Homeostatic states and relaxed configurations of a spherical thick shell

Amabile Tatone
Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Università dell'Aquila - Italy

March 23, 2010

$$
\begin{gathered}
\text { A joint work with: } \\
\text { A. Di Carlo }{ }^{\text {a }}, \text { V. Varano }{ }^{a} \text {. } \\
\text { a Università degli Studi "Roma Tre", Roma }
\end{gathered}
$$

Kröner-Lee scheme

$$
\mathbf{F}:=\nabla \mathrm{p} \mathbf{G}^{-1}
$$

A. Tatone

Homeostatic states and relaxed configurations

Spherically symmetric shapes

Transplacement

$$
\mathrm{p}(\mathbf{x}, \tau)=\mathbf{x}_{o}+\rho(\xi, \tau) \mathbf{e}_{r}(\vartheta, \varphi)
$$

Transplacement gradient and remodeling

$$
\begin{gathered}
\left.\nabla \mathrm{p}\right|_{\mathbf{x}}=\rho^{\prime}(\xi) \mathbf{P}_{r}+\xi^{-1} \rho(\xi) \mathbf{P}_{h} \\
\mathbf{G}(\mathbf{x})=\gamma_{r}(\xi) \mathbf{P}_{r}+\gamma_{h}(\xi) \mathbf{P}_{h}
\end{gathered}
$$

Effective stretch

$$
\mathbf{F}(\mathbf{x}):=\left.\nabla \mathfrak{p}\right|_{\mathbf{x}} \mathbf{G}(\mathbf{x})^{-1}=\lambda_{r}(\xi) \mathbf{P}_{r}+\lambda_{h}(\xi) \mathbf{P}_{h}
$$

General setting

Effective stretches

$$
\lambda_{h}(\xi):=\frac{\rho(\xi)}{\xi \gamma_{h}(\xi)}, \quad \lambda_{r}(\xi):=\frac{\rho^{\prime}(\xi)}{\gamma_{r}(\xi)}
$$

Jacobian determinant

$$
J_{p}(\xi):=(\rho(\xi) / \xi)^{2} \rho^{\prime}(\xi)
$$

Relaxed Jacobian

$$
J(\xi):=\gamma_{h}^{2}(\xi) \gamma_{r}(\xi)
$$

General setting

Balance

$$
\begin{gathered}
2\left(\mathrm{~S}_{r}(\xi)-\mathrm{S}_{h}(\xi)\right)+\xi \mathrm{S}_{r}^{\prime}(\xi)=0 \\
\mathrm{~S}_{r}\left(\xi_{\mp}\right)=-\pi_{\mp}
\end{gathered}
$$

π_{\mp} outer reference pressure.

General setting

Cauchy stress

$$
\mathrm{T}_{h}(\xi)=\frac{\rho(\xi)}{\xi} \mathrm{S}_{h}(\xi) / J_{p}(\xi), \quad \mathrm{T}_{r}(\xi)=\rho^{\prime}(\xi) \mathrm{S}_{\mathrm{r}}(\xi) / J_{p}(\xi)
$$

Balance equations

$$
\begin{gathered}
\frac{\rho(\xi)}{\xi}\left(2\left(\mathrm{~T}_{r}(\xi)-\mathrm{T}_{h}(\xi)\right) \rho^{\prime}(\xi)+\rho(\xi) \mathrm{T}_{r}^{\prime}(\xi)\right)=0 \\
\mathrm{~T}_{r}\left(\xi_{\mp}\right)=-\widehat{p}_{\mp}
\end{gathered}
$$

\widehat{p}_{\mp} outer actual pressure

$$
\pi_{\mp}=\left(\rho\left(\xi_{\mp}\right) / \xi_{\mp}\right)^{2} \widehat{p}_{\mp}
$$

Strain energy function

Elastically incompressible material

$$
\begin{equation*}
\lambda_{h}^{2}(\xi) \lambda_{r}(\xi)=1 \tag{1}
\end{equation*}
$$

Fung strain energy function

$$
\begin{equation*}
\phi\left(\lambda_{h}\right)=\frac{c}{H}\left(-1+e^{\frac{1}{2} \Gamma\left(\lambda_{h}^{2}-1\right)^{2}}\right) \tag{2}
\end{equation*}
$$

Because of the incompressibility constraint the response function turns out to be defined only for the deviatoric part of the stress:

$$
\begin{equation*}
\mathrm{T}_{h}(\xi)-\mathrm{T}_{r}(\xi)=\frac{\lambda_{h}(\xi)}{2} \phi^{\prime}\left(\lambda_{h}(\xi)\right) \tag{3}
\end{equation*}
$$

Initial homeostatic state

For a given shape and fixed values of the outer pressure, find the stress and the transformation stretch. It is assumed that the hoop stress field is uniform across the thickness.

Results: It is shown that there exists only one solution (although no formal proof is given). The main point is that the transplacement is the identity map. This also makes Piola stress and Cauchy stress indistinguishable.

Initial homeostatic state

The reference shape is the same as the given shape:

$$
\rho(\xi)=\xi \quad \Rightarrow \quad \lambda_{h} \gamma_{h}=1, \lambda_{r} \gamma_{r}=1
$$

We assume that a homeostatic state is characterized by a uniform hoop stress $\mathrm{S}_{h}^{\diamond}$. The balance equation gives the following solution for the radial stress

$$
\mathrm{S}_{r}(\xi)=\mathrm{S}_{h}^{\diamond}+\frac{C}{\xi^{2}}
$$

By enforcing the two boundary conditions

$$
S_{r}\left(\xi_{\mp}\right)=-\pi_{\mp}
$$

we get both C and S_{h}^{\diamond}

Initial homeostatic state

Piola stress field

$$
\begin{aligned}
\mathrm{S}_{r}(\xi) & =\frac{\pi_{+}\left(\xi^{2}-\xi_{-}^{2}\right) \xi_{+}^{2}+\pi_{-}\left(\xi_{+}^{2}-\xi^{2}\right) \xi_{-}^{2}}{\xi^{2}\left(\xi_{-}^{2}-\xi_{+}^{2}\right)} \\
\mathrm{S}_{h}^{\diamond} & =\frac{\pi_{+} \xi_{+}^{2}-\pi_{-} \xi_{-}^{2}}{\left(\xi_{-}^{2}-\xi_{+}^{2}\right)}
\end{aligned}
$$

Initial homeostatic state

Numerical values

$$
\begin{aligned}
\xi_{m} & =2000 / 20 \mu \mathrm{~m} \\
L & =H / 1.18^{2} \mu \mathrm{~m} \\
c & =0.8769 \times 10^{-6} \times 10^{-1} \mathrm{~N} \mu \mathrm{~m}^{-2}=876.9 \times 10^{-1} \mathrm{kPa} \\
\Gamma & =12.99 \\
H & =27.8 \mu \mathrm{~m} \\
\pi_{+} & =2 \times 10^{-9} \mathrm{~N} \mu \mathrm{~m}^{-2}=2 \mathrm{kPa} \\
\pi_{-} & =12 \times 10^{-9} \mathrm{~N} \mu \mathrm{~m}^{-2}=12 \mathrm{kPa}
\end{aligned}
$$

Initial homeostatic state

Stress

Initial homeostatic state

Effective stretch

Initial homeostatic state

Transformation stretch

Initial homeostatic state

Strain energy density

Unloaded shape

After setting the outer pressure to zero, let the body relax while keeping the transformation stretch unchanged.

Results: The configuration the body reaches is not stress free.

Unloaded shape

Unloading transplacement

Since both γ_{h} and γ_{r} are left unchanged the transplacement is isochoric. From

$$
\lambda_{h}(\xi)=\frac{\rho(\xi)}{\xi \gamma_{h}(\xi)}, \quad \lambda_{r}(\xi)=\frac{\rho^{\prime}(\xi)}{\gamma_{r}(\xi)}, \quad \lambda_{h}^{2}(\xi) \lambda_{r}(\xi)=1
$$

we get

$$
\begin{equation*}
\rho(\xi)=\left(\xi^{3}+\left(\rho_{m}^{3}-\xi_{m}^{3}\right)\right)^{1 / 3} \tag{4}
\end{equation*}
$$

where $\rho_{m}:=\rho\left(\xi_{m}\right)$ is an integration constant.

Unloaded shape

From material response and balance equation

$$
\begin{gathered}
\mathrm{T}_{h}(\xi)-\mathrm{T}_{r}(\xi)=\frac{\lambda_{h}(\xi)}{2} \phi^{\prime}\left(\lambda_{h}(\xi)\right) \\
2\left(\mathrm{~T}_{r}(\xi)-\mathrm{T}_{h}(\xi)\right) \rho^{\prime}(\xi)+\rho(\xi) \mathrm{T}_{r}^{\prime}(\xi)=0
\end{gathered}
$$

we get the boundary value problem

$$
\begin{gathered}
-\lambda_{h}(\xi) \phi^{\prime}\left(\lambda_{h}(\xi)\right) \rho^{\prime}(\xi)+\rho(\xi) \mathrm{T}_{r}^{\prime}(\xi)=0 \\
\mathrm{~T}_{r}\left(\xi_{\mp}\right)=0
\end{gathered}
$$

which we can solve (possibly numerically) for both T_{r} and ρ_{m}, by using also $\lambda_{h}(\xi):=\rho(\xi) / \xi \gamma_{h}(\xi)$. Finally we compute T_{h}.

Reference shape

A. Tatone
 Homeostatic states and relaxed configurations

Unloaded shape

Unloaded shape

Residual effective stretch

Unloaded shape

Residual effective stretch

Unloaded shape

Residual stress

Unloaded shape

Residual stress

Unloaded shape

Residual strain energy density

Unloaded shape

Residual strain energy density

Relaxed configuration

Does a relaxed configuration exist?

$$
\begin{gathered}
\left.\nabla \mathrm{p}\right|_{\mathbf{x}}=\rho^{\prime}(\xi) \mathbf{P}_{r}+\xi^{-1} \rho(\xi) \mathbf{P}_{h} \\
\lambda_{r}(\xi)=\frac{\rho^{\prime}(\xi)}{\gamma_{r}(\xi)}, \quad \lambda_{h}(\xi)=\frac{\rho(\xi)}{\xi \gamma_{h}(\xi)} \\
\lambda_{r}(\xi)=1 \& \lambda_{h}(\xi)=1 \quad \Rightarrow \quad \gamma_{r}(\xi)-\left(\gamma_{h}(\xi)+\xi \gamma_{h}^{\prime}(\xi)\right)=0 \\
\gamma_{r}(\xi)-\left(\gamma_{h}(\xi)+\xi \gamma_{h}^{\prime}(\xi)\right) \\
0.42 \\
0.44 \\
0.45 \\
0.44 \\
0.43 \\
0.02 \\
0.41 \\
0.4-10
\end{gathered}
$$

Kröner-Lee scheme

of

$\mathbf{F}:=\nabla \mathrm{p} \mathbf{G}^{-1}$

Unloaded two layer shape

Unloaded two layer shape

Unloaded two layer shape

Residual effective stretch

Unloaded two layer shape

Residual effective stretch

Unloaded two layer shape

Residual stress

Unloaded two layer shape

Residual stress

Unloaded two layer shape

Residual strain energy density

Unloaded two layer shape

Residual strain energy density

Slice

Reference shape

Slice

Unloaded shape

Slice

Unloaded shape

Slice

Unloaded shape

Slice

Unloaded two layer shape

Slice

Unloaded two layer shape

Slice

Unloaded shape

Slice

Open slice

Slice

Open slice

Slice

Open slice

Slice

Open slice split into 2 layers

Slice

Open slice split into 2 layers

Slice

Open slice split into 2 layers

Slice

Open slice split into 4 layers

Slice

Open slice split into 6 layers

