

(3.75)

By substituting (3.68), (3.70), (3.71), (3.74) and (3.75) into (3.23) we get4.
∫

D

(
C · Ṽ + (S ·Dṽ)J

)

=
∫

D

(
2sohJg̃o

h + sorJg̃o
r + 2(co

h + λhsohJ)β̃o
h + (co

r + λrsorJ)β̃o
r + 3πJ d̃+ (2co

h + co
r) ẽ

)

=
∫

D

(
6sohJg̃o

h + 2(co
h − co

r + 3λhsohJ)β̃o
h + 3πJ d̃+ (2co

h + co
r) ẽ

)

=
∫

D

(
6sohJ(g̃o

h + λhβ̃
o
h) + 2co

h(ẽ+ β̃o
h) + co

r(ẽ− 2β̃o
h) + 3πJ d̃

)

=
∫

D

(
2(−p+ λhsoh)J ṽ

ρ
− (p+ 2λhsoh)J ṽ

′

ρ′
+ 2(pJ + co

h) β̃h + (pJ + co
r) β̃r

)
(3.76)

From the characterization of the stress, summarized at the end of sect. 3.5,

soh = šoh =
1
6
∂ϕI

∂λh
(3.77)

sor = šor = −λ
3
h

3
∂ϕI

∂λh
(3.78)

co
h = čo

h = J(ϕI − λhšoh) (3.79)

co
r = čo

r = J(ϕI + 2λhšoh) (3.80)

Finally, the complete expressions for both reactive and hyperelastic stress are

sh = ŝh + šh =
π̂

λh
+ šoh +

π̌

λh
=

π

λh
+

1
6
∂ϕI

∂λh
(3.81)

sr = ŝr + šr =
π̂

λr
+ šor +

π̌

λr
=

π

λr
− λ3

h

3
∂ϕI

∂λh
(3.82)

ch = ĉh + čh = −π̂J + čo
h − π̌J = −πJ + J(ϕI − λhšoh) = J

(
ϕI − λh

6
∂ϕI

∂λh
− π

)
(3.83)

cr = ĉr + čr = −π̂J + čo
r − π̌J = −πJ + J(ϕI + 2λhšoh) = J

(
ϕI +

λh

3
∂ϕI

∂λh
− π

)
(3.84)

where the total spherical stress π := π̂ + π̌ is made of two undistinguishable parts.
4See [math/stress-dec/decomp-13.nb.pdf]

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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3.7 Cauchy stress

From (2.15), remembering that detF = 1, we can easily compute the Cauchy stress com-
ponents

th = shλh

tr = srλr

(3.85)

3.8 Strain energy function for an incompressible material

Let us assume that the material is incompressible (detF = 1) and consider the Fung strain
energy, as in ([3], p. 395, (8.4)),

ϕF = c(eq − 1) (3.86)

with
q = c1δ

2
1 + c2δ

2
2 + 2c3δ1δ2 (3.87)

where, denoting by λ1 and λ2 the principal stretches,

δ1 :=
1
2

(
λ2

1 − 1
)
, δ2 :=

1
2

(
λ2

2 − 1
)

(3.88)

are the eigenvalues of the Green-Lagrange tensor

D :=
1
2

(
FTF − I

)
(3.89)

Fung strain energy is defined per undeformed (relaxed in this context) surface area and
it is deviced for a direct thin shell model (as remarked in [3]). For an isotropic shell its
expression turns into

q = 2(c1 + c3)δ2h = 2Γ δ2h = 2Γ
1
4
(λ2

h − 1)2 =
Γ
2

(λ2
h − 1)2 (3.90)

where Γ = c1 + c3. According to [7] and [6] the material parameter identification for
aneurysmal tissue was performed on experimental data (in [5]) by using the balance equation

cΓeq(λ2
h − 1) =

pR
2

(3.91)

where the right hand side expression is the Laplace formula for the stress in a spherical
membrane with radius R and inner pressure p. The best-fit values were c = 0.88 N/m and
Γ = (c1 + c3) = 12.99. The thickness of the sample was H = 27.8× 10−6 m.

To recover the response function for the Cauchy stress implicitly used on the left side
of (3.91), we first divide both terms by the actual thickness h

c

h
Γeq(λ2

h − 1) =
pR
2h

(3.92)

so getting a balance equation for the mean Cauchy stress. Then observe that the derivative
of (3.86) with respect to λ is

∂ϕF

∂λh
= 2cΓeqλh(λ2

h − 1) (3.93)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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Hence
σ̌(λ) =

c

h
Γeq(λ2

h − 1) =
1

2λhh
∂ϕF

∂λh
(3.94)

By using explicitly the stretches λh and λr and the incompressibility condition we get at
last

σ̌(λh) =
1

2λhh
∂ϕF

∂λ
=

1
2λhλrH

∂ϕF

∂λh
=
λh

2H
∂ϕF

∂λh
(3.95)

whose graph5 is shown in Fig. 3.7.
It is interesting to note that by replacing (3.95) into (3.92) we get the balance equation

σ̌(λh) =
pR
2h

(3.96)

for a thin shell with thickness different from that of the sample used in the experiments.
This fact allows us to show how the stress depends on the undeformed (relaxed in this
context) radius to thickness ratio, in order to guess the effect of growth on the stress. To
this end, denoting by R̄ and h̄ the relaxed values of radius and thickness, and by k their
ratio, we get

pR
2h

=
pλhR̄
2λrh̄

=
pλ3

h

2
k (3.97)

The balance equation (3.96) becomes

λh

2H
∂ϕF

∂λh
=
pλ3

h

2
k (3.98)

Fig. 3.8 shows how the pressure p is related, for a fixed value of k, to the stretch λh through
(3.96), while Fig. 3.9 shows how, for a fixed value of p, the stress decreases for decreasing
values of k, so making it convenient for the thickness to grow.

Now come to the question about how the Fung strain energy can be related to the strain
energy in (3.62). From (3.85) the Cauchy stress is given through (3.64) by

th = shλh =
λh

6
∂ϕI

∂λh
+ π (3.99)

tr = srλr = −λh

3
∂ϕI

∂λh
+ π (3.100)

In order to reproduce the conditions of the experimental setup we may assume the radial
stress tr was linear in the shell thickness. As a consequence its mean value would be

tr = −p
2

(3.101)

Substituting this value into the expression above and solving for π we get

th =
λh

2
∂ϕI

∂λh
− p

2
(3.102)

The balance equation

th =
pR
2h

(3.103)

5From [math/Fung-Humphrey/Humphrey-09.nb] or [math/Fung-Humphrey/Humphrey-09.nb.pdf]

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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will transform, through (3.97) and (3.102), into

λh

2
∂ϕI

∂λh
=
p

2
(λ3

hk − 1) (3.104)

Comparing this expression with (3.98) we get

∂ϕI

∂λh
=
∂ϕF

∂λh

1
H
λ3

hk − 1
λ3

hk
(3.105)

As the ratio k in the experiments was of order 102 while λh was near to 1, we may set

ϕI(λh) :=
1
H
ϕF(λh) (3.106)

3.9 Modified Fung strain energy

All the information collected through experiments is confined to values λ > 1, as they were
performed on a membrane in tension. An important issue is how to device extensions of
the Fung energy to values λ < 1. Here are some proposals of ideal extensions, waiting for
experimental data.

The energy should be expected to rise to infinity for λh → 0, as it does for λh →∞. To
this end the strain energy function can be modified by multiplying the original expression
by (2λh + λr)/3

ϕFm(λh) =
1
3
c
(
eq − 1

) (
2λh +

1
λ2

h

)
(3.107)

A comparison6 is showed in Fig. 3.1, Fig. 3.2 and Fig. 3.4, Fig. 3.5. A different way of
modifying the Fung strain energy is to set

q := 2 Γδ2h if λh ≥ 1 (3.108)

q := c1(δ2h + δ2r ) + 2c3δhδr if λh < 1 (3.109)

The underlying idea is to exchange λr and λh when λr > 1. After substituting Γ for (c1+c3),
as in the first case, we assume c3 = Γ/3 in order to enforce continuity of the energy function
up to the second derivative, thus obtaining

q :=
Γ(λ2

h − 1)2(1 + 2λ2
h − λ6

h + λ8
h)

6λ8
h

if λh < 1 (3.110)

Look at Fig. 3.3 and Fig. 3.6 for a comparison.7 As an alternative we may set

q := c1δ
2
r + 2c3δhδr if λh < 1 (3.111)

assuming here c3 = Γ/4 to enforce continuity up to the second derivative, thus obtaining

q :=
Γ
16

(
1
λ4

h

− 1
)(

2λ2
h +

3
λ4

h

− 5
)

if λh < 1 (3.112)

Graphs of energy and stress can hardly be distinguished from the previous ones.8

6From [math/Fung-tv/Fung-tv-14.nb], or [math/Fung-tv/Fung-tv-14.nb.pdf]
7From [math/Fung-adc/Fung-adc-06-v1.nb], or [math/Fung-adc/Fung-adc-06-v1.nb.pdf].
8Look at [math/Fung-adc/Fung-adc-06-v2.nb], or [math/Fung-adc/Fung-adc-06-v2.nb.pdf].
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3.10 Pressure from inside or from outside

A pressure π which is a traction orthogonal to the body shape boundary p(∂B) can be
defined by ∫

∂B
t · ṽ =

∫

p(∂B)
π n · ṽ (3.113)

As p(b(x)) = p(x), by using the area transformation formula we get
∫

p(∂B)
π n · ṽ =

∫

p(∂D)
π n · ṽ =

∫

∂D
π n · ṽ det∇p ‖(∇p−Tm)‖ (3.114)

where the unit external normal vector n on p(∂D) and the unit external normal vector m
on ∂D are related by

n =
∇p−Tm

‖(∇p−Tm)‖ (3.115)

By substituting this expression we obtain
∫

p(∂B)
π n · ṽ =

∫

∂D
π (∇p−Tm) · ṽ det∇p (3.116)

In the case at hand it turns out that

(∇p−Tm) · ṽ det∇p = ṽ (λhαh)2 (3.117)

3.11 Local balance equations

If there is no bulk brute force distribution, the balance equations, as they arise from (2.5)
and (3.43), are9

ξαh

(− 2αrsh + 2αhsr + ξ(2srα′h + αhs′r)
)

= 0 (3.118)

2ξ2
bh − ch

αh
= 0 (3.119)

ξ2
br − cr

αr
= 0 (3.120)

where bh and br are the components of the external bulk remodelling couple. Arranging
terms in a different way and dropping factor ξ the three balance equations turn into

−2J sh
αh

+ 2J sr
αr

+ ξJ
(

2
α′h
αh

sr
αr

+
s′r
αr

)
= 0 (3.121)

bh − ch = 0 (3.122)

br − cr = 0 (3.123)

Adding dissipative terms to expressions (3.83) and (3.84), as in Sec. 3.3, the inner remod-
elling couple is constitutively given by

ch = J(ϕ− λhsh) + c+
h (3.124)

cr = J(ϕ− λrsr) + c+
r (3.125)

9See [math/stress-dec/decomp-13.nb] or [math/stress-dec/decomp-13.nb.pdf].

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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For describing a growing spherical aneurysm the following constitutive prescriptions have
been deviced

c+
h := vh

α̇h

αh
(3.126)

c+
r := vr

α̇r

αr
(3.127)

bh := gh (α?
h − ᾱh) (3.128)

br := −gr (t?h − λhsh) (3.129)

The first two expressions describe just a resistance to growth. The last two expressions
describe a control action on growth with two concurrent goals: the first one is to reach a
fixed value α?

h of the average stretch ᾱh, the second one is to reach a fixed value t?h of the
Cauchy stress λhsh.

Substituting all of these expressions into the balance equations we get

−2J sh
αh

+ 2J sr
αr

+ ξJ
(

2
α′h
αh

sr
αr

+
s′r
αr

)
= 0 (3.130)

vh
α̇h

αh
= −J(ϕ− λhsh) + gh (α?

h − ᾱh) (3.131)

vr
α̇r

αr
= −J(ϕ− λrsr)− gr (t?h − λhsh) (3.132)

If the stress S is replaced by stress S through (2.18), the balance equation (3.130) will turn
into

− 2sh + 2sr + ξs′r = 0 (3.133)

The boundary equations, at the outer side and at the inner side, are respectively

ρ2
out tout − ξ2out sr = 0 (3.134)

ρ2
in tin + ξ2in sr = 0 (3.135)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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Figure 3.7: Cauchy stress response given by Fung strain energy
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Figure 3.9: Cauchy stress versus relaxed radius to thickness ratio (inner pressure p = 10 kPa)
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Chapter 4

Affine placements of a thin
spherical shell (3D model)

4.1 Placement

All the matter in this section is intented to be used to build up the shell model as a two-
dimensional continuum.

Thinking of a shell as a thin body we can consider the following affine approximation
for a generic placement [see appendix A]

p(b) = p(x) = p(κ(ro, θ, φ)) + (ξ − ro)∇p|κ(ro,θ,φ)ar(κ(ro, θ, φ)), (4.1)

with x = κ(ξ, θ, φ) and b = b(x). By defining

l(κ(ro, θ, φ)) := ∇p|κ(ro,θ,φ)ar(κ(ro, θ, φ)) (4.2)

and setting ζ := (ξ − ro), we can rewrite the placement expression as

p(b) = p(κ(ξ, θ, φ)) = p(κ(ro, θ, φ)) + ζ l(κ(ro, θ, φ)). (4.3)

Computing the gradient from this expression we get

∇p|xar(x) = l(κ(ro, θ, φ)), (4.4)

∇p|xaθ(x) = ∇p|κ(ro,θ,φ)aθ(κ(ξ, θ, φ)) + ζ∇l|κ(ro,θ,φ)aθ(κ(ξ, θ, φ)), (4.5)

∇p|xaφ(x) = ∇p|κ(ro,θ,φ)aφ(κ(ξ, θ, φ)) + ζ∇l|κ(ro,θ,φ)aφ(κ(ξ, θ, φ)). (4.6)

By introducing p̄ and l such that

p̄(b) = p(κ(ro, θ, φ)), (4.7)
l(b) = l(κ(ro, θ, φ)) (4.8)

expression (4.3) can be rewritten as

p(b) = p̄(b) + ζ l(b). (4.9)

20
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Pulling back to B the gradient expressions (4.4), (4.5),(4.6), and dropping subscript b, we
get

∇p γ3 = l, (4.10)
∇p γ1 = (∇p̄+ ζ∇l) γ1, (4.11)
∇p γ2 = (∇p̄+ ζ∇l) γ2. (4.12)

Let us define now Po and Lo such that1

Po γ1 = ∇p̄ γ1, (4.13)
Po γ2 = ∇p̄ γ2, (4.14)
Po γ3 = l, (4.15)

Lo γ1 = ∇l γ1, (4.16)
Lo γ2 = ∇l γ2, (4.17)
Lo γ3 = 0. (4.18)

The above definitions2 can be summarized by the following shorthand

Po := (∇p̄ | l), (4.19)
Lo := (∇l | 0). (4.20)

The expression for ∇p can now be given the form

∇p = Po + ζ Lo (4.21)

By defining3

Po := (P̄ | l) (4.22)
Lo := (L̄ | 0) (4.23)

we can give the relaxed stance P the same form as ∇p
P = Po + ζ Lo (4.24)

The warp
F |b := ∇p|b P|−1

b (4.25)

becomes, dropping again subscript b,

F = (Po + ζ Lo)(Po + ζ Lo)−1 (4.26)

Neglecting terms of order o(ζ) we get the following expression

F = Fo + ζ Bo (4.27)

with

Fo := PoP−1
o (4.28)

Bo := (Lo − FoLo)P−1
o (4.29)

Here a clear definition of P−1 and P−1
o should be given!

1Here subscript o stands for defined at ξ = ro (the “middle surface”) while an overbar denotes the
restriction of p to the middle surface.

2Note that these definitions do not depend on time since vectors γi do not.
3Here overbars denote linear transformations from the two-dimensional vector space tangent to the middle

surface into VE.

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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4.2 Velocity fields

Differentiating with respect to time from the definitions above we get

ṗ = ˙̄p+ ζ l̇ (4.30)

∇ṗ = Ṗo + ζ L̇o (4.31)

with

Ṗo = (∇ ˙̄p | l̇) (4.32)

L̇o = (∇l̇ | 0) (4.33)

We can also define

v̄ := ˙̄p (4.34)

w := l̇ (4.35)

and
v := ṗ = v̄ + ζ w (4.36)

It easy to check the consistency of the definition above

∇v = (∇ ˙̄p | l̇) + ζ (∇l̇ | 0) = (∇v̄ | w) + ζ (∇w | 0) = Ṗo + ζ L̇o = ∇ṗ (4.37)

As the derivative of the remodelling stance is

Ṗ = Ṗo + ζ L̇o (4.38)

with

Ṗo = ( ˙̄P | l̇) (4.39)

L̇o = ( ˙̄L | 0) (4.40)

the remodelling velocity, neglecting terms of order o(ζ), turns out to be

V := ṖP−1

= (Ṗo + ζ L̇o)(Po
−1 − ζ Po

−1LoPo
−1)

= ṖoPo
−1 + ζ (L̇o − ṖoPo

−1Lo)Po
−1

(4.41)

Hence
V = Vo + ζWo (4.42)

with

Vo := ṖoPo
−1 (4.43)

Wo := (L̇o − VoLo)Po
−1 (4.44)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]



Chapter 5

Growing shells (2D model)

Warning: this section has only been roughly shaped (rephrasing sect. 4) and has some in-
consinstencies! It is still not clear whether B should be a simple 2D-manifold or a fiber
bundle. The main point is how to make P invertible. Another point is whether the shear
strain is hidden somewhere or not.

5.1 Placements

We define a shell as a smooth manifold B (fiber boundle with one-dimensional fiber) with
boundary ∂B and call complete placement any smooth embedding

(p̄, l, P̄, l, L̄) : B → E× VE× (VE⊗ VE)× VE× (VE⊗ VE) (5.1)

such that for any body point (b, ν) ∈ B, p̄(b) is a place in the three-dimensional Euclidean
space E, l(b) is a vector in the translation space VE at p̄(b) ∈ E, the image of p̄ is a
two-dimensional manifold S.

A complete motion is a family of complete placements smootly parametrized by the
time line R. We call base velocity

v̄|b := ˙̄p|b (5.2)

w|b := l̇|b (5.3)

Extended gradients

P := (∇p̄ | l), (5.4)
L := (∇l | 0), (5.5)

which stand for P and L such that, at any point (b, ν),

P |b γ1(b) = ∇p̄|b γ1(b), (5.6)
P |b γ2(b) = ∇p̄|b γ2(b), (5.7)

P |b ν = l(b), (5.8)

L|b γ1(b) = ∇l|b γ1(b), (5.9)
L|b γ2(b) = ∇l|b γ2(b), (5.10)

L|b ν = 0. (5.11)

23
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Extended remodeling couples

P := (P̄ | l), (5.12)
L := (L̄ | 0). (5.13)

Remodelling velocity

V|b := Ṗ|bP|−1
b (5.14)

W|b := L̇|bP|−1
b (5.15)

(5.16)

Warp

F |b := P |b P|−1
b , (5.17)

B|b := (L|b − F |bL|b)P|−1
b . (5.18)

5.2 Balance

Denoting by a tilde any test velocity field, belonging to the corresponding space of realizable
velocities, we assume the total working be zero

∫

B

(
b · ṽ + B · Ṽ + T · W̃

)
+

∫

∂B
t · ṽ +

∫

B
−

(
s · ṽ + C · Ṽ + S · ∇ṽ + M · ∇w̃

)
= 0. (5.19)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]



Chapter 6

Axially symmetric spherical shell
(2D model)
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Chapter 7

Multilayered shells

(
p1, l1) : B → E× VE (7.1)

(p2, l2) : B → E× VE (7.2)
(p3, l3) : B → E× VE (7.3)

26



Appendix A

Backstage

We describe here all the geometric machinery which makes it possible to perform computa-
tions on scalar expressions by means of coordinate systems, parametrizations, vector bases.
All this matter, usually left backstage, deserves nevertheless a clear definition.

A.1 Body chart

Denoting by E the standard Euclidean space, let us assume that a chart (or an atlas))

χ : B → E (A.1)

is given together with a parametrization (or a family of local parametrizations)

κ : K → D, K ⊂ Rn, (A.2)

where
D := χ(B) ⊂ E (A.3)

will be called the dummy shape, or simply dummy. These maps induce two different
parametrizations of B

b := χ−1 : D → B, (A.4)

bκ := χ−1 ◦ κ : K → B. (A.5)

They are both useful, even though the second one, giving rise to representations in Rn, will
be placed behind the first one giving rise to representations in E.

Through (A.4) and (A.5) any placement (2.1) can be given one of the following repre-
sentations

p := p ◦ b : D → E, (A.6)
pκ := p ◦ bκ : K → E. (A.7)

The vectors tangent to curves on B through b = b(x) are

γi(b) = ∇b|x ai(x) (A.8)

The gradient maps

∇p : TB → VE, (A.9)
∇p : TD → VE, (A.10)
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Figure A.1: The dummy shape D := χ(B) ⊂ E

are related by
∇b : TD → TB, (A.11)

through the tangent vector transformations

∇p|bγi(b) = ∇p|b∇b|x ai(x) = ∇p|x ai(x) (A.12)

at x = χ(b). Hence
∇p|b∇b|x = ∇p|x (A.13)

Here VE is the translation vector space of E, while

TE = E× VE (A.14)

is the tanget bundle of E. Note that the fiber at the place x ∈ E is

TxE = VE (A.15)

A.2 Parametrization of a sphere

Let us assume that D is a ball without an axis. A parametrization (A.2) suitable for our
purposes is defined, denoting by {e1, e2, e3} a basis in VE, through the expression

χ(b) = κ(ξ, θ, φ) = xo + ξ(cosφ cos θ e3 + cosφ sin θ e1 + sinφ e2), (A.16)

with parameters ranging in the following intervals

r0 − ε ≤ξ ≤ r0 + ε,

−π <θ ≤ π,

−π
2
<φ <

π

2
.

(A.17)

[Draft: A.T., February 4, 2006 – October 5, 2007 (17:15)]
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Figure A.2: Spherical coordinates in E

The points left out are those belonging to the diameter in the e2 direction. The vectors
tangent to coordinate curves on D through x = κ(ξ, θ, φ) turn out to be

a3(x) ≡ ar(x) = cosφ cos θ e3 + cosφ sin θ e1 + sinφ e2,

a1(x) ≡ aθ(x) = ξ(− cosφ sin θ e3 + cosφ cos θ e1),
a2(x) ≡ aφ(x) = ξ(− sinφ cos θ e3 − sinφ sin θ e1 + cosφ e2),

(A.18)

with norms

‖ar(x)‖ = 1,
‖aθ(x)‖ = ξ cosφ,
‖aφ(x)‖ = ξ,

(A.19)

and
vol (ar(x), aθ(x), aφ(x)) = ξ2 cosφ. (A.20)

It will also be useful to derive the expression for the gradient of ar

∇ar|xaθ(x) =
1
ξ

aθ(x), (A.21)

∇ar|xaφ(x) =
1
ξ

aφ(x). (A.22)

Note that parametrization (A.16) can be expressed as

χ(b) = κ(ξ, θ, φ) = κ(ro, θ, φ) + (ξ − ro)ar(κ(ro, θ, φ))
= κ̄(θ, φ) + (ξ − ro)ar(κ̄(θ, φ))

(A.23)

with
κ̄(θ, φ) := κ(ro, θ, φ) (A.24)

b̄(κ̄(θ, φ)) := χ−1(κ̄(θ, φ)) (A.25)
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A.3 Integration

Integration on B is defined through the chart χ. If α is a scalar field on B we assume
∫

B
α(b) =

∫

D
α(b(x)) (A.26)

In turn, through the parametrization κ and its Jacobian (A.20), the second integral can be
expressed as

∫

D
α(b(x)) =

∫

K
α(b(κ(ξ, θ, φ))) ξ2 cosφ

=
∫ ξ2

ξ1

(∫ θ2

θ1

(∫ φ2

φ1

α(bκ(ξ, θ, φ)) ξ2 cosφdφ
)
dθ

)
dξ (A.27)

When α is independent of φ and θ (i.e. α is a spherically symmetric field) and the parameter
intervals are those defined in (A.17), the integral becomes

∫

D
α = 4π

∫ r0+ε

r0−ε
ακ(ξ) ξ2 dξ (A.28)

A.4 Parametrization of a spherical surface

Let us assume that D̄ is a spherical surface without poles. The previous parametrization
can be adapted to this case by holding ξ fixed in the following way

χ̄(b) = κ̄(θ, φ) = κ(ro, θ, φ) = xo + ro(cosφ cos θ e3 + cosφ sin θ e1 + sinφ e2), (A.29)

with parameters ranging in the following intervals

−π <θ ≤ π, (A.30)

−π
2
<φ <

π

2
. (A.31)

The points left out are the two poles in the e2 direction. The vectors tangent to coordinate
curves on D̄ through x = κ̄(θ, φ) turn out to be

a1(x) ≡ aθ(x) = ro(− cosφ sin θ e3 + cosφ cos θ e1), (A.32)
a2(x) ≡ aφ(x) = ro(− sinφ cos θ e3 − sinφ sin θ e1 + cosφ e2), (A.33)

with norms

‖aθ(x)‖ = ro cosφ, (A.34)
‖aφ(x)‖ = ro, (A.35)

and
area (aθ(x), aφ(x)) = r2o cosφ. (A.36)

In order to get a basis in VE we can add a third unit vector defined by

ar(x) ≡ a3(x) :=
a1(x)× a2(x)
‖a1(x)‖ ‖a2(x)‖ . (A.37)
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The gradient of ar is

∇ar|xaθ(x) =
1
ro

aθ(x), (A.38)

∇ar|xaφ(x) =
1
ro

aφ(x). (A.39)
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Appendix B

Finite element implementation

We look at a finite element method as a direct method for finding solutions of problems
stated by a working balance principle. Test functions are endowed in the abstract model
definition, instead of arising from a variational principle or by a reformulation in weak form
of a problem initially stated in terms of partial differential equations.1

1To this respect even the choice of interpolating functions could be interpreted as pertaining to the
modeling and not simply a matter of approximation. From this point of view on should face the problem of
defining changes of observer and enforce invariance of the inner working.
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