
Feedback Bending Control Experienced 
by Piezoelectric Actuators  
Vincenzo Gattulli, Ernesto Silverii, Amabile Tatone  
Dipartimento di Ingegneria delle Strutture, Acque e Terreno, Università di L’Aquila, L’Aquila, Italy  

ABSTRACT  

A stepped beam model is presented to predict analytically the natural frequencies and mode 
shapes of a uniform cantilever beam equipped with a piezoelectric patch. From the 
continuum model two discrete reduced-order representations are derived; their implications 
in the control design are discussed. An active non-collocated control scheme has been 
adopted to increase the cantilever damping by using an accelerometer positioned at the beam 
tip and a piezoelectric patch glued to the beam surface close to the support. Different output-
feedbacks have been tested, and for all of them, the control effectiveness has been evaluated 
with both analytical and experimental models. Control spillover phenomena in some 
experienced cases have limited the control performance.  

 
1. INTRODUCTION  
 

A digital implementation of a non-collocated active control scheme for a cantilever 
equipped with a piezoelectric patch and an accelerometer is the objective of the present 
study. A model derived for a laminated continuum beam is presented, accounting for the 
inertia of both the piezo patch and the accelerometer. Under the hyphotesis of uniform 
electric field, the control action due to the piezo is modelled in two different ways. Indeed, 
the usual model of the bending control through the use of the Heaviside function as in Fuller, 
Elliot and Nelson (1996); Preumont (1999), is compared with the description of piece-wise 
regular displacement and stress fields. The two procedures lead to different state-space 
representations producing similar results as the system dimension increases. The qualitative 
information obtained through those representations turns out to be useful in the design of an 
enhanced controller. Consequently, two output feedbacks have been realized in a digital 
implementation, namely integral and derivative. Aiming to increase the damping,  integral 
and derivative feedbacks are the most natural ones within the proposed and the usual model, 
respectively. Both feedbacks provide augmentation of the first modal damping, even though 
increasing the voltage up to a certain value, instability of higher modes occurs. On this 
respect, integral feedback shows a better performance. 
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2.  EQUATIONS OF MOTION 
  

From the balance equations derived for a laminated continuum presented in Tatone et al. 
(1999), assuming as constitutive relation vYJM ′′= , a planar Eulero-Bernoulli stepped beam 
model (Fig. 1) have been developed to predict analytically the natural frequencies and mode 
shapes of a uniform cantilever equipped with a piezoelectric patch. The model describes the 
stepped portion including the inertia and the stiffness of the piezoelectric patch.  

Figure 1:   Schetch of the cantilever equipped by piezo-patch and accelerometer 
 

Denoting by ρ and ρp the mass density for unit lenght of the alluminium and the 
piezoelectric lamina respectively and neglecting the inertia momentum, except for the tip 
accelerometer, the equations of motion result to be  

 
0 =+ vvYJ IV DDρ                                                                                      in  ]0, l1[ (1a) 

0)( pp =++′′− vNhvYJ IV DDρρ                                                                 in  ] l1, l2[ (1b) 
0 =+ vvYJ IV DDρ                                                                                      in  ] l2, L[ (1c) 

 
The relevant boundary and continuity conditions associated with the problem (1) are  
  

0)()( )( 1p11 =′+′′′−′′′ ++− lNhlvYJlvYJ                                                                           (2a) 

0)()( )( 2p22 =′−′′′−′′′ −+− lNhlvYJlvYJ                                                                    (2b) 

0)()( )( 1p11 =−′′+′′− ++− lhNlvYJlvYJ                                                                         (2c) 

0)()( )( 2p22 =+′′+′′− −+− lhNlvYJlvYJ                                                                    (2d) 

0)()( a =+′′′ LvYJmLvYJ IVρ                                                                    (2e) 
0)( )( 2aa =−′′ LvhmYJLvYJ Vρ  (2f) 

 
where ma  is the accelerometer mass and ha its eccentricity. The boundary condition (2) are 
completed by the continuity on v and v’. In the following, the piezoelectric lamina is used as 
actuator, consequently, under the hypothesis of uniform electric field, the axial force Np 
results to be proportional to the applied voltage V and the elongation of the piezoelectric 
lamina εp, for the adhesion condition are respectively 
 

aVbN −= pp ε ;               vh ′′−=pε  (3) 
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Substitution of (3) into (2) under the assumption that both the curvature v ′′  and the voltage V  
are constant in ] l1, l2[ , simplifies the boundary value problem (1) and (2). Moreover, 
neglecting the additional mass of the piezo produces the following type-1 problem, 

0 '''' =+ vEIv��ρ  (4) 

with boundary conditions 
 

0=′= vv                                                                                                  in 0=s  (5a) 
0][][][ =′′′=′= vvv                                                                   in 1ls =  and 2ls =  (5b) 

)(2)(2))()((][ 01221 tfVlllvlvv αβ =−′−′+′′ −+                                     in 1ls =  (5c) 

)(2)(2))()((][ 01221 tfVlllvlvv αβ −=−′−′+′′ −+                                   in 2ls =  (5d) 

 0=+′′′=′′ IVvvv γ                                                                                   in Ls =  (5f) 
 

where for the function v(s) and its derivative, the square bracket indicates [v(s0)]=v(s0
-)-v(s0

+) 
and the coefficients are YJah=α , YJbh2=β  and YJma=γ . 
Alternatively the problem (4) (5) can be expressed in the entire domain with the simple 
boundary conditions (5a) and (5f) as (type-2 problem)  
 

)( ''''' svEIv µρ −=+DD  (6) 
 
where µ (s) is the control momentum distribution on the piezo sub-domain given by   
 

2
 )]( )( [)( p2

'
1

'' hNlslss −−−= δδµ   
(7) 

 
where the symbol δ indicates the δ-Dirac function  
 
2.1 Discrete Models  
 
A finite discrete representation is derived for the two problems previously presented. In the 
type-1 problem the eingenfunction basis has been enriched with a set of so-called quasi-static 
functions. The solution shows fast convergence respect to the discontinuity due to the the 
concentrated control momentum. For the type-2 problem, the more common procedure of 
expressing the solution only in the eigenfunction basis is used. In this case the convergence in 
the discontinuity is slower.  
Searching the eigenfuctions for the type-1 problem requires to solve the associated 
homogeneous problem, so that (5) can be written as )( )( )()( 0 tfQtfvv t =+BB where the 
transverse displacement has been described by the sum of a quasi-static function and the the 
dynamic part of the response as )( )(),(),( 0 tfsvtsvtsv t+= . To evaluate the  quasi-static 
functions, the  problem  Qvt =)(B  can be  solved  producing in  the  three sub-domains  the  
quasi-static functions:  

0)(1 =svt  ; 2
102 )() 4()( lsVsvt −+−= βα ;  )2)(() 4()( 121203 llsllVsvt −−−+−= βα .  
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The boundary conditions results to be homogenous ( 0)( 0 =vB ). Neglecting the damping 
terms in (4) and solving the associated eigenvalue problem, the eigenfunctions ijϕ  in the j 
sub-domains with j = {1,2,3} can be determined, describing the transverse displacements as 
 

)( )()()()( )(),(),(
1

0 tfsvtqstfsvtsvtsv jt
i

iijjtjj +⋅=+= ∑
∞

=

ϕ  (8) 

 
and an ordinary-differential problem describing the modal amplitudes can be obtained 
 

)(  )()(2)( 2 tfptqtqtq iiiiiii
DDDDD =++ ωζω  (9) 

 
where the partecipating coefficients pi of the control action to the modal dynamics are  
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L
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 )()()( ϕϕ  
(10) 

 
Differently, considering the type-2 problem expressed by (6) with boundary conditions (5a) 
and (5f) expanding on the basis of the cantilever beam eigenfunctions ϕi(s) the following 
modal equations can be obtained: 
 

)()()()(2)( 2 tfptqytqtq iiiiiiii
IDIDDI =+++ ωζω  (11) 
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2.2 Output-Feedback Control   
 
Defining the state-space representation for both the problems with },{ ii qq D=x  and 

},{ ii qq DII=z yields to  
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    (type-2) (13) 

 
where  the output y of the system are the measurement furnished by the tip accelerometer and 
the matrices A1 and A2 , the column vectors b1 and b2 and the row vectors c1 and c2 can be 
easily evaluated through the eqs. (9-12) respectively and u = f (t) represents the voltage time-
dependence applied at the piezo.  
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A class of output-feedbacks have been considered. In particular through a conditioner, 
displacement, velocity and acceleration of the tip beam are available for the feedback with a 
sufficient degree of accuracy. In order to enhance the system damping the two problem gives 
different information for the control design, indeed in the type-1 model the double derivative 
of control uDD  enters as input of the system with partecipating coefficients given by (11) while 
in the type-2 model the control u partecipates through the coefficients of (13).  Therefore 
both integral and velocity feedbacks are expected the most effective as  
 

tygu d∫=      (type-1: integral feedback)       ygu D=   (type-2: velocity feedback) (14) 
 
In (14) for the type-1 control the output y is the tip displacement while in the type-2 the 
output is the tip velocity. The control effectivness have been tested increasing the control 
gain g. However other two different type-2 output feedbacks have been evaluated and tested 
where the output has been the tip displacement and acceleration. The results regarding these 
last ones have been less effective and they are omitted for sake of brevity.  
 
3. ANALYTICAL AND EXPERIMENTAL RESULTS  
 
The two analytical models (13) have been built identifyng the coefficients through both direct 
measure and an identification process of the first 13 natural frequencies and modal damping 
based on the fitting of experimented transfer function between the piezo and the tip 
acceleration. In particular the system constant values of the model (1) (2) and (3) results to 
be: YJ =4.58627 Nm2,  ρ= 0.2236 Kg m-1, ρp= 0.081 Kg m-1, ma= 0.02 Kg, ha = 0.01m, 
L=0.505 m, l1= 0.0675 m, l2= 0.1183 m, h=0.0015875 m, a=0.3143 N/V, b=299.4 kN. The 
tickness of the alluminia lamina is 2h. The models have permitted to evaluate the expected 
spillover effects due to the non-collocated nature of the active control configuration realized 
with the output-feedbacks  (14).  
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Figure 2: Root-locus of 1st and 2nd  mode: a) velocity output-feedback b) integral output-feedback  
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Figure 3:   Experimental set-up of the cantilever equipped by piezo-patch and accelerometer 

 
The root-locus of  the first  two eigenvalues  of the cloosed-loop systems (13) are shown for 
the velocity and integral feedbacks in Figures.2a,b respectively.  Both models predict a better 
performance of the integral feedback because the instability margin due to spillover of the 
second eigenpair is larger and more damping in the first mode can be induced. The result 
have been confirmed by experiments.  Figure 3a,b depicts the experienced damping in the 
first mode before the relevant spillover instability. Indeed increasing the control gain g  for 
both controllers it is reached an unstable behavior, but for velocity feedback the maximum 
measured damping is around 4% while larger values are obtained for integral feedback. The 
experimental results, obtained by the set-up shown in Fig.3c, are in better agreement with the 
prediction of the type-1 model than of the type-1 one. 
 
4. CONCLUSIONS  
 
The common model of the bending control induced by a piezoelectric patch has been 
compared with an enriched model based on description of the continuum in three sub-
domains. The two models conduct to different state-space representation of the control.  The 
integral output feedback designed on the qualitative information given by the richer model 
has shown better performance with respect instability due to spillover phenomena. The 
proposed model seems to produce also quantitative results closer to the experienced cases. 
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