
Equipowerful surface distributions (DRAFT)

24 April 2000 – June 25, 2001 (13:38)

Abstract

An alternative approach to the Cauchy stress (together with higher order stresses,
usually called hyper-stresses) is proposed, relying on the notion of power expended on
test velocity fields, instead of the notion of resultant force. The stress tensor arises as
the appropriate descriptor of equipowerful classes, on test velocity fields of grade 1, of
surface distributions expending no power on test velocity fields of grade 0. Two different
distributions characterized by the same 1-stress (serialized name for the Cauchy stress)
do not belong to the same equipowerful class of higher grade in general. In order
to characterize higher equipowerful classes we need one more hyper-stress for each
increment of the grade of the theory. It can be shown that a 2-stress corresponds
to edge forces and surface double forces, besides the ordinary surface distribution.
Similarly a 3-stress corresponds to vertex forces, edge double forces and surface triple
forces, besides the previous ones.

Contents

1 Introduction 1

2 Affine model 2

3 Two-dimensional affine bodies 4

4 Second gradient model 6

5 Properties of the moment L 7

6 Velocity patterns 9

1 Introduction

We propose an alternative approach to Cauchy stress, and to higher order stresses (usually
called hyper-stresses), relying on the notion of power expended on test velocities instead of
resultant force.

We ask ourselves the following question: what is the entity characterizing surface force
distibutions which are equipowerful on any spatial velocity field belonging to a polynomial
space of an assigned degree m > 0 ? The Cauchy stress tensor arises as the appropriate
entity characterizing equipowerful classes on test velocity fields og degree 1, made up of
surface force distributions expending no power on velocity fields of degree 0. From our
point of view the mean stress, introduced by Signorini, precedes logically the notion of
pointwise stress (it seams satisfactory the former being an integral quantity).
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Indeed, any two distributions belonging to the same powerful class charcterized by a
value of the 1-stress (serialized name for the Cauchy stress) are not equipowerful on test
velocity fields of degree greater than 1, in general. If we want to tell them apart we need
to introduce more refined equipowerful classes, increasing the grade of the theory. These
new equipowerful classes will be characterized by a new hyper-stress. We can show that
a 2-stress describes a class characterized by edge forces and surface double forces, besides
the ordinary surface distribution. Similarly a 3-stress describes a class characterized by to
vertex forces, edge double forces and surface triple forces, besides the previous ones.

First we show how to build on a body in a regular shape R a force distribution be-
longing to an equipowerful class. To this end velocity fields on increasing degree are used.
Corresponding power expressions are described through “moment tensors” and “mean stress
tensor” of increasing order.

Then we show a naive method for building force distributions adapted to bodies in the
shape of parallelepipeds. This method is by no means restrictive because, whatever the
grade m of the theory is, it is sufficient to work on n-intervals (i.e., with parallelepiped
cuts of a body - a n-dimensional manifold - embedded in the ambient space, of dimension
N ≥ n ). This is allowed by recent results in geometric measure theory which, starting from
entities defined on n-intervals, show how it is possible to cope with the more general case
of sets of finite perimeter ([6]).

The notion of equipower relies on the notion of virtual power introduced in [3]. The force
distributions characterizing to equipowerful classes of grade 2 correspond those described in
[1].

2 Affine model

Let us consider a body in the shape R embedded in a 3-dimensional Eucliden space E . Let
the test velocity fields be the given by

v(x) = vo +G(x − xo), (1)

with

vo ∈ V , G : U → V . (2)

Let the working be

WR(v) := Wout
R (v) +Win

R (v) (3)

with the outer and the inner working given by

Wout
R (v) := (b · vo + L ·G ) vol (R), (4)

Win
R (v) := −(z · vo + T ·G ) vol (R). (5)

Let a rigid test velocity be

v(x) = vo +W (x− xo), (6)

whith W antisymmetric. Assuming the inner working be zero for any rigid test velocity
(principle of material frame indifference) leads to the constitutive requirements

z = o, skw T = O. (7)
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Assuming the total working be zero for any test velocity (principle of null working) leads
to the following balance equations

b = o,

skwL = O,

symL = T.

(8)

We want to find out examples of equipowerful force distributions. Those distributions are
characterized, through (4), by same value of b and L. Any representation satisfying the
balance equations will also illustrate the meaning of the stress tensor T . 1

The first and more interesting example is given by the traction

t := Ln, (9)

where n is the outward unit normal vector field on ∂R, assumed to be piecewise regular.
The outer working is

Wout
R (v) =

∫
∂R

t · v =
∫

∂R
t · vo +

∫
∂R

t ·Gr =
∫

∂R
Ln · vo +

∫
∂R

Ln ·Gr, (10)

where r := (x− xo). The first of the last two integrals is zero because∫
∂R

Ln = L

∫
∂R

n = o. (11)

The second integral will transform, by the divergence theorem, like

Wout
R (v) =

∫
∂R

Ln ·Gr =
∫

∂R
r ⊗ Ln ·G = L

∫
∂R

r ⊗ n ·G

= L

∫
R
grad r ·G = L ·G vol (R).

(12)

As an alternative we can consider the force defined by the field on R

p(x) := Arc, (13)

where A is an endomorphism of V , rc = (x − xc) and xc is the center of the shape R. The
outer working in the finer model is

Wout
R (v) =

∫
R
p · v =

∫
R
p · vo +

∫
R
p ·Gr

=
∫
R
Arc · vo +

∫
R
r ⊗Arc ·G.

(14)

Since it turns out ∫
R
Arc = 0, (15)

then the last expression can be transformed in the following way∫
R
r ⊗Arc ·G = A

∫
R
r ⊗ rc ·G

= A

∫
R
rc ⊗ rc ·G = AJ ·G,

(16)

1All of that can even be applied to a rigid body if we only look at it as a constrained affine body, the
stress T taking the meaning of reactive stress.
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where J is the Euler tensor. We can getWout
R (v) = L·G vol (R) by setting A := LJ−1 vol (R).

The expression for p becomes

p(x) = L

(
J

vol (R)

)−1

rc. (17)

Let us consider now any L (or equivalently, through (8), any T ) and let us try to build up a
force distribution on bodies in the shape Rε, whose working is given by L ·G vol (Rε). For
any sequence Rε ⊂ Bε, being Bε a sequence of spheres of decreasing radius ε, it turns out
that for any ε both distributions (9) and (17) belong to the same equipowerful class. But it
happens that limε→0 ||p(x)|| = ∞, while the expression (9) holds constant.

Another remark is the following. If we replace the surface force distribution (9) with

t := Ln+ t̃, (18)

for the properties of Ln already used, we get to the conclusion∫
∂R

t̃ · vo = 0,
∫

∂R
t̃ ·Gr = 0. (19)

Hence t̃ is a distribution expending no working on velocity fields of degree 0 and 1.
We can obtain a more interesting case by considering the surface force distribution (18)

together with a constant volume distribution

p(x) := po, (20)

and assuming xo = xc, the center of the shape. This time we get to the conclusion

po · vo +
1

vol (R)

∫
∂R

t̃ · vo = 0,
∫

∂R
t̃ ·Gr = 0. (21)

At last it is worth noting that, for an antisymmetric L, the distribution (18) belong to the
same equipowerful class defined, through (8), by the 1-stress T .

3 Two-dimensional affine bodies

Let us consider a shell with thickness distension, in the shape of a surface F , oriented and
with piecewise regular boundary. Let the test velocity fields be

v(x) = vo +Gr, (22)
g(x) = Gn(x), (23)

where n is the unit normal field and g describes both thickness distension velocity and spin.
Let the outer working be

Wout
F (v, g) =

∫
F
p · v +

∫
∂F

t · v +
∫
F
c · g +

∫
∂F

q · g. (24)

We are looking for a system of forces such that, at corresponding velocities (22),

Wout
F (v, g) = (b · vo + L ·G) area (F), (25)
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with b = o. One such a system of forces is defined by

p = (k1 + k2)Ln, t = Lm, c = Ln, q = o, (26)

where k1 and k2 are the principal curvatures and m denotes the outward unit normal field
of tangent vectors on the boundary. By substituting (22) and (26) into (24) we get

Wout
F (v, g) =

∫
∂F

Lm · vo +
∫
F
(k1 + k2)Ln · vo +

∫
∂F

Lm ·Gr

+
∫
F
(k1 + k2)Ln ·Gr +

∫
F
Ln ·Gn.

(27)

We can define at each x ∈ F the orthogonal projection onto the tangent space P : V → T
together with its complement V := I − P . This allows the following decomposition

L ·G = (LV T) · (GV ) + (LPT) · (GP ). (28)

By the divergence theorem for a tangent vector field the first term in (27) can be transformed
as follows∫

∂F
Lm · vo =

∫
∂F

m · LTvo =
∫
F
divs(PLTvo) = −

∫
F
(k1 + k2)Ln · vo. (29)

This result comes from the definition

divs u := tr(P grads u) (30)

where u is a tangent vector field. Using the expressions V = n⊗ n and P = I − n⊗ n, for
any tangent vector a we have

P grads (PL
Tvo)a = −P

(
(grads n)a⊗ n+ n⊗ (grads n)a

)
LTvo

= −
(
n⊗ (grads n)a

)
LTvo = −(Ln · vo)(grads n)a.

(31)

Hence

divs (PLTvo) = tr(P grads (PL
Tvo))

= −(Ln · vo) tr(grads n) = −(Ln · vo)(k1 + k2).
(32)

For the same reasons the third term in (27) will transform as follows∫
∂F

Lm ·Gr =
∫

∂F
m · LTGr =

∫
F
divs(PLTGr)

=
∫
F
tr

(
P grads(PL

TGr)
)

=
∫
F
tr

(
PLTG− (Ln ·Gr) grads n

)
=

∫
F
(LPT) · (GP )−

∫
F
(k1 + k2)Ln ·Gr

(33)

The last term in (27), according to the definition of V , can be put into the form∫
F
Ln ·Gn =

∫
F
(LV T) · (GV ). (34)
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Substituting (29), (33), (34) into (27) we get, by (28),

Wout
F (v, g) =

∫
F
L ·G = L ·G area (F). (35)

Thus condition (25) holds with b = o, for any value of L.
As an alternative let us consider a system of forces defined by

p(x) = Arc, t = o, c = Bn, q = o, (36)

where A is an endomorphism of U and xc is the center of the shape F , not necessarily on
F . By substituting (22), (23) and (36) into (24) we get

Wout
F (v, g) =

∫
F
Arc · vo +

∫
F
Arc ·Gr +

∫
F
Bn ·Gn

= A

∫
F
rc · vo +A

∫
F
r ⊗ rc ·G+B

∫
F
n⊗ n ·G

=
(
A

∫
F
rc ⊗ rc +B

∫
F
n⊗ n

)
·G.

(37)

Condition (25) can be fulfilled by setting B := Ah2, A := LJ−1 area (F), with

J :=
∫
F

(
rc ⊗ rc + n⊗ nh2

)
, (38)

and h denoting the thickness. The expressions for p and c turn out to be

p(x) = L

(
J

area (F)

)−1

rc, c(x) = L

(
J

area (F)

)−1

h2n(x). (39)

4 Second gradient model

Let us consider a body in the shape R embedded in a 3-dimensional Eucliden space E . Let
the test velocity fields be the given by

v(x) = vo +Gr +
1
2

Grr. (40)

where

vo ∈ V , G : U → V , G : U → Lin(U ,V), (41)

with the following symmetry assumption2

Guv = Gvu, ∀u ∈ U , ∀v ∈ U . (42)

Let the outer working and the inner working be

Wout
R (v) = (b · vo + L ·G+ L · G) vol (R), (43)

Win
R (v) = −(z · vo + T ·G+ T · G) vol (R). (44)

2Strictly speaking this would be a simmetry assumption only if G were interpreted as a tensor G : U×U →
V . This assumption is motivated by the fact that both the first and the second gradient of the field (40)
would be independent of the skew part of G.
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Both the moment L and the stress T so defined inherit the symmetry property (42) from
G. Let a rigid test velocity be

v(x) = vo +Wr (45)

where W is antisymmetric. The principle of material frame indifference leads to the consti-
tutive requirements

z = 0, skwT = O. (46)

The principle of null working leads to the following balance equations

b = o,

skwL = O,

symL = T,

L = T.

(47)

We want to find out examples of equipowerful force distributions, for a given value of L and
with b = o, L = O. This will also be useful to illustrate the meaning of the stress T.

5 Properties of the moment L

First observe that ∫
∂R

r ⊗ Ln = L

∫
∂R

r ⊗ n = L

∫
R
grad r = L vol(R). (48)

The working corresponding to the second gradient G can then be put in the form

L · G vol(R) =
∫

∂R
r ⊗ Ln · G =

∫
∂R

Ln · Gr. (49)

At this stage we don’t know whether the integral above can be interpreted as the outer work-
ing of a force distribution whatsoever or not. Assuming the boundary ∂R to be piecewise
regular, let us consider a partition

∂R =
N⋃
i

Fi (50)

into regular faces with piecewise regular boundary and non overlapping interiors. From (49)
we get

L · G vol(R) =
N∑
i

∫
Fi

Ln · Gr. (51)

For any Fi we can define at each x ∈ Fi the orthogonal projection onto the tangent space P :
V → T together with its complement V := I − P . This allows the following decomposition

Ln · Gr = (Ln)V T · (Gr)V + (Ln)PT · (Gr)P. (52)
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Now we may guess that the second term in the above expression is nothing but the working
of forces (Ln)m along the boundary ∂Fi. So let us examine the espression∫

∂Fi

Lnm · Grr (53)

and try to relate it to (52). By applying the divergence theorem we get∫
∂Fi

Lnm · Grr =
∫

∂Fi

m · (Ln)TGrr

=
∫
Fi

divs

(
P (Ln)TGrr

)
=

∫
Fi

tr
(
P grads

(
P (Ln)TGrr

))
.

(54)

By using the simmetry property of G we can derive the following expression for the gradient
applied to any tangent vector a

P grads

(
P (Ln)TGrr

)
a

= 2P (Ln)TGra+ P (L(grads n)a)
T
Grr − (n⊗ (grads n)a)(Ln)

T
Grr

= 2P (Ln)TGra+ P (L(grads n)a)
T
Grr − (Lnn · Grr)(grads n)a,

(55)

from which we finally obtain

divs

(
P (Ln)TGrr

)
= 2(Ln)PT · GrP

+
(
k1La1a1 + k2La2a2 − (k1 + k2)Lnn

)
· Grr.

(56)

Here a1 and a2 are eigenvectors of the Weingarten tensor (grads n), k1 and k2 are the
corresponding principal curvatures. Hence∫

∂Fi

Lnm · Grr = 2
∫
Fi

(Ln)PT · GrP

+
∫
Fi

(
k1La1a1 + k2La2a2 − (k1 + k2)Lnn

)
· Grr

(57)

from which we get∫
Fi

(Ln)PT · GrP =
1
2

∫
∂Fi

Lnm · Grr

+
1
2

∫
Fi

(
− k1La1a1 − k2La2a2 + (k1 + k2)Lnn

)
· Grr.

(58)

Substituting (58) into (51) through (52) we finally obtain

L · G vol(R) =
N∑
i

( ∫
Fi

Lnn · Grn+
1
2

∫
∂Fi

Lnm · Grr

+
1
2

∫
Fi

(
− k1La1a1 − k2La2a2 + (k1 + k2)Lnn

)
· Grr

)
.

(59)
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6 Velocity patterns
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A. Tatone, DISAT, Università dell’Aquila [24 April 2000 – June 25, 2001 (13:38)]



Draft Equipowerful surface distributions 11

e1

e2

e3

Figure 1: Velocity patterns corresponding to Ge1.
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Figure 2: Velocity patterns corresponding to Ge2.
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Figure 3: Velocity patterns corresponding to Ge3.
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