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SOMMARIO. Nel presente lavoro si studia la biforcazione
di un arco circolare soggetto a pressione idrostatica nel
campo elastico fucendo uso di un modello di trave cinema-
ticamente esatto. Le corrispondenti equazioni di campo
nonlineari vengono risolte utilizzando una tecnica per-
turbativa. Vengono riportati in diagramma una serie di
risultati numerici riguardanti la dipendenza del carico cri-
tico e del parametro di carico del secondo ordine dai para-
metri geometrici e meccanici.

SUMMARY. In this paper the bifurcation analysis of a
circilar arch under hydrostatic pressure in the elastic post-
buckling range is performed by means of a geometrically
exact beam model, The relevant nonlinear field equations
are solved by utilizing u perturbation technique. A number
of numerical results regarding the dependence of the critical
load and the second order load parameter on the geometric
and mechanical parameters are plotted in diagrams.

1. INTRODUCTION

The field of nonlinear analysis of one-dimensional continua
has been investigated to a very large extent in the last decades,
following essentially two lines [1].

The first — and most common — approach consists in
developing nonlinear «technicaly theories in which geome-
trical approximations are introduced, in order to «simplify»
the analysis of some particular problems. Even if such theo-
ries lead, in many cases, to good results for specific problems,
their range of applicability is often tortuously assessed by
declaring such restrictions as «sufficiently inextensible»
or «sufficiently shallow», whose exact meaning is left
obscure.

The second line relies on the approach of modern conti-
nuum mechanics, wich has led to the development of geo-
metrically exact models of rods [2]. These can be considered
as refinements of the Bernoulli-Euler model in the sense
that, by selecting appropriate kinematical descriptors,
effects as extensibility, shearability and «section deforma-
tion», can be taken into account in addition to flexure.

Furthermore, the possibility of assuming very general
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constitutive relations allows these models to give a suffi-
ciently good description of a very large class of mechanical
phenomena.

Compared with the enormous quantity of results available
in the current literature and obtained by applying technical
theories, analyses performed in the framework of the exact
ones appear to be very few also in fields like asymptotic
postbuckling analysis where, in the authors opinion, their
use is particularly suitable.

In this work the authors perform
analysis of a planar circular arch under hydrostatic pressure

a local bifurcation

by using a geometrically exact model with linear hyperelastic
constitutive relationships.

Following the steps outlined in [3], the asymptotic expan-
sion of the field equations near the bifurcation point is
furnished up to the third order. Each perturbation step,
owing to the model used, results in a set of equations in
which all the problems connected with the reliability of the
results as an effect of the approximations embedded in the
geometrical description [4-7] are overcome.

In view of obtaining parametric results in terms of the
constitutive and shape parameters, and in order to encompass
problems connected with heavy (and so hardly reliable)
hand computations, the perturbation problems have been
solved making use of an automatic system for symbolic
computation [8].

A number of diagrams has been plotted which illustrate
the buckling and postbuckling behaviour in terms of the
mechanical and geometrical parameters.

2. KINEMATICAL MODEL AND EQUILIBRIUM EQUA-
TIONS

Let us consider [2] a body # as a set of material points
whose motions are described by the function
x: BxR-E*x V?

1)
x: (P e (x,d)

that maps each body point P € # and time ¢ € R into
a position x € E? and a director d € V2, with | d | =1,
where £2 is a 2-D Euclidean point space and V2 is its trans-
lation space. If at any ¢ the projection of x on E? is a smooth
curve and that on V2 is a smooth vector field we call B a
continuum. Further an

plane one-dimensional directed

orthonormal right-handed basis associated with each space

point belonging to the beam axis, namely (b1 =d, bzl b1 -

-b, = 0) is introduced. We shall denote by

k:B—-E>xV? (2)
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k:P—~ (X, D) (2)

the reference shape and by (B1 =D, B2| Bl . B2 = () the
reference basis. The collection of the points will be called
the reference beam axis.

Any motion x is completely described, in referential
form, through the functions

u(S) : = x(5) — X(S)

3)

R(S) :B,~b, i=1,2

where S denotes the curvilinear abscissa induced on the
reference beam axis by the (usual) metric of £ 2 once an
origin has been chosen and B1 = X'(S), a prime denoting
differentiation with respect to S.

Let the strain field be defined, in referential form, as
follows

e(S) : = x'($) — R(S)X'(S)

@)
C(S) : = R'(S) R(S)™!

Since R is orthogonal, C turns out to be skew. The rate
of change of the frame fields (Bl, B2) and (bx’ b2) with
respect to S can be written in the form
B =B b, =p tbz

1 2 1 (5)

B, =—pB,

2 b, =—pb

1
where p coincides with the curvature of the reference beam

axis. The scalar form for eqns. (4) is then
e=u’——ptv+cos(9—-1

y=v'+pu—sind (6)
u=20'

where we have posed e = eb1 + yb,, u = ub, + vb, and
6 is the amplitude of the rotation from (B, Bz) to (b, bz)
positive if counterclokwise.

From (4)2 and (5) the relation u = b, — P is obtained
which clarifies the kinematical meaning of p .

Let us consider now a part & of # and a time ¢. We
will denote by £(S, £) and g(S, £) the referential form of the
body force and couple fields, respectively, acting upon
P at time t. Further we shall refer to n(S, t) and m(S, )

as the contact force and couple fields. Then the differential
equilibrium equations for our continuum read
n'(S, H)+ES,H)=0

, 9
m'(S, ) +gS, H+x(S, DA NS, H=0

whence the scalar equations are obtained by projecting
eqns. (7) onto (b, b,)

N'—T(u+p)+f, =0
T'+Np+p)+f,=0 (8)
M —~Ny+T(l+e+g=0

3. BIFURCATION ANALYSIS

Let us assume that for a given constitutive relation and
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suitable boundary conditions there exists a regular solution
branch to eqns. (6) and (8) depending on a parameter p
uy(p), vy(p), 0,(p), Ny(p), Ty(p), My(p) which will be
referred to as «fundamental». We are interested in looking
for another solution branching off from the first one.

Let the generic solution be parametrized through a para-
meter f and expressed in the form

u(t) = uy (p(O) +ii(r),  Nt) =Ny (p(t) + N(®)
v(t) = v (p() +5(),  T(&) = Ty (p()) + T(0) )
0(6) =0, (p(t) +8(r), M) =My (p() + M)

The aim of the analysis is to obtain a series expansion,
in terms of ¢, of the sliding variables @, 7, ,N T M and
of the parameter p up to second order terms. To this end
we replace eqns. (9) into (8). By remembering that the set
is a solution we obtain

Ugr Voo o - -
—T(o+py +D+N' =Tl +f, =0

T'+N(p+py + B+ Nyl +7, =0 (10)
Tl + ey +&)—Nlyy +9)+ M + T E=NF+&=0

after f,, /., g have been splitted according to (9). Following
the same way, the strain-displacement relations (6) lead to

€=L7'——V00~’—1766——175'——p17—cos90 + cos (6, +0)
§=0"+u,0 + 06y + b + pit —sin (0, +6)+sin6y (11)
p=q

Finally the constitutive law which so far needs not to
be specified, has to be added to eqns. (10) and (11).

A perturbation technique can now be applied to obtain
an asymptotic solution [3]. Replacing each sliding variable
by its series expansion in terms of the parameter f, starting
from a generic point of the fundamental solution, and
grouping terms of the same order, three sets of equations
(equilibrium, strain-displacement, constitutive equations)
are obtained at each order, as well as corresponding kine-
matic boundary .conditions. The solution can be constructed
by solving the first order equations, then the subsequent
equations of second and third order.

4. CIRCULAR ARCH UNDER HYDROSTATIC PRESSURE
a) Perturbation equations

Let us consider a circular arch under hydrostatic pressure
p [9] with constraints defined by (Fig. 1)

Fig. 1. Circular arch.
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O(xL)=0, u(xL)=0, T(xL)=0 (12)

and characterized by linear elastic constitutive functions

N = Ae
T =Gy (13)
M= Bu

Equilibrium eqgns. (8) specialize in this case into [9, 10]
N —T(u+p)+py=0
T +Nu+p)—p(l+e)=0 (14)
M —Ny+T(l+e)=0

where p is the inward hydrostatic pressure per unit length
of the reference shape. Eqns. (14), (6) together with the
boundary conditions (12) admit the fundamental solution

€, =— vy, Ny =pQ +eglp, Uy =0

Yo =0, T, =0, vy = —plp(pA —p)
(15)

uy =0, M, =0, 6, =0

The perturbed equilibrium and compatibility equations
of the first, second and third order, in terms of sliding
variables, are listed in the Appendix.

By writing eqns. (13) in terms of sliding variables and
taking successive derivatives with respect to t we complete
the set of equations at each order.

In view of eqns. (13), and (6)2, the boundary conditions
(12), become V'(+ L) = 0. Perturbation of this boundary
condition along with eqns. (12) furnishes the boundary
conditions pertaining to the asymptotic problem at each
step.

The mixed formulation of eqns. A.1 to A.6 and (13)
is suitable for solving problems under initial internal con-
straints by allowing the axial and shear rigidities grow to
infinity. The relevant expressions for this problem are furni-
shed in [11] which is broadly inspired by the treatment
given in [3]. Since we are interested to general results for
unconstrained beam, we shall solve the system of eqns. A.l
to A.6 and (13)in terms of displacements.

_ Substituting eqns. A.4, A.5, A.6 into A.l, A2, A3 and

into the perturbed equations obtained from (13) by diffe-
rentiation with respect to ¢ and hence by eliminating the
ceneralized forces we obtain a set of equilibrium equations
in terms of displacements, These equations, as well as all
the perturbation equations A.l to A.6 derived from eqns.
(6), (14), have been generated by using a symbolic compu-
tation system (REDUCE-2) [8]. They turn out to be very
cumbersome and therefore their expression has been omitted.
The solution to the equilibrium equations is given in sub-
section b,

b) Solution to perturbation equations

The critical values of the pressure p, — that is the values
corresponding to bifurcation points along the fundamental
path — are furnished by the solution of the characteristic
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equation which leads to either sin (hL) = 0orcos(hL)=0
where & is defined by

{BR*p* + (G + 34)BR®p® + [3(G + A)B + R*4%] AR?p’
+[(3G + A)B + R*GA] A*Rp (16)
+ GBAY/[(pR + A)?GBA] = h* R = h*L*[o?

and « = L/R. From eqn. (16) the following expressions
are derived

pR? L
— = — {—(B+R¥G)x
B 28|

1___,7,12L2 0.5{
i[(B+RZG)2—4R3GB———2——— « (17

24

pR3 (h2L2) /) B 1 ( )2§ 8
A R AT (1%
pR>  W*r?
—_— = — ]
B o? (19)

valid for A = o, G = o G,= A — oo, respectively, where
€, (p) is furnished by eqns. (15).

For o = hL/2 eqn. (19) furnishes the critical load for
the inextensional ring that matches the well known result
due to M. Lévy (1884) reported in [12], while eqn. (16)
coincides with eqn. (4.6) derived by Antman and Dunn
in [9]. If we consider the case 2L = /2, the corresponding
eigensolution to the first order equations is
it =a, cos (hS)

b =—a, sin (hS) (20)

5= a, cos hS)

where a,. a,, a, stand for the following expressions
R[=p*R3—p*RY(G +24) + pRAW’R*G-2G—-A)—GA?]
a =
! hR2A%(pR + G)
a, =1 - @n
IR} +p? R (G+2A4)~pRAMIR? G-2G—-A)+GAX(1-1*R?)
a., =
3

hR?>A%(pR + G)

and a dot denotes differentiation with respect to the para-
meter ¢. Note that it has been normalized according to
#(— L) = 1. The value of p'c turns out to be zero while
the resulting expressions for the solution to the second
order equations are

= da, cos(hS) + d, cos(hS) sin(hS)

5= —d sin(hS) + d, cos?(hS) + dy sin® (hS) (22)

D

= da3 cos(hS) + a'4 cos(hS) sin(hS)

where d = — d, is a normalizing factor such that 5(— Ly=20
and d |, dz’ 413, d, are constaats pertaining to the particular
solution of the second order perturbation equations. The
expression for 1'7'“ is too cumbersome and has not been
reported here.
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In the case AL = 7 the critical mode reads

il = a sin(hS)
5= a, cos(hS) (23)
6 = a, sin(hS)

a,, a,, a, being the same as (21). The second order solu-
tion can be recast in the same form as (22) but with different
expressions for the constants d, d2, d3, d4. The modes
have been normalized in the same way as for the case AL = 7/2.

By letting p, = p,/2p, and remembering that p, = 0, the
asymptotic expansion of the function p(#) near the bifurca-
tion point (¢ = 0) up to the second order can be written
in the form

p(t)=1-+ p, 2 24)

where, due to the chosen normalization, ¢ = »(— L).

5. NUMERICAL RESULTS

From the previous equations obtained through symbolic
computation, some results of thecnical interest can be ob-
tained by appropriate choice of the geometric and mechanical
parameters.

A first interesting result obtained for A = G = o is shown
in' Fig. 2 where the dimensionless critical load p, = pcR3/B
is plotted against the shape parameter o = L/R according
to (19) with AL replaced by 7/2 and 7, respectively.

It is seen that the curve corresponding to 2L = /2 furni-
shes always lower values for the critical load and therefore
it dominates the problem for « < 90°, On the other hand,
for 90° < « < 180° also the second curve comes to impor-
tance due to the fact that negative values of the critical load
come into play. Fig. 3 shows the dependence of p, on 4
by correspondence with different values of « for the case
G = o and AL = w/2 (see eqn. 18). It is apparent that for
low values of « each curve exhibits a maximum and then
approaches asymptotically the limiting values shown in Fig. 2
as A = oo . For a— 90° the maximum tends to disappear,
and for o = 90° the curve coincides with the horizontal
axis. For @ > 90° negative values of p, are obtained, the
corresponding curves resulting monotonically, slowly de-
creasing. Note that 4 = 0 = i)‘c = 0 due to the fact that
the system becomes kinematically indeterminate.

0° 20° 40° 60° 80° 100° 120° 140° 160° 180°
¢4

Pe
10.
Geco
8.
6.
a-45°
4.
a=~50°

2 a=60°

4-80° 590" ~a=140° ,a-180°
? - 7 7

‘0. 3 6 9 12 1B 18 21 24 21 30
A

Fig. 3

The dependence of p, defined in (24) on A for different
values of o and G - oo is illustrated in Fig. 4. It is seen that
for low values of « and high values of A all curves exhibit
positive values for p, and decrease with decreasing 4 until
they reach a negative minimum by correspondence with the
maximum value of the critical stress. For o = 90° the curve
degenerates into the horizontal axis while for « > 90° 2, is
always positive and slowly increasing with 4. As for ﬁc, b, is
always zero for A = 0. It is interesting to note that whenever

[ 4-180° a=90°

0

p a=60°/
; =140
a-50°

-4. 0-45°

-10. " " . : , . :
0 3 6 9 12, 16 18 21 24 21 30
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Fig. 4

10.
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4 G-
G-10%

G-1

9. 12 15 18 21 24 27 30
A

Fig. 2
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the postbuckling behaviour is governed by the axial deforma-
bility of the arch, sensitivity to initial imperfections arises,
The corresponding increasing erosion of the maximum
theoretical critical stress is however counterbalanced by
increasing values of p. The limiting values of p . and p,
furnished in [4, 5] are here recovered for a = 45°,

Figs. 5, 6 show the dependence of p, and p, on A for
different values of G and AL = 7/2. « has been taken equal
to 45° in order to describe the ring behaviour. It is apparent
that the mechanical parameter G plays an analogous role
as the geometrical parameter o of Figs. 3, 4.

Finally the dependence of p, on G for A > o, hl =72

and different values of the shape parameter o has also been
investigated. Fig. 7 describes the analytical findings that
for each G and o two critical loads of opposite sign are
obtained the negative load being, in absolute value, much
larger than the positive one. For sufficiently large values
of G the positive critical load approaches an asymptote,
whereas the negative one goes to infinity. Note that for G
approaching zero the positive curves tend to zero while
the negative ones approach — 1. Fig. 8 shows that also for
p, two family of curves are obtained. Curves associated with
positive values of the critical load, have always a positive
P, and curves corresponding to negative values of ﬁc are
characterized by a value of p, which is negative for small
values of G becoming positive for large values of G.

1. 5
0.
P,
'2‘ a-455
-4 G-10?
6 Ge
-8
-10.
-0, 3 6 9 1 15 18 21 24 27 A30.
Fig. 6
10.
Pe a=30°
5 4=45°

a=60°
a=90°

0 3 6 9 12 15

18. 21

24. 27 30
G

Fig. 7
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P2
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I
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e=90°
- 6.
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-12.
0 3 6 9 120 1B 1B 2. 24 27 G 30.

Fig. 8.

6. CONCLUSIONS

The analysis of a circular arch under hydrostatic pressure
in the elastic postbuckling range has been performed by
utilizing a geometrically exact beam model. The perturba-
tion equations suitable for local bifurcation analysis have
been derived directly from the nonlinear field equations.
Numerical results show that for #L = m/2 the critical load
Ec is always negative for any value of A, G whenever a > 90°
and is positive for « < 90°. On the other hand p, is always
found to be positive except for very small values of 4 and
for sufficiently large values of G. It should be observed
that positive peaks of the Zic curves correspond to negative
peaks of the p, curves.

7. APPENDIX

The perturbed equilibrium equations of the first, second
and third order are:

~?’p+ﬁ'+p’?=0

T'+No—é + Nyii =0 (A1)
T(1 + ) + ' —N,5=0
~Tp+N'+p¥ —2Ta—p7) =0
T' + Np— & + Ny + 2(Nit —pé + Nyi) =0 (A.2)
T(1 +e)) + M’ —NyF +2[T(6, + & — Ny — N7 =0
—Tp+ N +p5—3(Ti+ Tii+45p —9H) =0

P py— 3T + T + ¥p (A3)

T' + Np + Noii + 3(Nii + Nii + Nyii — pé + Nyl — &) = 0
T+ e) + ' — Ny + 3(H(é, + &) + TE+é) — Ny —
—N¥ =N,¥—=N,7) =0

The corresponding perturbed compatibility equations are:

(?;:u'——vp——é’vo
F=ip+y —0 (A.4)
=0
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Eo it — p— 250" —5'1)0 ——25'150 —8?

§=fip + 20" + 5 — 8 (A.5)
g=0'
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