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SOMMARIO. La definizione di un modello di continuo atto 

a descrivere sinteticamente il comportamento meccanico 

di una struttura modulare viene riguardata come identifica- 

zione (dei parametri costitutivi) di un modello "sommario" 

a partite dalla specificazione di un modello "pif4 f ine" 1l 

modello fine descrive in dettaglio una trave reticolare piana, 

il cui modulo # costituito da una coppia di diaframmi rigidi 

connes#i da aste rettilinee elastiche; sia i diaframmi che le 

aste sono dotati di massa; il modello sommario # un continuo 

monodimensionale dotato di struttura euclidea. Un risultato 

interessante 0 che il valore della densitd dell'azione di inerzia 

in un punto dipende non solo dal valore della accelerazione 

in quel punto - come si assume nei modelli usuali di conti- 

nuo - ma anche dalle sue derivate prima e seconda, rispetto 

alla coordinata materiale. 

SUMMAR Y. The derivation o f  a continuum model apt to 

give a compendious description o f  the mechanical behaviour 

o f  a latticed structure is envisaged here as a procedure leading 

to the identification (o f  the constitutive parameters) o f  a 

"'coarse" model starting from a prescribed "finer" One. The 

fine model considered describes a planar modular beam 

whose module is made up o f  a pair o f  rigid diaphragms 

connected by straight elastic bars; diaphragms and bars 

have both mass. The coarse model is a one-dimensional 

continuum endowed with Euclidean structure. An inte- 

resting result is that the value o f  the density o f  the inertial 

actions at a point depends not only on the value o f  the 

acceleration at that same point - as is usually taken for 

granted in conventional continuum models - but also o f  

its first and second derivatives with respect to the material 

coordinate. 

1. INTRODUCTION 

The description of the mechanical behaviour of large 

latticed structures by continuum models is the subject of 

many technical contributions (see for instance [1, 2, 3, 4]). 

Although different points of view have been adopted, the  

interest is usually confined to essentially linear and un- 

systematic theories. The aim of the present paper is to take 

a first step toward a more general and rational approach. 

The derivation of a contilmum model apt to give a corn- 
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pendious description of the mechanical behaviour of a 
latticed structure is seen here as a procedure leading to 

the identification of the constitutive parameters of a "coarse" 

model starting from a prescribed "finer" one (1). The fine 

model considered is a planar modular beam whose module 

is made up of a pair of rigid diaphragms connected by a 

number of straight elastic bars. Diaphragms and bars have 

both mass. The coarse model is a one-dimensional conti- 

nuum endowed with Euclidean structure, that i s -  roughly 

speaking - a one-dimensional manifold of rigid bodies. 

A relation between the two models is established by assigning 

a map from the local placements of the coarse model to the 

local placements of a module of the fine model. Then, 

the coarse constitutive functions are identified by assuming 

that for any pair of corresponding motions the power expen- 

ded by the actions prescribed within the fine model equals 

the power expended by the corresponding actions within 

the coarse model. This procedure is here applied to charac- 

terize the coarse inertial and contact (elastic) dynamical 

actions. The properties so inherited by the coarse model 

from the fine one are by no means trivial. In particular, 

the inertial actions possess a singular part (concentrated 

at the boundary of smooth subbodies), and its regular part 

has a density whose value at a point depends not only on 

the value of the acceleration at that same point - as is 

usually taken for granted in conventional continuum mo- 

dels - but also of its first and second derivatives (with 

respect to the material coordinate). 

2 .  THE COARSE MODEL: A ONE-DIMENSIONAL CON- 

TINUUM ENDOWED WITH EUCLIDEAN STRUCTURE 

Let 9~ be a body whose motion is defined as a function 

X:  ,~ x ]R-~ ~ x"F"  (2.1) 

that takes each body-point (9 E ~ and time t E IR into 

a place x E d o and a unit vector (director) d E f " ,  where 

IR is the field of real numbers, do is a two-dimensional 

Euclidean manifold and ~ its translation space (2 ) .  

We suppose the section • (9, .) to be a smooth curve 

for any (9 E ~ ; moreover, for any t E IR the section • t) 

- that is, the placement at time t - is supposed to have 

the following properties: the natural projection of its inaage 

(1) We borrow here the terminology established by Muncaster 
in [5]. Our point of view is not fully conforming to his, however. 

(2) We shall name Lin the algebra of linear endomorphisms of 
~/; Orth (thought of as a submanifold of Lin) the orthogonal group; 
Skw Q Lin the subspace of skew-symmetric endomorphisms of~//. 
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X(~ ,  t) on r is a (piecewise) smooth one-dimensional 

submanifold c~ t (called the axis), and d is given by a (piece- 

wise) smooth vector field on cr t. With each (regular) place 

x E c~ t will then be smoothly associated an orthonormal 

vector basis (d 1 , d 2 ) of  3r such that 

d 2 --- d (2.2) 

We select a placement x : ~ ~ ~ x 3Uas a reference 

placement, and let c g  be the corresponding reference axis, 

D the reference director field and (D 1, D 2), with D 2 - D, 

the correspondent orthonormal basis. After introducing 

the arc length parameter s induced on ~K by the metric 

of  r  all fields defined on ~ or cK t will be described 

by functions of  this parameter. In particular, we shall name 

X the parametrization of c~ in terms of s and x the cor- 

responding parametrization of  c~ t (in the sense that, for 

each value of  s, x(s) is the place presently occupied by 

the body-point  whose reference place is X(s)). It is assu- 

med that such a parametrization exists at each t E IR, and 

depends smoothly on time. 

The rotation R is defined as the unique element of  Lin 

such that 

d I = RD 1 

d2 = RD 2 (2.3) 

while the velocity is the pair (w, W) 

W : : X  

W : = R R  r ( 2 . 4 )  

a dot  denoting differentiation with respect to time. Notice 

that, due to the orthonormali ty of both  the reference and 

the present bases, R E Orth and W E Skw. 

It is convenient to introduce the right strain (u, U) (as 

opposite to the left strain (v, V): see Appendix A) 

u : = R T x  ' -  X'  

U : = R T R  ' ( 2 . 5 )  

the prime denoting differentiation with respect to s. 

The dynamical actions entering the model are described 

by contact force and couple fields (t, T) E ~" x Skw, and 

by densities of  body force and couple (b, B) E ~/" x Skw." 

inertial forces and couples are included in (b, B). The me- 

chanical power on the part of  ~ corresponding to the 

interval [s o, s 1 ] is hence 
(2.6) 

~@r:= b . w - - - - B  W d s +  t . w - - - T .  
2 2 s0 

By assuming the power and both forces and couples 

to be frame-indifferent (3), (2.6) implies the following ba- 

lance equations 

O) A change of  frame is assumed here to be such that the velocity 
(w*, W*) in a second framing is related to the velocity in the first 
framing by the formula 

w(s, t) - Q(t)Tw*(s, t) = Wo(t ) - Q ( t ) r ( ~ ( t ) ( x ( s ,  t )  - %) 
W(s, t) - Q(t)TW*(s ,t) Q(t) = - Q(t)TQ(t) 

where x ~ E ~ ,  Wo(t ) E ~/', Q(t) E Orth. 

t ' + b = o  
(2.7) 

T ' + x ' A t + B = O  

The power formula resulting from (2.6) and (2.7) reads 

~ /  wds 

so (2.8) 

1 
w :  = t - ( w '  - - W x ' ) - - -  T ' W '  

2 

the density w being called the stress power. 

Using (2.4) and (25) ,  we can conveniently transform 

formula (2.82 ) into 

1 
w = s . f i - - - S .  0 (2.9) 

2 

where 

s : = RTt,  S : = R r TR (2.10) 

It is worth noticing that nothing has hitherto been speci- 

fied about the relationship between the dynamical actions 

described by (t, T) and (b, B) and the motion of  ~ .  The 

identification o f  constitutive relations for contact and 

inertial actions induced by an underlying finer model (such 

as the one described in Sec. 3) is in fact the aim of the 

ensuing analysis (see Sec. 4). 

3.  T H E  F I N E  MODEL: A PLANAR MODULAR BEAM 

We consider here a planar modular beam whose module 

is composed of  a pair of  flat rigid diaphragms connected 

by a number of  elastic bars constrained to remain straight. 

By "modular", we mean that there exists a placement such 

that both geometric and mechanical properties are periodic 

with respect to it; in the following we shall choose a periodic 

reference placement. The placement of each diaphragm is 

completely specified by the place Po E ~ of  one of  its 

points and a (unit) vector d E ~/'. It can therefore be para- 

metrized in terms of a parameter y as follows: 

P ( Y ) = P o  + y d ,  y E [ y 0 ,  y l ]  (3.1) 

We shall label with a superscript minus ( - )  and plus (+)  

respectively, two consecutive diaphragms, belonging to a 

given module, and with a subscript b the typical bar of a 

module. The minus and plus end points of a bar being respec- 

tively fixed in the minus and plus diaphragms, their places 
+ 

P b '  Pb are given by (see Fig. 1) 

Pb = Po + Y b  d -  

+ + + Yb d +  (3.2) 
Pb = Po 

A placement of a module is hence completely determined 

by a 4-tuple (p o '  d - ,  po +, d + ). We shall refer in particular 

to the place Po + 1/2(P+ - Po- ) as the centre of the module. 
+ We shall also select a reference placement (Po,  D - ; P o ,  

D + ), and call L the reference length of the module, defined 

as L : : [I P+o - Po [] , assuming L > 0. 
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D- d- 0o+~ § 

P~ p: P;" P~ 

(a) (b} 

Fig. 1. Reference (a) and present (b) shape o f  t w o  c o n s e c u t i v e  dia- 
phragms and of a generic bar connecting them. 

We want to consider here only a model in which all kine- 

matical quantities are related to diaphragms. To obtain 
such a model, we describe each bar by the one-dimensional 

continuum defined in the previous section, subjected to 
the following constraints: 
(a) shear and flexural undeformability 

l 

U b = O, u o = e X  b (3.3) 

(b) constant axial strain 

e ' =  0 (3.4) 

The bar being assumed to be straight in each one of  its 

placements (the reference one included) the constraints 

(3.3), (3.4) imply that 

X'b = (Pb" - Pb )/eb (3.5) 
X' T + b = R~ (p/, - p/~)/U p; - P ;  II (3.6) 

+ - Pb- [I is the reference length of  the bar. where ~b : = II Pb 
Under the aforementioned assumptions, the expression 

(2.9) for the stress power reduces to 

w b = n - ti b (3.7) 

where 

! 

n : = o X b (3.8) 

is the determined part of the contact force s introduced 
in (2.10). 

In this context, the most general elastic constitutive 
relation is obtained by assigning, for all s E [0, s ]' the 
scalar function 

#(. ; s) : e ~ o (3.9) 

In conclusion, the power expended in a bar is given by 

~b (e) 
~'b = (Pb" - Pb- ) '(P~" - Pb- )o = 

tl P ;  - Pb- 11 
~b (e) (3.1 O) 

- (Pb- - Pb" )" (Pb- - Pb- )~ 
II Pb- - P ;  I[ 

where 

1 

e :  = s H Pb- - Pb-[[ -- 1 (3.11) 

"ab(e) : = - -  # ( e ; s )  cls 

s 

and the co-rotational time rate [b of  a vector-valued func- 

tion of  time r b is defined as 

~:b = ib - Wb rb (3.12) 

The power of  the inertial forces acting on a bar will be 
assumed to be, in an inertial frame, 

~tbn : = - -  Pb Xb " xb ds (3.13) 
J 

where Pb denotes the mass density in the reference place- 
ment. According to (3.5), the placement of a bar is de- 

scribed by 

s 
xb(s) = p [  + ~ (p~" - p ; )  (3.14) 

The power (3.13) can hence be given the expression 

- ( m " [ - ~ [ ,  + m ~ f + ~ ~ ) . p [ ,  (3.15) 

where 

i m r , -  : = Oh(s)  1 - -~b ds 

m :  + = m+~ - : = (s) 1 - 
u o 

,) -~b ds (3.16) 

m-~ + : = p~ (s) ds 

The expressions (3.10) for ~ b  and (3.15) for ~ n  are 

given in terms of the motion of  the end points of a bar, 
but - after substitution of  (3.2) - both ~ and ~/h n will 
depend on the motion of  the diaphragms. 

The power of  the inertial forces acting on a diaphragm 
is assumed to be, in an inertial frame, (compare assumption 

(3.13) for a bar) 

f," ~icln : = -- Pd ~"  ~ dy  (3.17) 

u 

where Pd denotes the mass density and p is given by (3.1). 

Because each diaphragm belongs to two successive modu- 

les, we shall ascribe to each module one half of  the power 
(3.17). Accordingly, the power of the inertial forces acting 

on the left and right diaphragms of a module is, respectively, 

1 
~in = _ [ _  (rn0 i j  ~ + r n l d - ) ,  po _ (m 1 Po + m 2 d - ) ' d - ]  

2 

(3.18) 
1 

�9 + . . +  d+ d + �9 ~ = - - [ - - ( m 0 p ;  + r n l d + ) ' P  o - ( m l P  o + m  2 )" ] 
2 
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where 

m 0 : = f f ~  
0 

Pa (y)dy. 

f 
Yl 

m I : =  pa(y)ydy  

Yo 

I? m 2 : = p d ( y ) y  2 d y  

o 

(3:19) 

4. IDENTIFICATION OF THE CONSTITUTIVE PARAME- 

TERS OF THE COARSE MODEL 

We consider the local placement of a material neighbour- 

hood of  a (regular) point s of the coarse continuum to be 

sufficiently described (to the purpose of evaluating its 

mechanical response) by the values x(s), d(s), x'(s), d'(s). 

Hence we map this coarse local placement into a placement 

of  a module of  the fine model by 

L 
P o  = x ( s )  - - -  x ' ( s )  

2 

L 
+ = x(s) + - -  x'(s) Po 

2 
(4.1) 

L 
d -  = d ( s )  - ~ d ' ( s )  

2 

L 
d + = d ( s )  + - -  d ' ( s )  

2 

assuming the module centered in x(s) and denoting by 

L the reference length of  the module. 

The next  step is to characterize the dynamical actions 

in the coarse model so that they correspond - in a sense 

we now make precise - to those acting on the fine one. 

To this end we assign to the stress power at s of  the con- 

tinuum coarse model the value 

1 
w(s) = - -  E ~Ub (4.2) 

L b 

where ~ b  is the power expended (3.10), expressed in 

terms of  x, d and their derivatives, after substitution of 

(3.2) and (4.1). By comparing the above expression for 

w with the general one (2.9), we infer the constitutive 

functions induced on the coarse model for the contact 

actions 

s ( s ) =  E sb; Sb : = R ( s ) T  Rb(O-- b X ; )  
b 

1 
s ( s )  = ; : : 5 ( y ;  + yb+ ) D(s)  A s b 

b 

(4.3) 

It is apparent that s b is but the average contact force 

of bar b pulled back to the reference placement by R(s), 

while S b is the corresponding moment  with respect to 

the centre of  the module. However, one should pay at- 

tention to the fact that in (4.31) the bar force Rb(~bX' b) 

+ through is intm~ded to be given in terms of  the places p~ ,  Pb 

(3.6) and (3.11); those places, in turn, are intended to be 

expressed in terms of the coarse placement through (3 .2 )  

and (4.1). The details of  the deduction of  (4.3), which 

is straightforward but less trivial than its outcome suggests, 

are given in Appendix B. Note that (4.3) defines a simple 
material and that the principle of material frame indiffe- 

rence is trivially satisfied. 

Let us consider now the external dynamical actions. 

While the identification of the contact actions has been 

performed by using the expression of  the stress power, 

the identification of  the applied and the inertial actions 

will rely on the expressions of their power, in the two models 

and at corresponding motions. As the applied forces are 

problem dependent,  we shall consider inertial actions only. 

For  any part of  our modular beam whose length, in the 

reference shape, be s let us assume that, in any motion, 

the power of the inertial actions for the coarse model to be 

~ i n  = -L ~ b  + - + ~+" ds ( 4 . 5 )  

where s I - s  o = s  ~ l n  ~+/n are given in terms 

of  x, d, and their derivatives, by (3.15) and (3.18) through 

substitution of ( 3 . 2 ) ,  ( 4 . 1 ) .  

Expression (4.5), as can easily be seen, contains not only 

the velocity field (w, W), but also some derivatives with 

respecto to s. Therefore it cannot directly be regarded as 

the mechanical power of the inertial actions pertaining 

to the coarse model. Those actions will be identified as 

the dynamical fields whose power, evaluated via (2.6), 

is equal to that given by (4.5) for any velocity field (w, W), 
at least of  class C 2 . 

To this end the two expressions for the power are requi- 

red to have the same value for all the velocity fields, at 

least C 2 , such that:  a) vanish at s o and at s I ; or b) vanish 

anywhere but in [s o , s o + e) C [So, s 1]; or c) vanish any- 

where but in (s I - e, Sl] C [So, s 1], for any positive e. 

The inertial action so identified turns out to be the sum 

of  two parts 

~ (b in , B in) ds = (b, B) ds + (b, B) 

8o 

(4.6) 

where (6, 13) is a discrete measure concentrated in {s o, Sl} 
with weights ( -  b0 '  - B0 ) and (b I , B 1 ), respectively. The 
densities b, B are given by 

= - i  (rag- +rod-- + m ;  + + G + ) + m o  

9 

+ ( m  b - -  m b 
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--(~b ((mb- +m+-)Yffb +(rob + +m[+)Yb)+ml )  "d 

+ L ~ (m~ -y ; -  m b + y;  ) d' 
b 

L 2 

+ m l ) d "  

1 
B:= - - d A  

L 

- m+b - ) Yb- -- (rag + -- m ~  + ) y ~  ) 

(4.71 ) 

( b +rob ) ) + m l  ~ 

+L Z +m +- (Yb O -y~m[~ +)~' 
b 

L 2 
+ "-~'(~ ( y ; (m; -  - m ; + ) - y :  (m~- -m~+))+ml)R"  

- ( ~  (Yb-(mb--Y/7 + m ;  +'+'+'yb) Yb+~m+t b - Y b  + m + + + ) ) b  Yb 

+ m  2 )~] 

L2[~ -~ _++ + + 
+ - -  (y~(m~ Yb -rob Yb ) --Yb(mb -Yb 4 

- m~- +y~-)) + m2) ~J,] (4.7 2 ) 

2 (y/~(m/~ - - m; + ) - YZ" (m~- - - m~ + )) 

+ ml)  ~/'(#k) 

_ _Yb(mb - Y b + m  ++" +~ + ~b (Yb(mb-Yb+mb+Yb) + + b Yb ') 

d(s k) 

L / 

( ~-~ (Yb(mb-Y;--m b+ + + +- - Yb ) -- Yb (mO Yb 2 b 

--m~+Y;))+m2) d'(Sk) ] (4.8 2 ) 

Notice that the constitutive prescription obtained for 

the inertial actions in the coarse model is far from trivial, 

despite the seemingly innocuous assumptions (4.1), (3.13) 
and (3.17), (3.14). In particular, the densities of  these 
actions are not pointwise related to the value of the accele- 
ration but also to the value of its first and second derivatives 
with respect to the material coordinate. 

It should be stressed that the above constitutive prescrip- 
tions are intended to be given in an inertial frame and that 
is why they turn out not to be frame-indifferent. This is not 
so surprising as no axiom like the principle of  material 
frame indifference has been introduced for body actions. 
Note that this does not contradicts the requirement for 
the inertial forces and couple to be frame indifferent, those 
being the values of constitutive functions. 

Further information on the deduction of (4.7) and (4.8) 
is given in Appendix C. 

The weights of  the discrete measure (IJ, I~) are 

k = 0 and k = 1, by the expressions 

b k :  = "2" (-rob-- + m~ + X(s k) 

+ 

2 (m; - - mb+- - m ~  + +m++)+m x'(s k) 

( ~  ((m~- - -m+-)Yb +(mb -m++)Y~))d(sk) 
b 

given, for 

L 

1 
gk : = - -  d(sk) A 

2 

+ + + ) y ~ - )  
- -  m b 

(4.81 ) 

5. C O N C L U D I N G  R E M A R K S  

A procedure for the identification of mechanical response 
in a continuum model of  a latticed module beam has been 
formally introduced. The identification consists in com- 
paring two different abstract models and constructing a 
map which carries a constitutive function from one model 

to the other. 
An interesting result, which is a consequence of some 

simple assumptions usually left implicit in a heuristic ap- 
proach, is the form of the identified inertial actions. It 
may be conjectured that such a peculiar form could be 
important when considering phenomena such as the propa- 
gation of pulses with (relatively) short wavelength. 

As a final remark, we note that boundary conditions 
should also be properly identified starting from the fine 
modeh the  constitutive prescription so obtained for the 
interactions with the external world through the bounda- 
ries could differ in interesting ways from more conven- 
tional assumptions. 

A P P E N D I X  A: R I G H T  A N D  L E F T  S T R A I N S  

We call right strain the pair (u, U) defined by (2.5), and 
left strain the pair (v, V) defined by 
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v : = x' - RX'  
(A.I) 

V ; = R ' R  T 

This terminology is motivated by analogy with the role 

played by the right and left stretch tensors in the standard 

continuum theory. In fact, the right (left) strain stems 

from a comparison between quantities associated with 

the reference (present) placement and the corresponding 

quantities on the present (reference) placement pulled back 

(pushed forward) by R. 
In the papers by Antman on the theory of  rods and its 

applications (see e.g. [6]) only left "strains" are taken into 

consideration; the usefulness of introducing right "strains" 

has been suggested to us by a paper of  Capriz [7]. 

From a strictly kinematical point of  view, the two kinds 

of  strains are obviously equivalent, because 

v : R u  
(A.2) 

V = RUR T 

so that (v, V) vanishes if  and only if so does (u, U) - which 

is a necessary and sufficient condition for the transplace- 

ment  (u, R) to be rigid. The difference between them emer- 

ges when a referential expression for the stress power (2.8) 

is sought: in fact, using (2.4) and (A.1) instead of  (2.4) 

and (2.5), one gets 

1 
w = t . ~ -  - -  T .  F (A.3) 

2 

instead of  (2.9); the co-rotational time rates appearing above 

are defined as 

~: = v - W v  

~' : =- ~, - [w, Vl 

where [W, V] : = WV - VW is the commutator of  W and V. 

APPENDIX B: IDENTIFICATION OF THE CONTACT 

ACTIONS 

The power expended in a bar is expressed by (3.10) 

as 

~-b (e) (B. 1 ) 
% = II p ;  - p ;  [[ (p ;  - p/~)'  t ( p ;  - pb- ) - w b ( p ;  - p ; ) ]  

Because W b E Skw, it  follows that  

(Pb -- P b ) '  Wb (P~ -- Pb-) = 0 (B.2) 

But this holds true even if Wt, is replaced by a skew 

tensor whatsoever. As we are relating a placement of  the 

module to the tangent of  a coarse placement at a point 

s, it  is natural to substitute W(s) for W b in (B.1), and write 

= Rb (~b (e)X~) �9 [ ( I~  - 1~ b) - W(s)(p~- - Pb- )] (B.3) 

where use is also made of  (3.6). 
By substituting (3.2), (4.1) and (2.5) within (B.3), one 

obtains the expression 

% = Rb (~o (e) X~, ) - ( X b  - W(s) x~) 

[ L ] 
= Rb (gb (e) X ; ) .  LR(s) e(s) + - -  (y~ - yb-)W'(s) d(s) 

2 

which, after substitution into (4.2) and comparison with 

(2.9), yields the final formulae (4.3), as given in the text. 

It is hardly worth mentioning that the expounded line of  

reasoning - while expedient to get a concise and orderly 

deduction - does not imply any further assumption: one 

could also get (4.3) starting from the "simplified" statement 

(3.10 2 ), though in a less perspicuous way. 

APPENDIX C: IDENTIFICATION OF THE INERTIAL 

ACTIONS 

By substituting, as stated in Sec. 4, expressions (3.15), 

(3.18) and then (3.2) and (4.1) into (4.5), an expression 

of the power of inertial actions is obtained which contains 

derivatives of  the velocity field with respect to s. In order 

to get an expression matching with (4.4), the differentiation 

operating on the velocity needs to be removed through 

an integration by parts; this leads to 
(C.l) 

~ " =  i ~ . w - - f i . w  a~+ ~ . w - - f i .  
2 2 -x ,  

Intermediate expressions for b, [I, b k, B k, (k = 0, 1) 

(analogous to the ones given in the text  for the contact 

actions (4.3)) are as follows 

1_ F 
= - ~ / ( m b -  - + m~- - )  ]i b- + (m/~ + + m ;  + )iJb- 

L b L 

L(m; m; )(Pg)' L ] - - -  - - - - - -  f in ;  + - m/~ + )(Ii~- )' 
2 2 

1 I- L 
+ - -  [ m0 (tio+ + lio ) - m0 (ib+ - Po 

), 
2L T 

L 
+rot(a+ + d - ) -  T rot(a+ -a - ) '  (C.21 ) 

h :  d A ( r ;  m g  y~+ m b+ - = - - -  - + )Pb L 

L 
+(Y;mb-+ + + m + + ) [ i b  - y b  b - -T  (y'~tn~- -y•m;-)  (p;)' 

L 
-t-m++ 2 (Yb b --y[m~, +)(p~) 

L 
+ - -  dA ("+ - -  m l ( i  j+ - i6 o ) '  2L 1 Po + Po ) - 2 

L ] 
+ m  2((j+ + d - ) - - -  m 2 (d + - e l - ) '  (C.2 2) 

2 

1 
L :  = l(,,q - - , . ;  - ) p ;  + (,n; § - . q .  )p; ] 

2 b 
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1 
+ - -  ---olm0(ii+ --ii-)+ml((i+-o-- - - a  )], k = 0 ,  1 (C.31 ) 

4 

1 
B k :  -- d(s k) A E [(Y; m~ - - Yb- mb-- ) lib 

2 b 

1 
+ . +m++ tYb b - y ; r n / + ) i i ~ ]  + 4 d(sk) A [ml(ii+ - i j o )  

+ m 2 ( d  + - ' d - ) ] ,  k = 0 ,  1 (C.32) 

The final formulae (4.7), (4.8) given in the text are obtai- 
+ - + 

ned by expressing explicitly p~,  Pb ' Po ' Po ' d , d + in terms 
of  x, d. 
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Prof. D.G. Crighton (Chairman, Local Organizing Committee) 
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