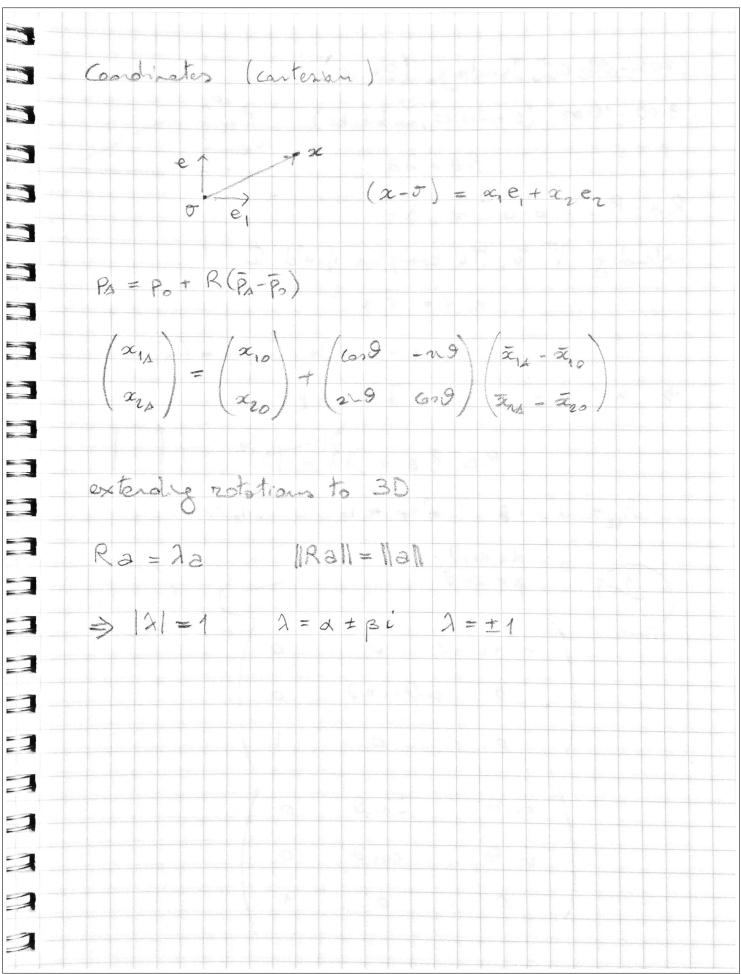
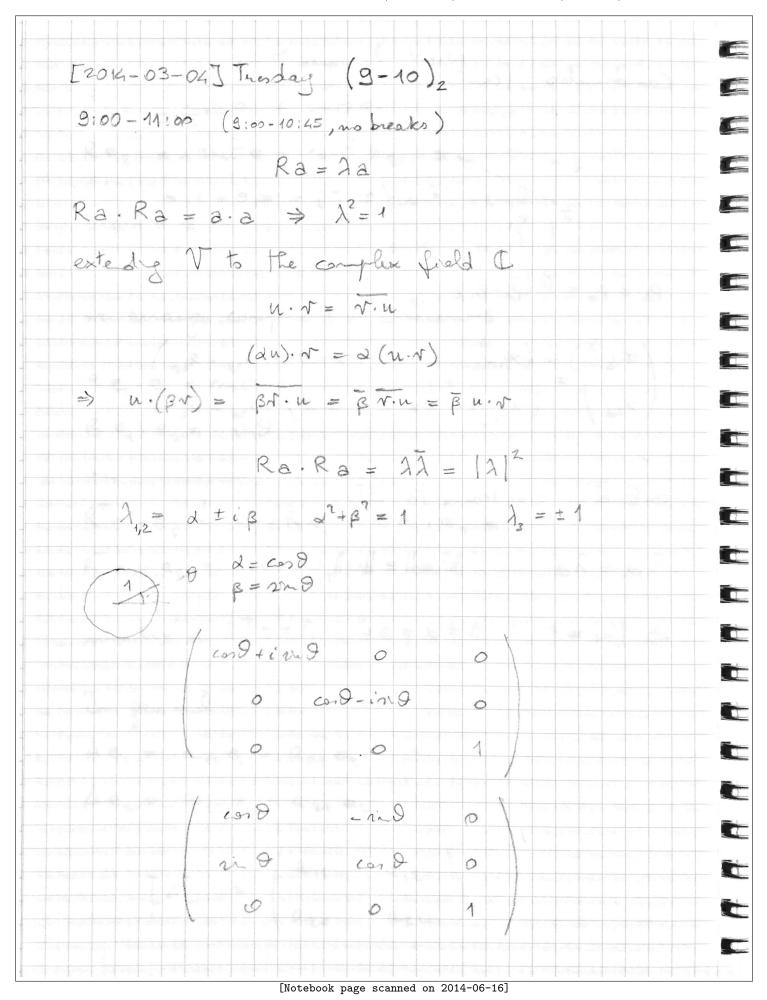
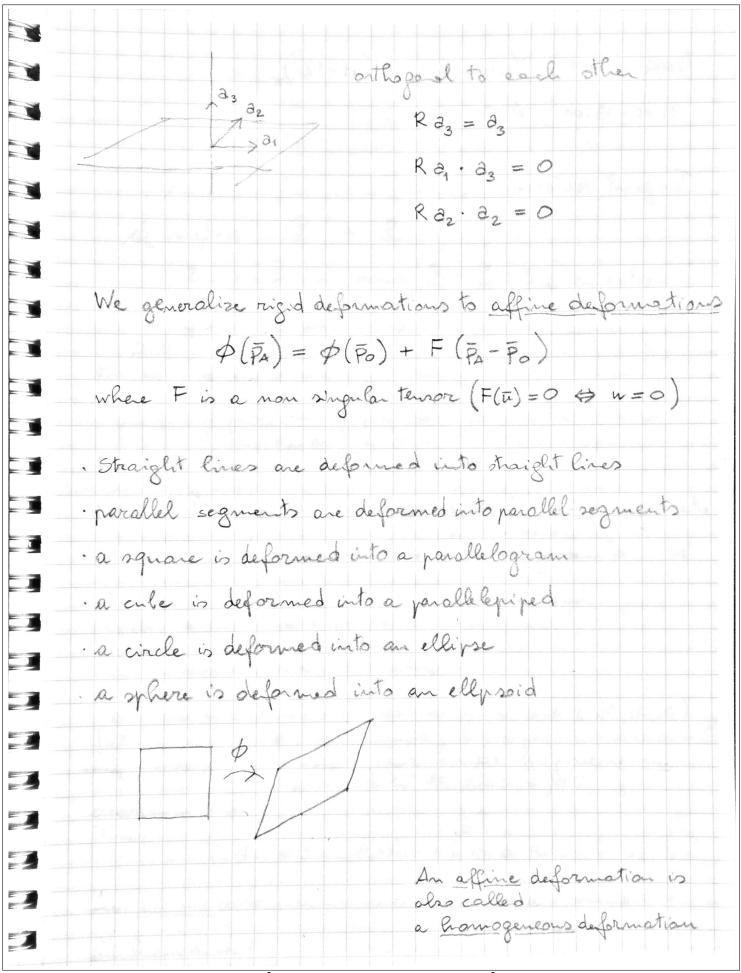

						, 02.155				
3	MECHANICS	OF SOL	IDS	AND	MATE	RIALS	> 2	013-	2014	
3	2º Tenn.	Clan	starte	dan	[20	14-02	-24]	, 200m	A1.3	3
			,	2),	4 1				0-18:0	
3				1						
3	Very small	Gody:	boo	ly poi	nt	and i	to you	otion	0	
			p : {	AJX	R - C	5				
3	Collection	of body	youn	1,						
3						2 28				
3	placemen									
3	motion					< R -				+++
	one-jaran		`							
3										
	trajectory							4 6		
	shapes	m	PC	6				20		
			-							
1										
5										
				e ()						
-						14-06-201				

			1 4	40 8				
3					Tuesday	2 120	14-02-2	15]
3	. +	14424						
3	motion	~ P!	B×R >	2	+	-3-9	9:00-	4).
						OXYH		1
		PA(ta)	trajecto.	y pe	rameter	zeal 6	y t	
3	Pa(to))						
		N	Pa(t+DE)	velo	cty rech	n		
		(Palt)	lin ∆t →0	1 (P)	(t+dt).	- Pa(b)		
				30 6 7				
	Curve	- like	shape	prane	itemized.	by a	scalor	\$
3	Squa	e-like	shape 1	mane	ter'zed	by two	ocolors	54,52
				+ 4-4	-40 BAA 33		Own D	
		â	: Lo, e]	> Pt (3)			
			· Lo, e,]×	also la		B\		
		A Commission of the Commission		6,00	100			
3			2.5	W Y	= 1 A : Un 4	4411		
1	Diner	non of	the shap	e = I	meno	- of 11	ite bod	7
1			10 9	10 001/	-	345 52 35.4	D SEA	9.1/9
1		4 4	2 - 2		44-14-16-		3	43
1								
3	Supre	12.14.14		Q sel	4.8-			
1			1 100		0.0.1		0 1 1	
3								
3								
1								
			[Notebook page	,	2014 00 407			




3	
3	Wednesday [204-02-26]
3	(5-6), 11:00 - 13:00
3	Rigid deformation (it's not an OXYMORON)
3	let us introduce first the "distance"
3	lecturem turo postions.
3	
3	We need to introduce a scalar product in the
3	and the induced man.
3	The distance between any two portion is
3	left michaged by a zijd deformation
3	
3	11P2 - P311 - 11P2 - P211
1	$ u + v ^2 = (u + v) \cdot (u + v) = u \cdot u + 2u \cdot v + v \cdot v$
3	
1	$= \ n\ ^2 + 2n \cdot r + \ r\ ^2$
1	11 TH + TI = 11 TI + 2 TH - TH - 1 TI
1	Part of the part o
1	Subtracting waget 0= u.v ū. ~
1	He the zolar modet of any two rectors is
1	left undanged
1	
-	



3	(7-8) Monday [2014-03-03]
•	16-18 A1.3
3	Matrix representation of the rotation tensor
3	and coordinate representation of a ngrol
3	deforation
3	
3	$\phi(P_{A}) = \phi(\bar{P}_{0}) + R(\bar{P}_{A} - \bar{P}_{0})$
1	t vectors
3	
	v rectors i e ₁ bars rectors
1	
3	$R\bar{u} = con \vartheta \bar{u} + rin \vartheta \bar{r}$
}	$R\bar{\tau} = -in \theta \bar{u} + \cos \theta \bar{\tau}$
3	
3	$R\vec{u} \cdot R\vec{u} = \cos^2 \theta \vec{u} \cdot \vec{u} + 2\sin^2 \theta \vec{v} \cdot \vec{r} + 2\cos \theta u \cdot \theta \vec{u} \cdot \vec{r}$
	if u. = 0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	$V \qquad R \vec{\tau} \cdot R \vec{\tau} = \vec{\tau} \cdot \vec{\tau} = \vec{u} \cdot \vec{u}$
1	Ru. RF = - in 9 con 9 u. u + con 9 u. v - zin 9 v. u
	+ 22 9 con 2 7.17 = 0
	It is convenient to choose an orthonormal basis
-	

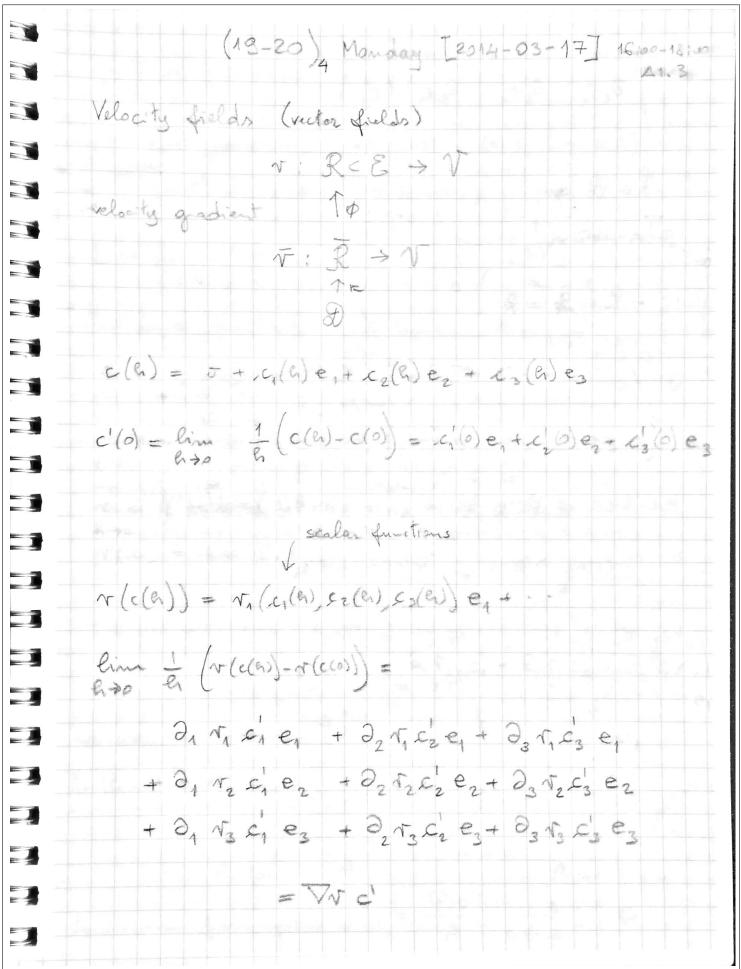
			4		C	nt	ch	on	3^-			6	ar	2								
n	- 23						- 40				100	1										
		-																				
R	e 2	=	-	21	9.	e,	+	Co	.8	e	2	ASS				1.6						
-			+					a 1 +							- 13	~ 8) \					
n	a	hix	Q	f 1	R													1				
								-			20	8		Ę	Ca	r O				P		
								den				0										
W	- (an.	and	Se	Col	7	Dry	els	i	1	60	L.	·~	~^	-5							
20					C			A C	1 8		1.83		0	- 4	Ł.	7.4						
	e	. e	1 =	- 6	270	7						9				7					- 4	
R	e	. 6	2:	=	rl	.9		gar	1	A STATE OF												
							0			0								1				
		· e																	- 531	2 -6		
R	e	1 -	er	200	R	. e	2.	e1		=	-	2	~ 9	+		, i	Ġ.	1	77	9		
		,			cap																	
M	na	ti:	× E	*	R.			4		-5	4-3	3 4	50		(-6.2	L L			8			
4000				4																		
7	- 1	gen	e	al	- 1	24		12	1	-	du .			Con		100	g. 3					
Д	e,	=	a	-11	e	+	a	21	en		-	9										
									1	_		3		2		Č - s	3.3					
1-4	er	=		12	,	1	Q	·r	e	L												
-			+				10	L11		En.	0		1		ė gr	elv.						
		I	Δ		NO.		a	~11			a,	12										
54 7.3			42			1	a	21	289	0.5	a	22		1	- 49	2-2			aq.			

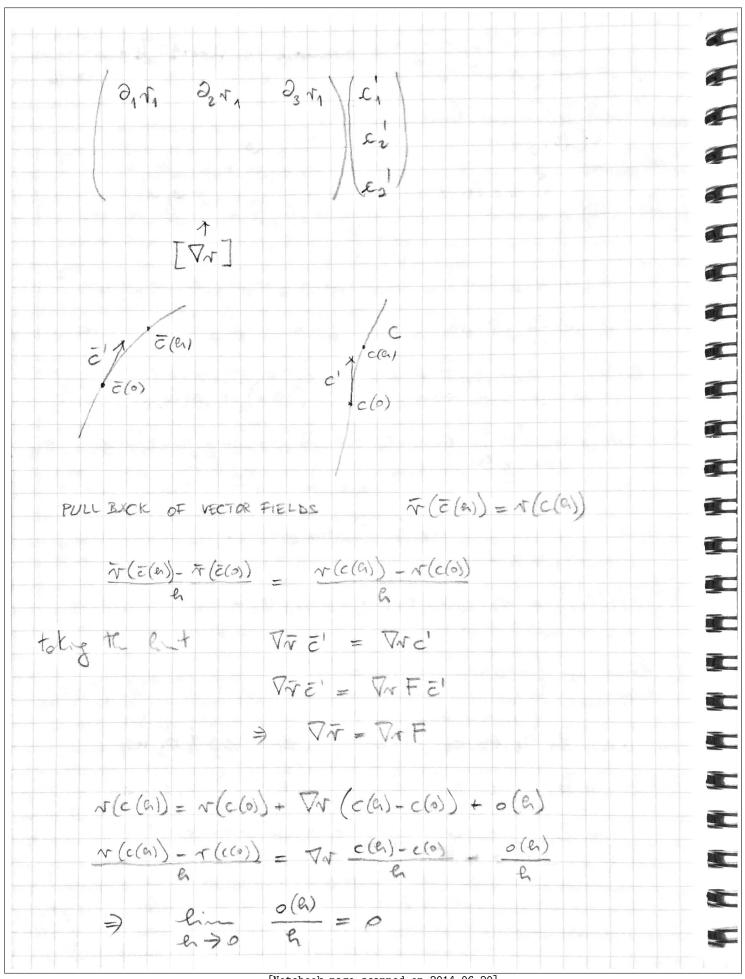



	$c_n(R) = \phi(\bar{c}_1(R)) = \phi(\kappa(s_1 + h, s_2, s_3))$
	$c_1(g) = \phi_k(s_1 + h, s_2, s_3)$
	C, (P1) = 0 + p, (s,+h, s2, s3) e1
	+ pre (5,+6,57,53) ez
	$+\phi_{ns}(s_1+l_1,s_2,s_3)e_1$
	$c_{1}(0) = \lim_{n \to 0} \frac{1}{n} \left(c_{1}(n) - c_{1}(0) \right) = \dots$
	= 0, \$\phi_{\mu_1} \end{array} = + 0, \$\phi_{\mu_2} \end{array} = 2 + 0, \$\phi_{\mu_3} \end{array} = 3
	$c'_{1}(o) = \dots$
	c'a (o) =
	E(h)= K (s,+ha,, sz+haz, sz+haz)
2	$c(h) = J + \phi_{x1}(s_1 + h\alpha_1, s_2 + h\alpha_2) s_3 + h\alpha_3) e_1$
	> there exists a linear transformation (tensor)
	F: V > V, called the deformation gradient, such that
	$F\overline{c}'_1 = c'_1$, $F\overline{c}'_2 = c'_2$, $F(\alpha_1\overline{c}'_1 + \alpha_2\overline{c}'_2) = \alpha_1c'_1 + \alpha_2c'_2$

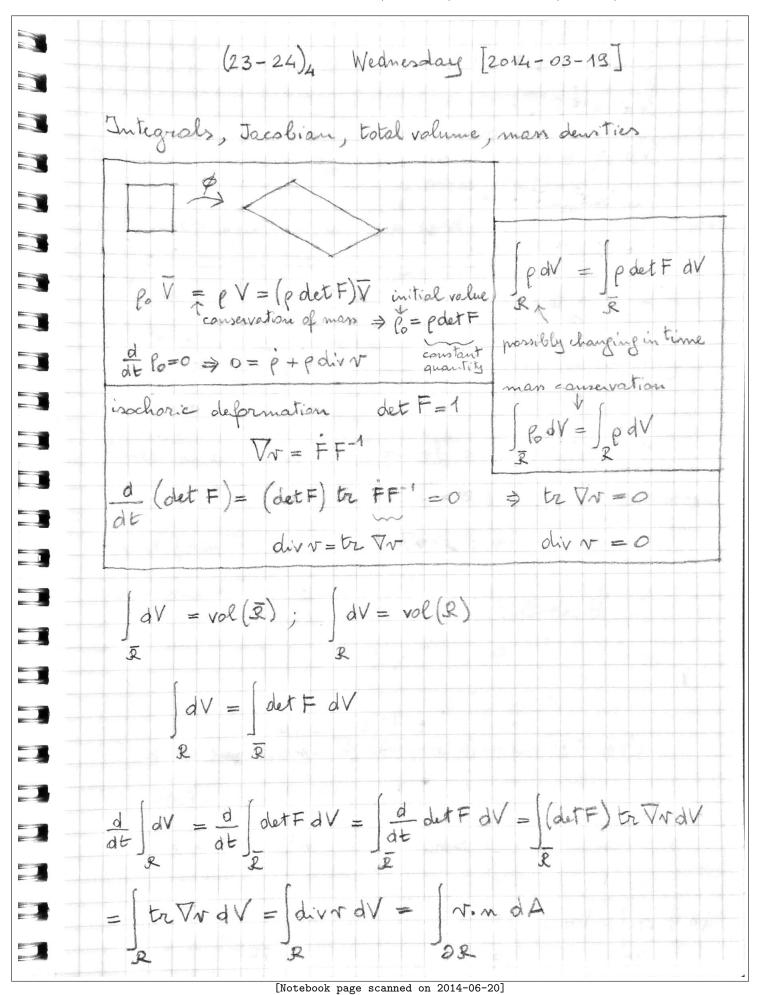
	Polar decomposition of the deformation gradient	
	= = RU RTR = I detR = 1	
-		
	U ∈ Psym	
	$C = F^T F = (RU)^T (RU) = U^2$	
	$U = \sqrt{FTF}$	
	C] = [A] drag (n, ye, n) [A]	
	$[u_1, u_2, u_3][u_1] = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	
	[u,, uz, u3] diag(y1, n2, n3) 0) = [u,] y1	
	C = y, u, &u, + y2h2 & u2 + y3 u3 & u3	
	$Cu_1 = y_1 u_2 \dots$	
+		

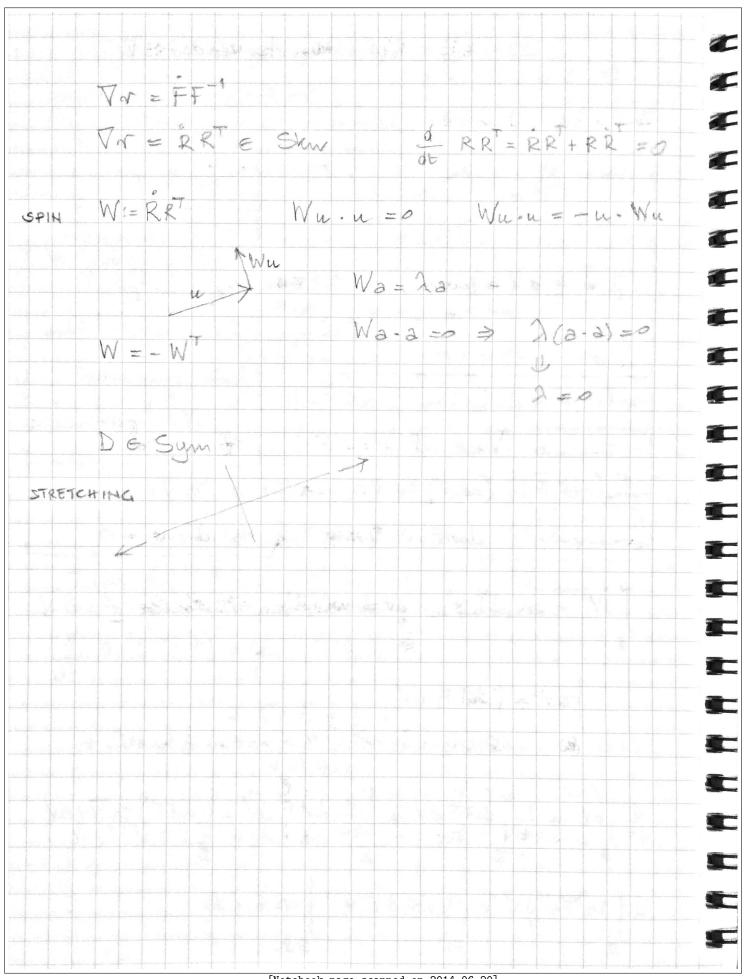
3	
	(15-16) Tuesday [2014-03-11] A13 09:00-11:00
	vol (u, uz, us) vol: V×V×V >> R.
	$(vol(u_1+v_1u_2,u_3) = vol(u_1,u_2,u_3) + vol(v_1u_2,u_3)$
3	
	(vol (du, uz, uz) = d vol (u, uz, uz)
	$(vol(u_2,u_1,u_3) = -vol(u_1,u_2,u_3)$
]	
	\Rightarrow $vol(u_1,u_1,u_3) = -vol(u_1,u_1,u_3) = 0$
3	vol (u,-u, uz,u3) = vol (u, uz,u3) - vol (u, uz, u3) = 0
3	vol (dzuz+dzuz, uz, uz) = 0
3	
3	vol (u, uz, uz) = 0 for uz, uz, uz linearly independent
3	⇒ vol = 0
3	
	A = (n, uz, uz)
	73, - (m, 12, 13)
	$V = vol(u_1, u_2, u_3) = vol(w_1 + (u_1, u_1) u_1, u_2, u_3)$
3	$w_i := u_i - (u_i \cdot u_i)u_i$
	my unit normal vector > Wing = uing - (uing) (uing) = 0
	$W_1 = d_2 u_2 + d_3 u_3$
	\Rightarrow $V = k_1 A_{31} k_1 := (k_1 \cdot k_1)$
1	

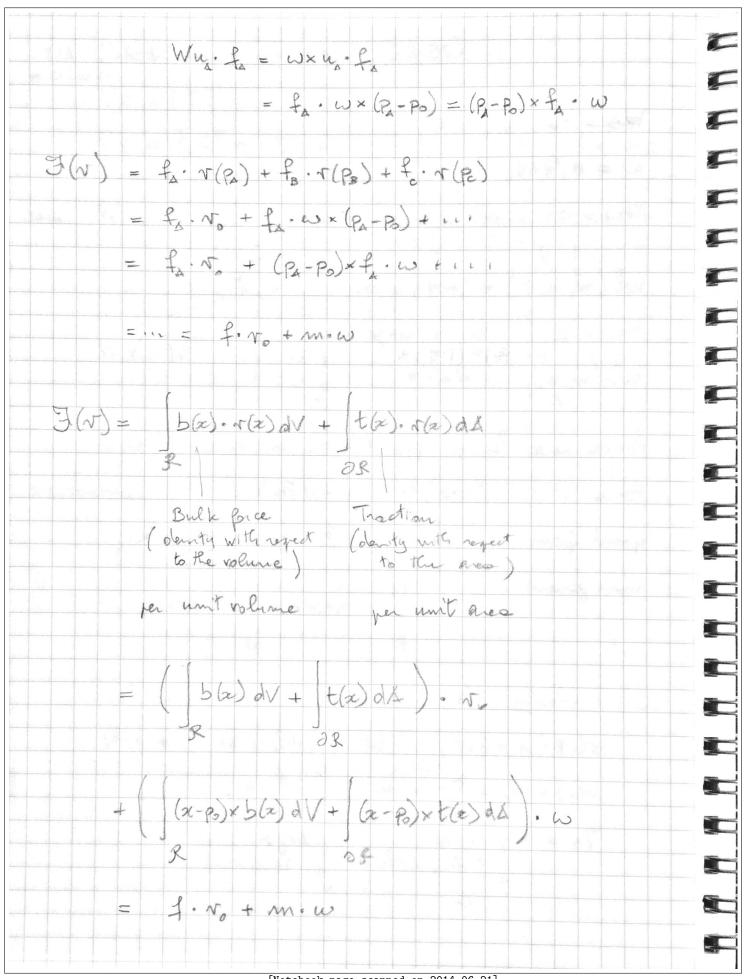

Wedn	esola	3	[2016	4-03	3-12]	1	1:00	-13	99	Δ1	.3	(1:	7-1	8)3
V	= d	etF												
					V=	h,	Ag		1	R,:	= u	7 · M	4	
ler	us	CON	rae		V =	h	Ā	4		h,		igon	ที่ง	
	A 31	_	V		E1		- R1	olet	F					
	Āā,		E	1	V		8,		3.4					
0												48		
th,	:= 1	1 · M	1		И2.	M	= 0		u ₃	· 11	=0			
e,	= Fi	- n	1		Fina	· M	=0		FA	3 · N	7 =	0		
			FT	and	J F	Ti ₂	an	TC	4 6	dee	00	2	35,	
e	n, =	u.	FM1		u ₂	. +	M =	0	1	^3 '	FM	1 =	0	
⇒ :	FM	is	ort	ropo	nel	to								
			Tr ₂	00	I II 3	w	hel	are	16	~e (Spe	00	ह है	,
Ha	ice	F	r	ills	bai	ck	m,	to	a	. Ve	cto	2		
more	mal		10	E,		1								
					F	TM	1 ==	k1	m ₄					

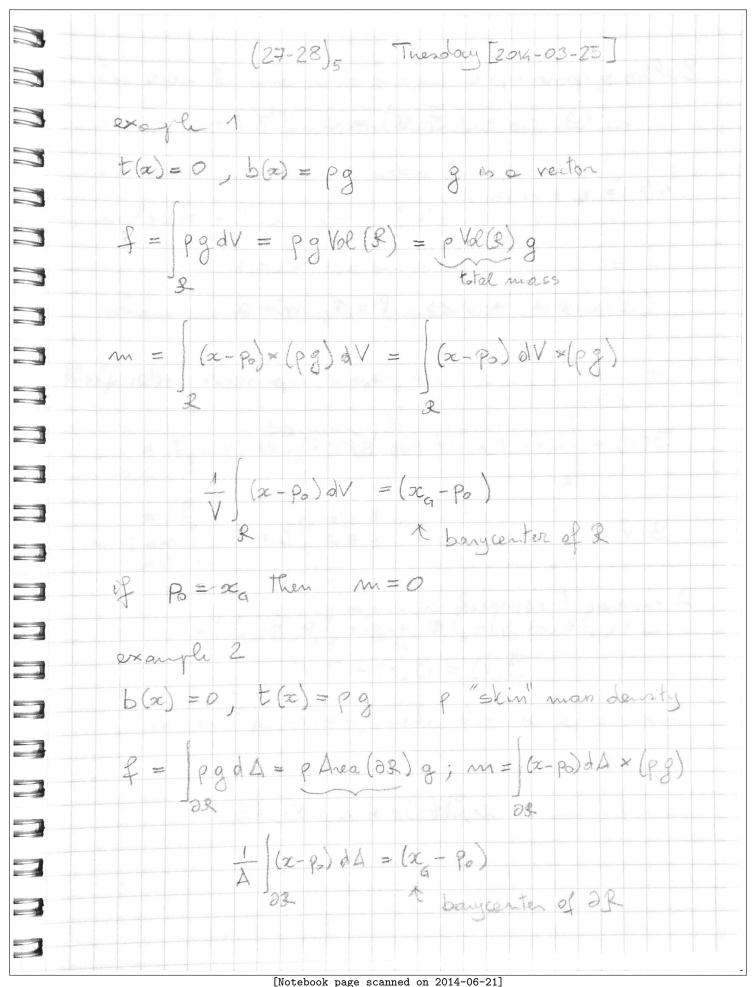

1	
	$n_1 = k_1 F^{-1} \overline{n}_1$ $\Rightarrow k_1 = \overline{u}_1 \cdot F^{-1} \underline{n}_1 = \overline{u}_1 \cdot \overline{u}_1 k_1$
1	$e_1 = \bar{e}_1 k_1^{-1}$
3	
	$k_1 = \frac{\overline{k_1}}{2}$
	$F \overline{n}_1 = k_1 n_1 = \frac{43!}{A_{\overline{3}}} \frac{1}{\det F} n_1$
	$(\det F)F^{-T}\overline{n}_{1} = \frac{A_{31}}{n_{1}}$
	cof F
]	Matrix of coff
1	
	(cof F) e, = Agin; = Agin;
	$A\bar{g}_{i} \rightarrow 1$
	(cof F)e, e; = Ag, n, e; = (n, e;) vol (n, Fez, Fez)
- 4	
1	$e_i = w_{ii} + (e_i \cdot m_i) m_i \Rightarrow w_{ii} \cdot m_i = 0$
1	$(col F)e_1 \cdot e_i = vol((m_1 \cdot e_i)m_1, Fe_2, Fe_3)$
1	= vol(e;-w _{ii} , Fe ₂ , Fe ₃)
	= vol (e; , Fe ₂ , Fe ₃)
1	
	[Notebook page scanned on 2014-06-20]

3	
3	$\operatorname{tr} \Delta = \operatorname{vol}(Ae_1, e_2, e_3) + \dots$
	vol (e, e, e, e, e)
3	$\frac{d}{dt} \det F(t) = \frac{\text{vol}(\dot{F}\bar{u}_1, F\bar{u}_2, F\bar{u}_3)}{1 + \dots}$
3	$\frac{d}{dt} \det F(t) = \frac{\text{vol}(F\bar{u}_1, F\bar{u}_2, F\bar{u}_3)}{\text{vol}(\bar{u}_1, \bar{u}_2, \bar{u}_3)} + \dots$
	= vol (F F h, , n2, n3)
	vol(ta, taz, taz)
	= vol (FF-1, uz, uz) vol (uz, uz, uz)
	val(in, in, ins) val(in, inz, ins)
 }	Vol (FF un, uz, uz) detF +
	Vol (161) (12, 113)
	= detF tr (FF-1)
	det AB = vol (ABe, ABez, Aez)
]	vol (e1, e2, e1)
3	
	olet B = vol (Be, Bez, Bez)
	vol (e1, e2, e3)
	det A = vol (ABe, ABez, ABez)
1	det A = vol (2 Bez, Bez, Bez)
3	
1	= det A obt 3 = det AB

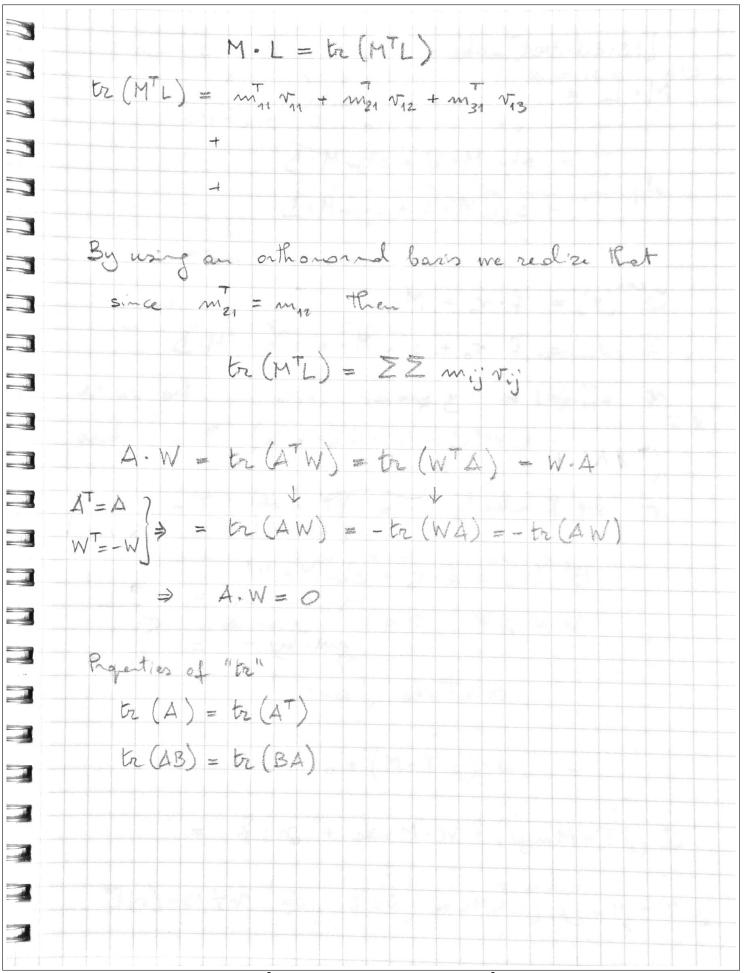

$F_{n_1} = k_1 \overline{n_1} = \frac{k_1}{k_1} \overline{n_1} \qquad k_1 = u_1 \cdot n_1$, R, = u, m,
There are 2 couple	s of dial bases =
$Fm_i = a_{1i} u_1 + a_{2i} u_2 + a_{3i} u_3$ $m_i = b_i \cdot \bar{u}_1 + b_2 \cdot \bar{u}_2 + b_3 \cdot \bar{u}_3$ (*)	[u;3, {m;}
	[证], [证]
$\begin{cases} F_{1}^{T} \cdot n_{2} = a_{21} u_{2} \cdot n_{2} = a_{21} k_{2} ; F_{11} \cdot n_{1} \end{cases}$	
$m_2 \cdot \bar{m}_1 = b_{12} \bar{u}_1 \cdot \bar{m}_1 = b_{12} \bar{h}_1 ; m_1 \cdot \bar{m}_1 = 0$	by h (2)
	$y_1 = k_1 m_1$
	$2 = k_2 m_2 \begin{pmatrix} k_3 \end{pmatrix} \blacksquare$ $2 = k_3 m_2 \begin{pmatrix} k_3 \end{pmatrix} \blacksquare$
	3 3 5
	an 6, (*)
$\begin{cases} \mp m_1 \cdot m_1 = k_1 \cdot m_1 \cdot m_1 = a_{11} \cdot h_1 \Rightarrow \frac{k_1}{k_1} \cdot k_1 = a_{12} \cdot h_1 \Rightarrow \frac{k_1}{k_2} \cdot k_1 \cdot k_2 = a_{12} \cdot h_2 \Rightarrow \frac{k_1}{k_1} \cdot k_1 = a_{12} \cdot h_2 \Rightarrow \frac{k_1}{k_2} \cdot k_2 \Rightarrow \frac{k_1}{k_2} \Rightarrow \frac{k_1}{k_2} \cdot k_2 \Rightarrow \frac{k_1}{k_2} \cdot k$	21 h2
det FT = vol (Fm, Fm2, Fm3) (detais) vol (un, uz, uz, uz) vol (un, uz, uz, uz)	
$\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_3 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} \begin{pmatrix} k_1 \\ k_3 \\ k_3 $	ji hj (*)
It is much easier to rely on the obtenument's holye de	e of any
dans a choose on orthonor of basis and amplait of the nations of being the transpore of each other thus in the same expension for the determinant.	
[Notebook page scanned on 2014-06-20]	

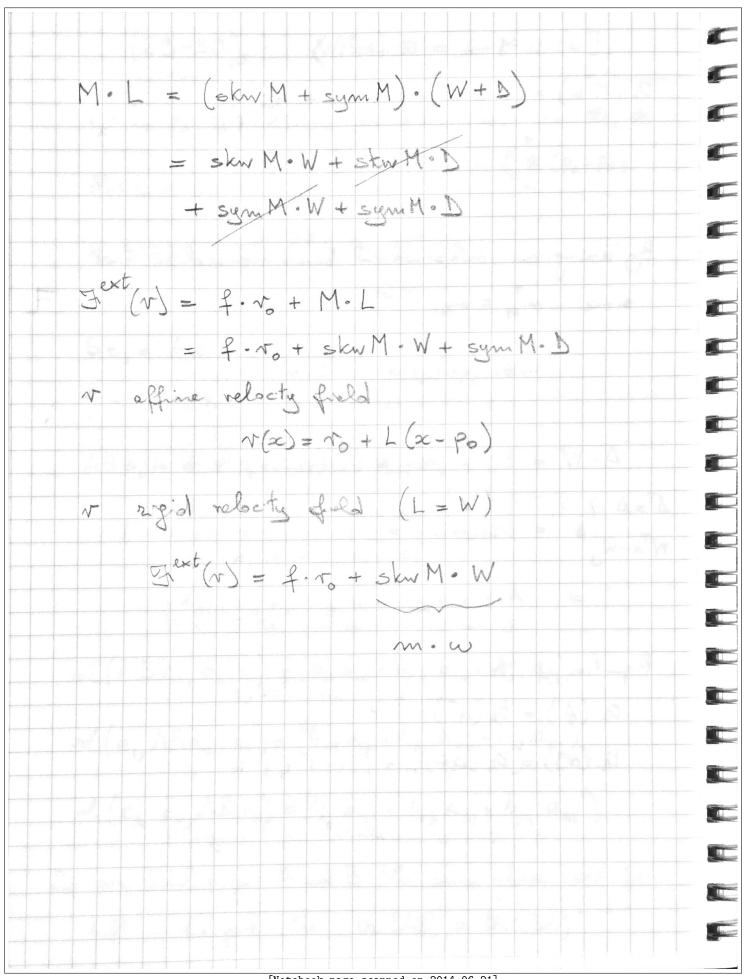


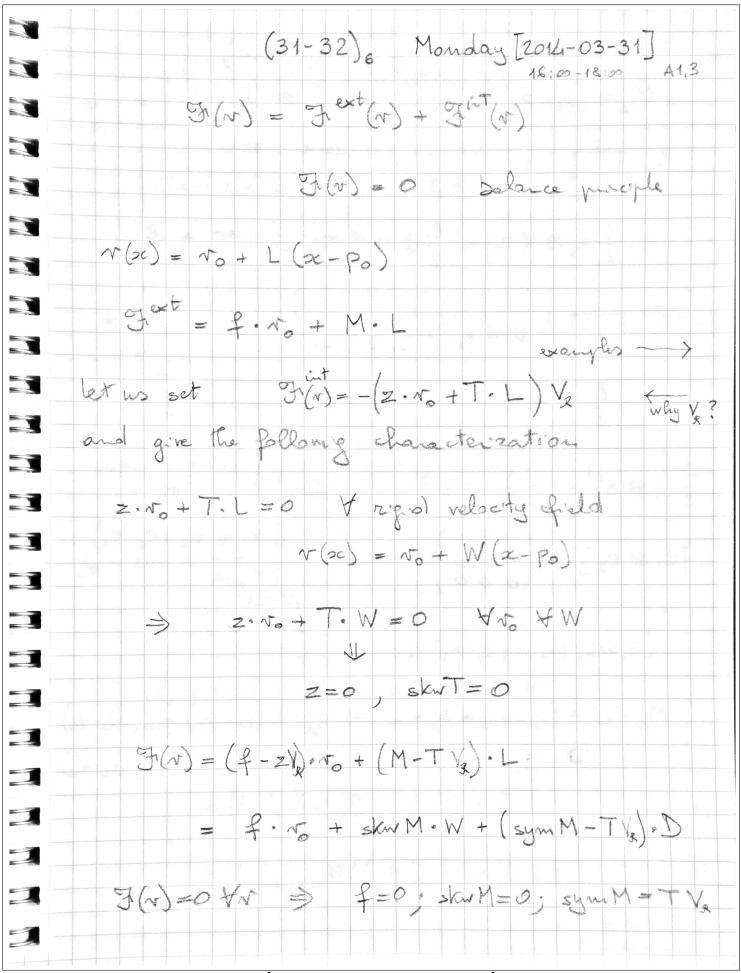

	(21-22)4 Tuesday [2014-03-18] 9:00-11:00
Veloci	ty field L
	$V(c(e_1)) = V(c(o)) + \nabla V (c(e_1) - c(o)) + o(e_1)$
	e(R) = c(0) + F(E(R) - E(0)) + o(R)
	$= \nabla_{\mathcal{N}} \cdot F := \nabla \phi$
1 let	us olifferentiste w.r.t. time
	c(g) = c(g) + f(c(g) - c(g)) + o(g)
3 F	$-1\left(c(R)-c(0)\right)=\left(\bar{c}(R)-\bar{c}(0)\right) + o(R)$
	$\dot{c}(R) = \dot{c}(0) + \dot{F} F^{-1}(c(R) - c(0)) + o(R)$
3	$\Rightarrow \nabla_{r} = \dot{F}F^{-1}$
3	$\nabla \overline{v} = \nabla v F = \dot{F}$
I we are	and $r(c(e)) = \tilde{c}(h) \mid r(c(h, t)) = \tilde{c}(h, t)$
1 2	entiating again fixed postion
	$\frac{\partial}{\partial t} \mathcal{N}(c(\mathbf{s},t),t) = \nabla \mathcal{N} \dot{c} + \frac{\partial}{\partial t} \mathcal{N}(\mathbf{x},t)$ $\frac{\partial}{\partial t} \mathcal{N}(\mathbf{x},t) = \nabla \mathcal{N} \dot{c} + \frac{\partial}{\partial t} \mathcal{N}(\mathbf{x},t)$
Accelo	ect on from spatial reloctly freeld


	$\overline{w}(\overline{c}(a)) = w(c(a)$	
Acres 6	ning c(R), fixed w	velocity field
	$= (\bar{c}(R)) = w(c(R,t))$ $\times \phi(\bar{c}(R),t) \neq$	T(PA,t) = d PA(H)
velo	city field $v(x,t)$	$= \dot{p}(t) = v(p_{a}(t), t)$
7	c(z(e),t)=v(c(e,t),t)	acceleration field
acce	leration field	$\bar{a}(\bar{p}_a,t) = \frac{d}{dt} \bar{v}(\bar{p}_a,t)$
	$(\bar{c}(R),t) = \frac{d}{dt}\bar{v}(\bar{c}(R),t)$ $= \frac{d}{dt}v(c(R,t),t)$	$= \frac{d}{dt} v(P_{\Delta}(t), t)$
5	T, à referentio	l description (Lagrangean) description (Enlerion)
Tin	me differentiation of the	
	$\bar{r}(z(e),t) = \frac{d}{dt} r(c(e),t)$	
~	= $\nabla v \stackrel{?}{\leftarrow} t = V_{V} \stackrel{?}$	et), t) at a fixed postion c(R, t)
ā	$(\bar{c}(a),t) = a(c(a,t),t)$	$=(\nabla v)v+\frac{\partial}{\partial v}v$
	$a(x,t) = (\nabla v)$	(x,t) $)$ $\sqrt{(x,t)} + \frac{\partial}{\partial t} \sqrt{(x,t)}$

	(25 20 Ma 10 1202 - 02-2/7 M3
	(25-26) 5 Manday [2014-03-24] A1,3
3	$Wa = \lambda a \Rightarrow \lambda = 0$
	$\omega = a/ a $ $ \omega (e_1,e_2,e_3)=1$
	$Ww = 0$ $vol(w, u, r) = w \times u \cdot r$ $\forall r$
	$vol(w,u,v) = (*w)u - v \forall w, \forall u, \forall v$
	Hodge star
3	vol (us, u, v) = Wu.v.
	Power as a linear functional on velocity fields
3	Force $S(r)$ representation
3	special form J(v) = f. v(p) + f. v(p) + f. v(p)
	more general $\Im(v) = \int b(x) \cdot v(x) dV + \int t(x) \cdot v(x) dA$
3	3 33
3	relacity field
3	$r(c(e)) = r(c(o)) + \nabla r(c(o)) (r(c(e)) - r(c(o))) + o(e)$
3	$v(x) = v_0 + \nabla v(x - P_0) \text{affine}$
	$\nabla N = RR^{T} = W$ zigid
3	
3	






Balance mi						
	144	J(v)=	= 0	AN		K
N(2) = V0 +	W (x-Po					
		· 3(v)	= P.V.	t m.	w	
F(v)=	O YN		-0, m	L=0		
V general	conti	nuous and	d differ	entials	e vector.	Rield
3(v) = b(1			a de sea	0) 104 (3) 104
R		232				100
3(v) = 0	An	> b	=0,t	=0	n allerves	d
A conversiont		de la				
	J(v) =	ext 3 (v) +	tut (w)PE-			
based on a				of th	e two	
different puts	, and ?	Hill regi	in'ng			
	3	(v)=0	Yv			
25						

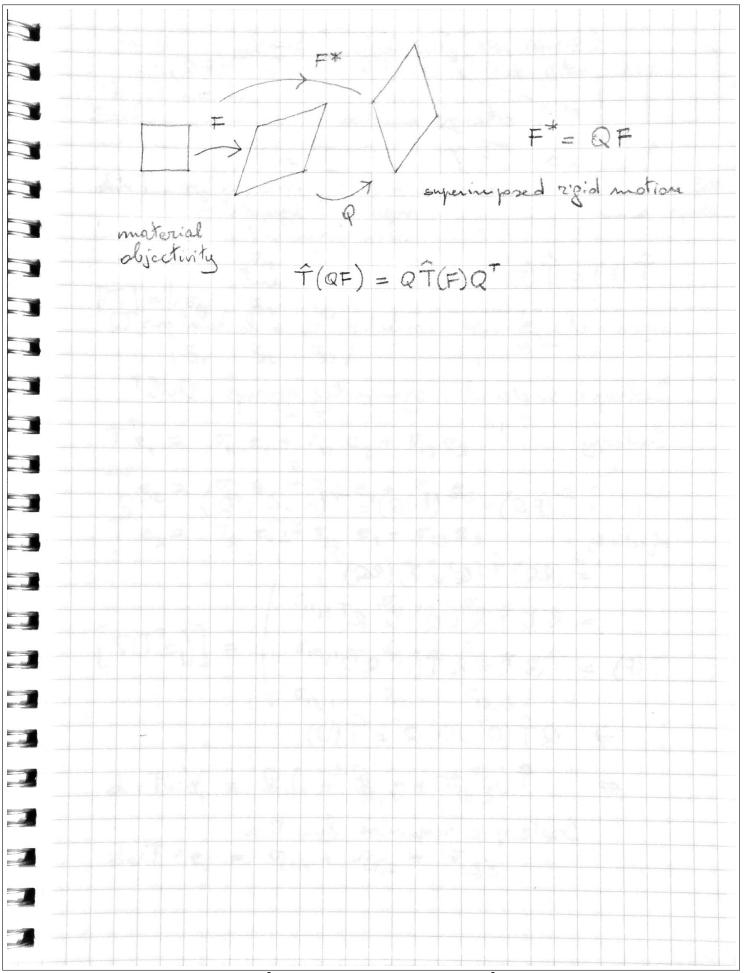
(2) 50 /5 VVeaneraay [2014-03-00]	
$f_A \cdot L(P_A - P_O) = (P_A - P_O) \otimes f_A \cdot L \otimes g \otimes g$	
$M \cdot L = tr(MTL)$	
$t_{2}(AB) = \frac{\sqrt{\sqrt{ABe_{1}e_{2}e_{3}}}}{\sqrt{\sqrt{e_{1}e_{2}e_{3}}}}$	
$Be_{i} = b_{ii}e_{1} + b_{zi}e_{z} + b_{zi}e_{3}$ $Ae_{i} = a_{ii}e_{1} + a_{zi}e_{2} + a_{zi}e_{3}$ $any bears$	
ABei = bi Ae1 + bi Ae2 + bi Ae3	
vol (ABe, e2, e3) = (b11 a11 + b2, a12 + b31 123)	
If we exchange A and B the sum above will be left un changed. So to (AB) = to (BA)	

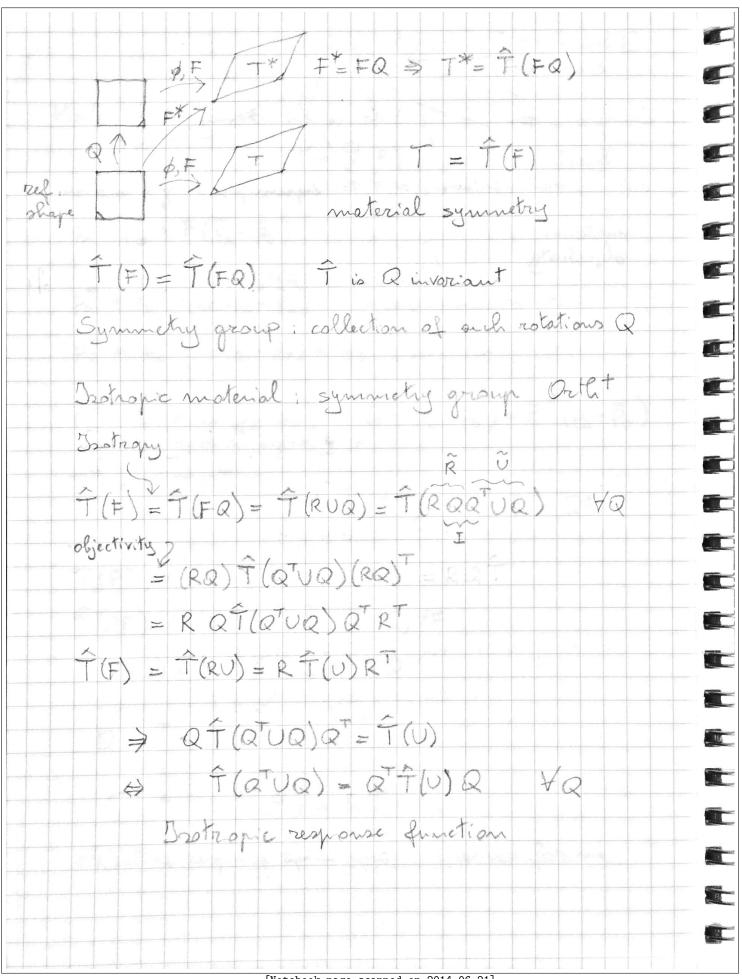
Charge of observes (frame-invariance)

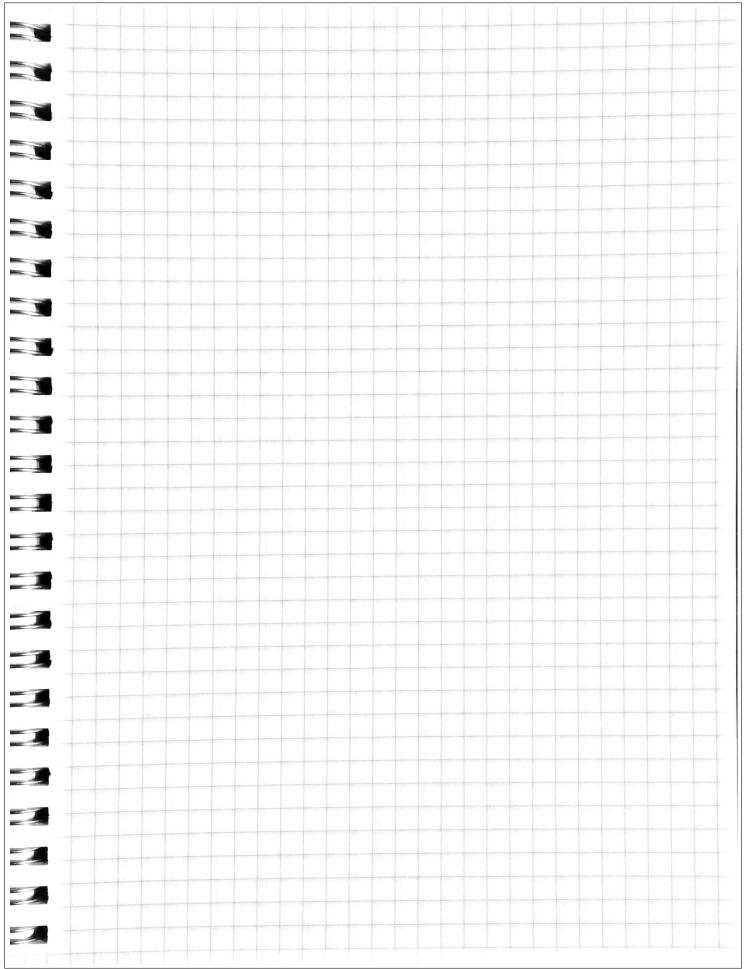
Galilean transformations (Galilean group)

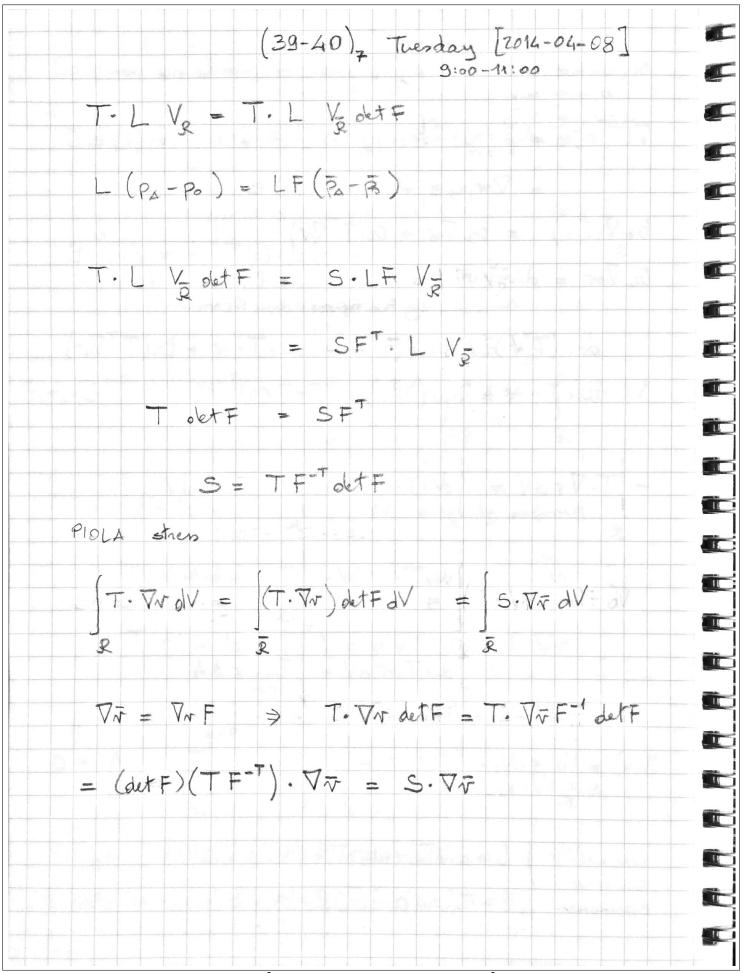

$$P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o})$$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o})$

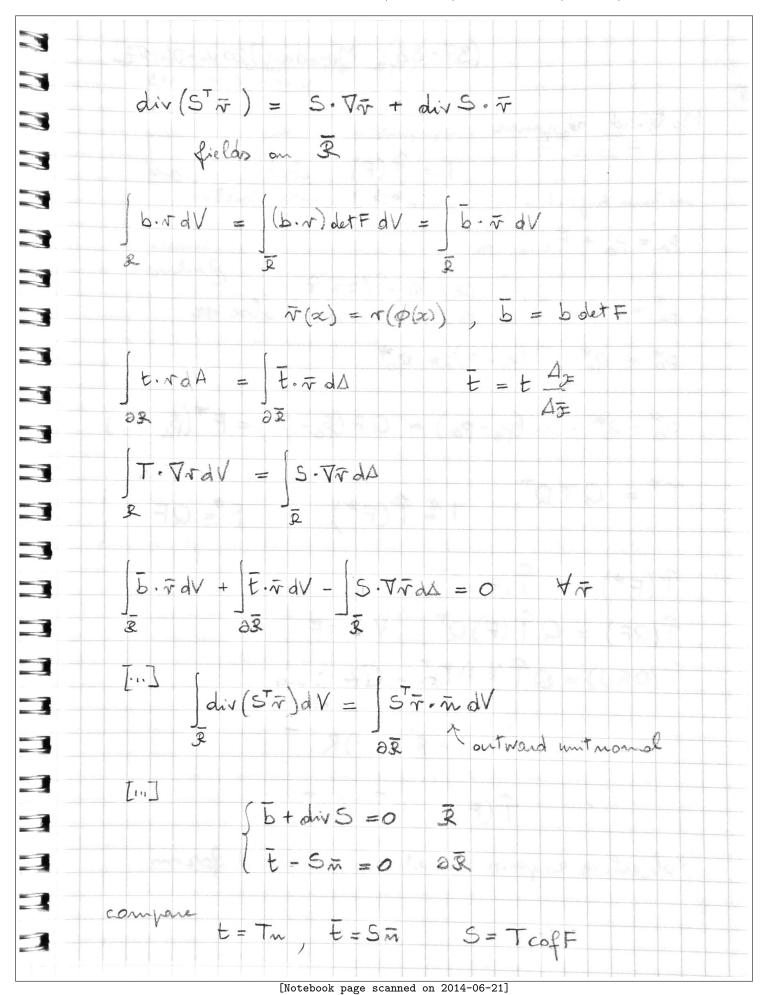
This transformation is defined by q_{o}^{+} and Q_{o}^{+}
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + Q(P_{a} - P_{o})$
 $P_{a}^{+} = q_{o}^{+} + Q(P_{a} - P_{o}) + P_{o}^{+} = q_{o}^{+}$
 $P_{a}^{+} = q_{o}^{+} + P_{o}^{+} + P_{o}^$

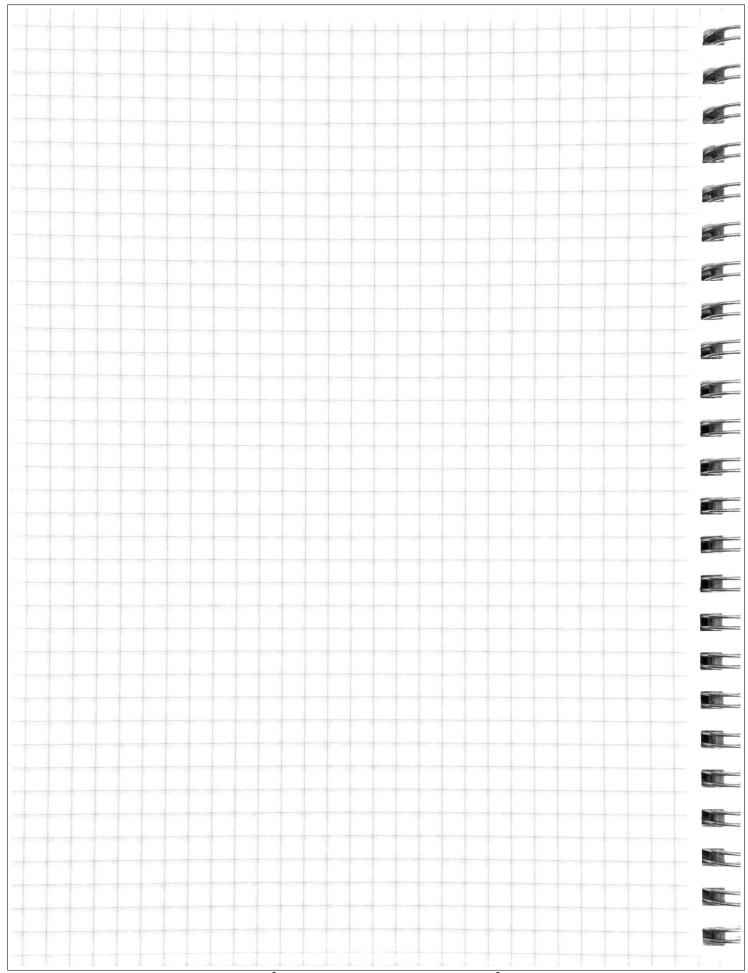


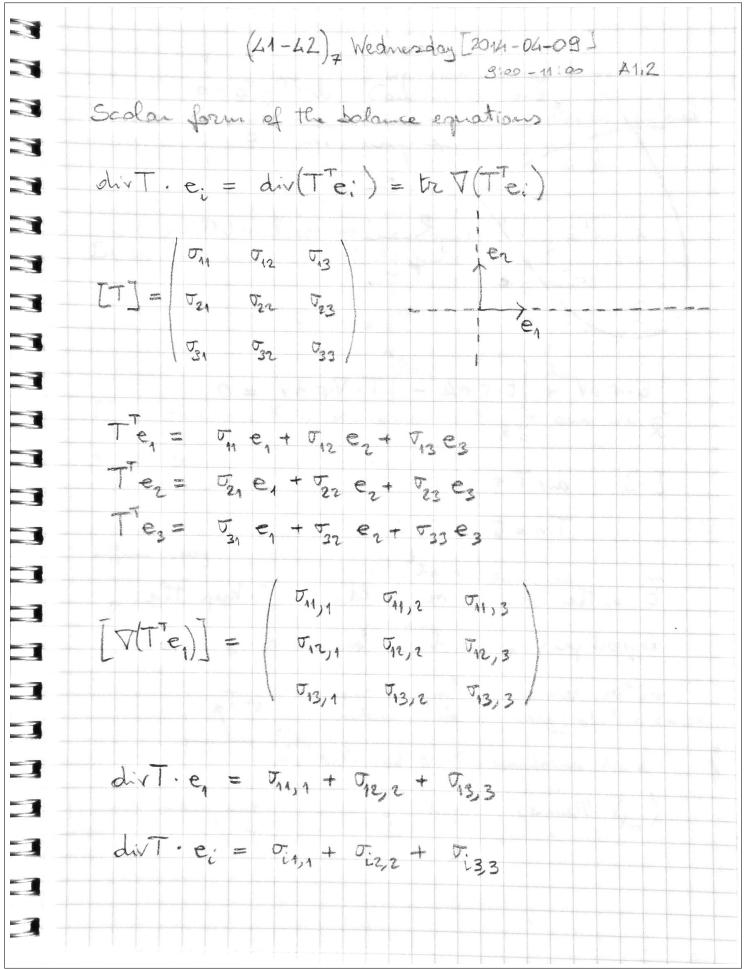

					3	4		,	7 4	1 ~
		(35-3	6)6	Wedne	oday	1201	11:0	4-02	J A 3:00	1,5
	G	. 00	2.	+			14		-	
1	Summariza							-	1	
3	Caffine God	hies: bo	dies u	ndergoi	ng al	fire	~	Tion	2)	
3		v(2c) =	v +	L(x-	-80)		+ 1			
1			1 Y 8						7	
3	Fext (v) =	f. 10	+ M.	-						
3								-		
1	= (v) =	- (2.1	o + T.	L)Vs						
3	Balance	ব	(2) -	> \	(-		1			
3										
3	Objectivity	Z s	0	T=TT						
3	>	£.	= 0	y 3.						
3	7	1 100							7	
3		SK	~M =							
3		34	m M =	1 V						
3	te T	$m = t_1$	I T							
3	with 1	m, - 01	L J							7 1
3										
3							1200			
4	434354				12/2/4					
4					8 K (15					
1										
		[Notabash		ned on 2014-	06-21]					-

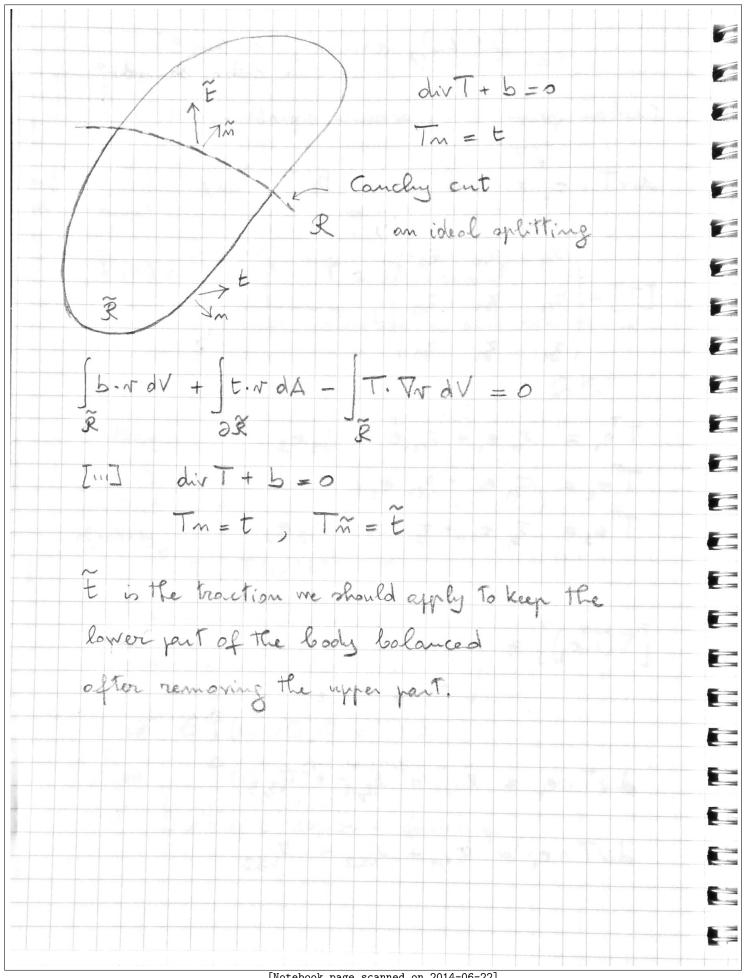

Balance egations in general
$\mathcal{J}^{\text{ext}}(v) = \left(b(x) \cdot v(x)\right) dV + \left(t(x) \cdot v(x)\right) dA$
2 22
$\mathcal{F}^{(n)}(x) = -\left(T(x) \cdot L(x) dV\right)$
3.
3(m)=3ent (m) + 3ins (m) = b-rav+ t.rdA - T. VrdV
3 03 3
div v = tr. Vv Vv already defined
oliv T. a = div (Ta) = tr V(Ta)
$\operatorname{div}(T^{T}v) = \operatorname{tr} V(T^{T}v) = \operatorname{div} T \cdot v + T \cdot \nabla v$
$\nabla(T_{N})e = \lim_{n \to \infty} \frac{T(x+he)v(x+he) - T(x)v(x)}{h}$
$=\lim_{\lambda\to 0}\frac{T^{T}(x+he)v(x)-T^{T}(x)v(xe)}{h}+T^{T}(x)V_{N}(x)e$
(21-22), > N(c(e)) = N(c(o)) + VN(c(o)) (c(e)-c(o)) + o(e)
$c(G) = x + Ge \Rightarrow v(x + Ge) = v(x) + Vv(x)(Ge) + o(G)$
and the second of the second o
[Notebook page scanned on 2014-06-21]

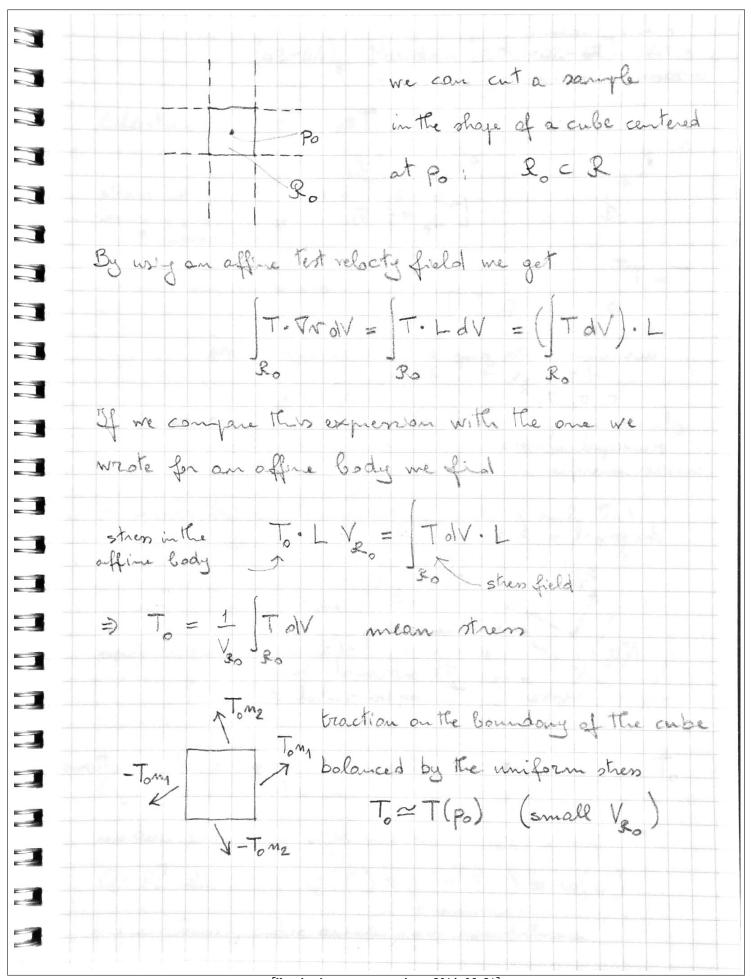

	(37-38), Monday [2014-04-07] 16190-18100 413
Material	response
	T= T(F) elastic material response function
PA = Pa	, + F(R-R)
PA = (70 + Q (Pa - Po) charge of observer
	9°+ Q(Po-Po) = 9°+
PA - P	* = Q(Pa-Po) = QF(Po-Po) = F*(Po-Po)
T* =	QTQ^{+} $T^{*}\hat{T}(F^{*})$ $F^{*}=QF$
	$) = Q \hat{T}(F) Q^{T} \forall Q$
	$) = Q \hat{T}(F)Q^{T} \forall Q, \forall F$
1 (QR	$J) = Q \widehat{T}(RU) Q^{T} \forall Q$
Q =	$R^{T} \Rightarrow \hat{T}(U) = R^{T}\hat{T}(F)R$
	$\hat{T}(F) = R\hat{T}(U)R^{T}$
object	ive response function reduced form

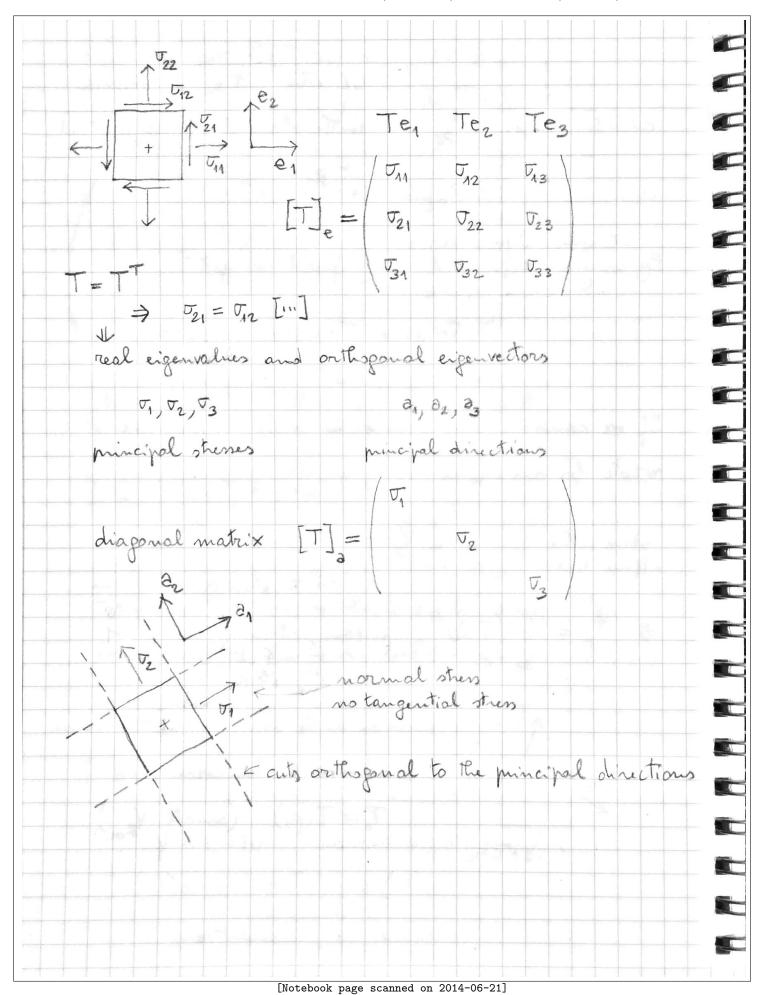







[Notebook page scanned on 2014-06-21]





3	(43-44) Monday [2014-04-14] A1.3
4	16:00-42:00
3	Elastic energy
3	
7	stress your T. Vr = T. FF-1
7	density per
	densty per unit current volume
3	In an affine motion
3	T. FF-1 V = T. FF-1 V dut F
3	
3	= TF-T. FV= det F
3	= S. FVa power denty
	reference volume
3	Hyperelastic material: there exists is such that
3	$\widehat{\uparrow}(F) \cdot \widehat{F}F^{-1}V_{\mathcal{R}} = \frac{\mathcal{Q}}{at} \varphi(F)V_{\overline{\mathcal{R}}}$
3	
3	in any (affine) motion
3	equivalently $\hat{S}(F) - F = \frac{\partial}{\partial F} \varphi(F)$
3	elastic energy
3	reference volume
1	Objectivity: elastic energy invariance
1	under superpred zigid motion: $\varphi(F) = \varphi(QF)$
1	
1	$Q=R^{T}\Rightarrow \qquad \varphi(F)=\varphi(R^{T}RU)=\varphi(U)$
4	necessary condition
+ +	

Mate	onal	symme	try					
		q (f		p (FC	8)	⇒ Q to Me group	belon	Lety
Jack	opie n	naterial						
		9 (F) =						
		f_{y} $\varphi(U) =$						
ą		c energy				-		
Speci		empritic					umiteij ui & ui	
¥Q.	Q^{T}	$JQ = \lambda$	Q P	$2 + \lambda_2$	Q P2	$Q + \lambda$	3 Q P3	Q
if Ren		$i = \lambda_i u$	Cherry	e of U				
and	(QT	JQ)QT	,	i Q'u	on 08	Q^{T}	10	3
instrong	φ(υ)	= φ(Q ^T U	Q)	same i				
>	φ(U) is ind				1000		of U

1 7 7					
3		(15-16)	nesolay [2014.	-04-15	412
-		(45-40)8	westing 20 Eq	2 2	100-11:00
	71 -				
	Isotropie elas	tic energy			
	$\varphi(F) = \varphi(i)$	$) = \widehat{\varphi}(\lambda_{i})$	222		
1			9 3 /	3-3 -3 4-	
7	10(1) = 10(U2 = 10 (C)	$= \tilde{\varphi}\left(\lambda_1^2, \lambda_2^2, \lambda_3^2\right)$	2	
1					
			= 9 (4, 62)	(3)	
	mincipal in	variants of	C		iotal
3		to be a land and the			
	coefficients	of the cha	racteristic po	lynomio	e
=1	det (- MI) = M	- 4 n + L2 n		
	I I I I I I I I I I I I I I I I I I I		7 1. 2	1 9	
3	i, = tr C				
3	1	2	-2		
3	$L_2 = \frac{1}{2} (t$	ec) - tro		8 1 1 2	
	Lz = det	C			
	3				
3	d φ(F) =	0 00			
= 1	$\frac{d}{dt} \varphi(F) =$	d & (4, 1	2) 3)		
3				A 1 .	
3		P,1 dt +	φ, 2 dt +	P,3 dt3	
3					
1					
-4					
	1 1 1 1 1 1	[Natabash as a same	nned on 2014-06-21]		

$$\hat{S}(F) \cdot \hat{F} = (\hat{T}(F)F^{-1}detF) \cdot \hat{F} = \hat{T}(F) \cdot \hat{F}F^{-1}detF$$

$$\hat{T}(F) = \hat{S}(F)F^{-1}\frac{1}{detF}$$

$$\hat{T}(F) = \frac{2}{V_{13}}\left(\frac{3\phi}{3v_1} + \frac{3\phi}{3v_1}v_1\right)B - \frac{3\phi}{3v_2}B^2 + \frac{3\phi}{3v_3}v_3I\right)$$

$$B = FF^{-1} \quad \text{left Coucly Green tensor}$$

$$F \subset F^{-1} = FF^{-1}FF^{-1} = B^2$$

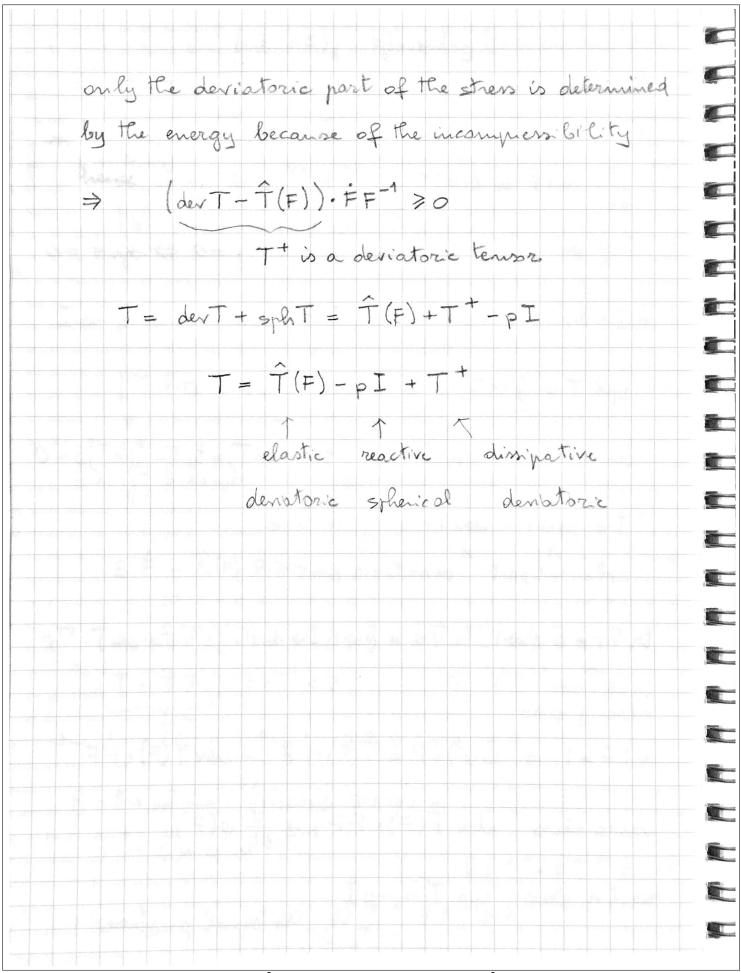
$$F \subset F^{-1} = F(F^{-1}F^{-1})F^{-1} = I$$

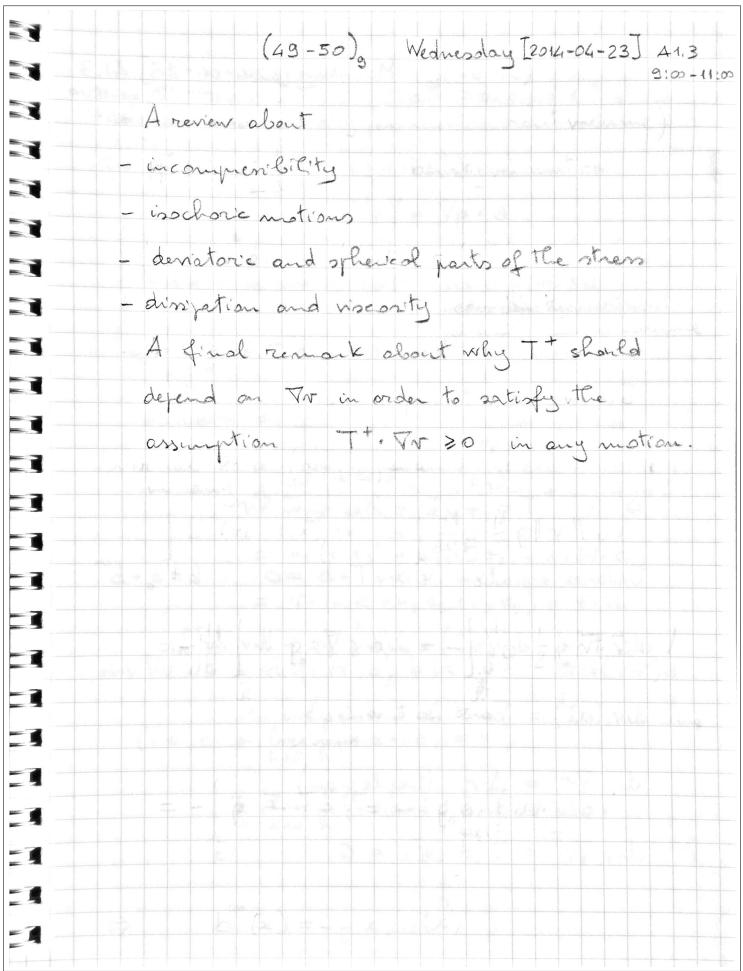
$$Second \quad Piola \quad \text{stress tensor}$$

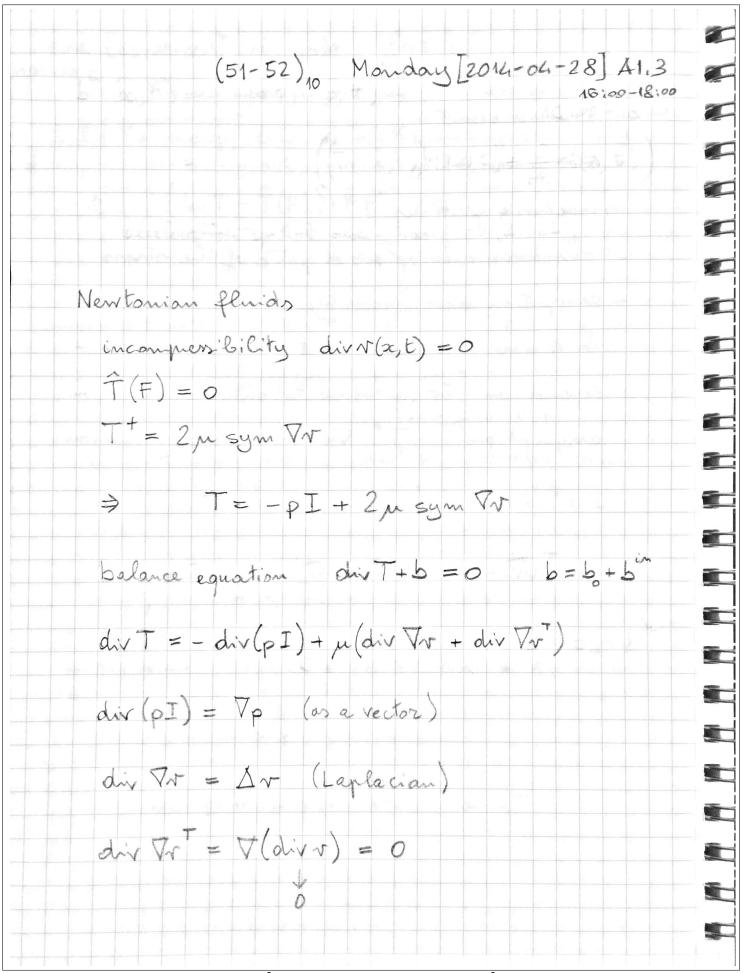
$$S \cdot \hat{F} = \frac{1}{2}S_{II} \cdot \hat{C}$$

$$S \cdot \hat{F} = \frac{1}{2}S_{II} \cdot \hat{C}$$

$$C = C^{-1} \Rightarrow S_{II} \quad \text{is a symmetric tensor}$$

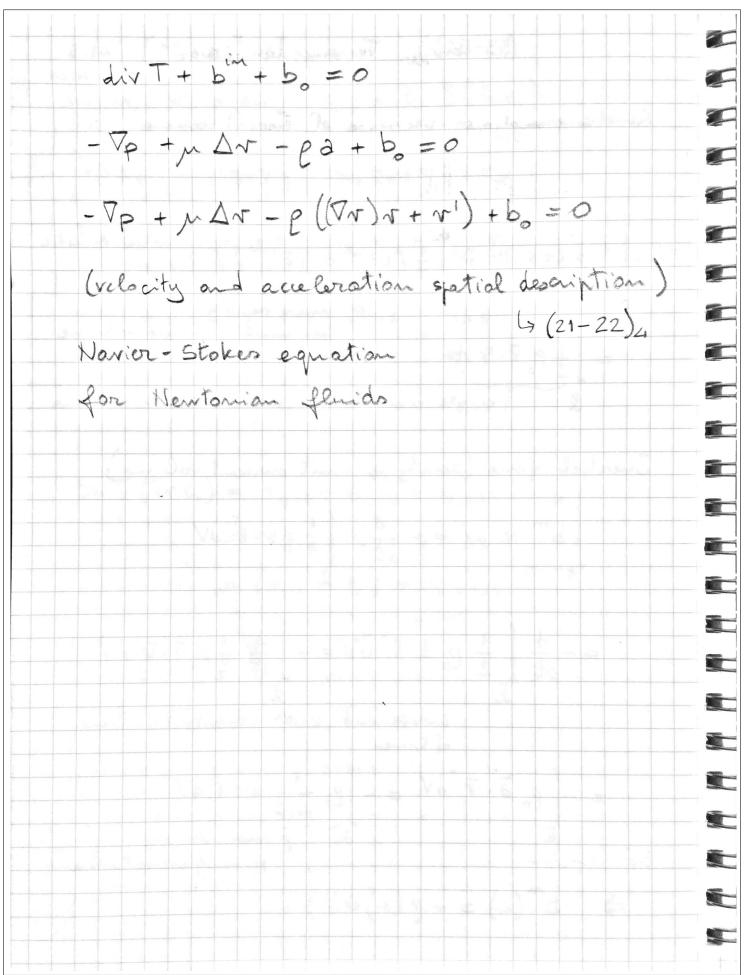

$$1 \Rightarrow S_{II} \cdot \hat{C} = \frac{1}{2}S_{II} \cdot (\hat{F}^{-1}F + F^{-1}F) = S_{II} \cdot \frac{1}{2} \cdot ((F^{-1}F)^{-1} + (F^{-1}F)^{-1})$$


$$= S_{II} \cdot \text{Sym} + F^{-1}F = S_{II} \cdot F^{-1}F = FS_{II} \cdot F^{-1}F$$

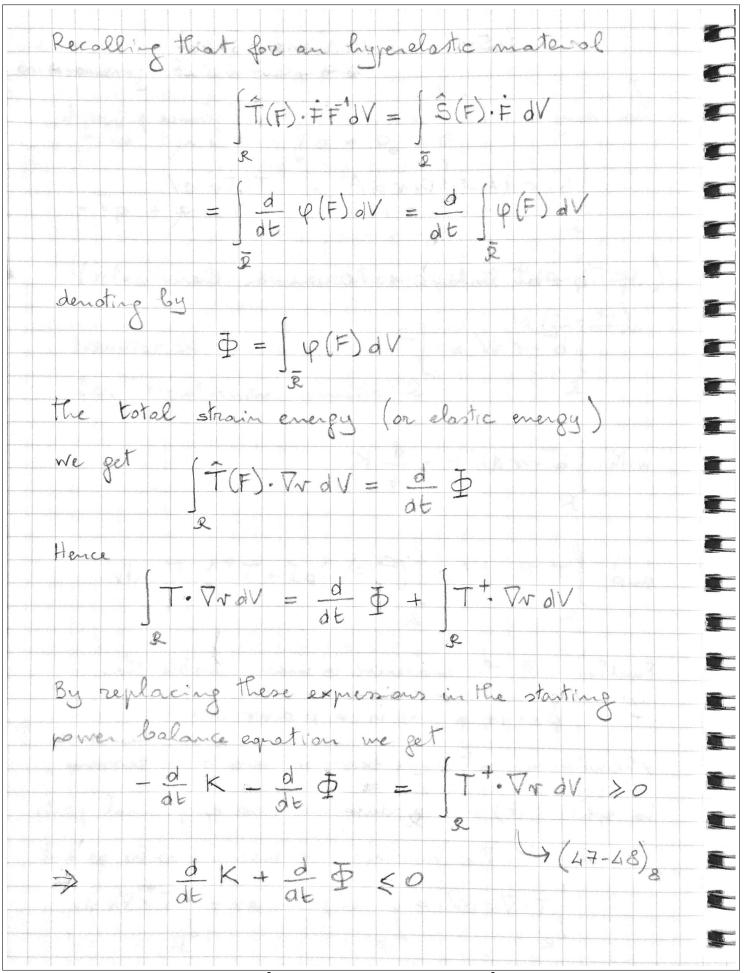

$$\Rightarrow S = FS_{II} \Rightarrow S_{II} = F^{-1}S = F^{-1}T = F^{-1}T \cdot detF$$

	(47-48)	Wednes	day [2014-04-	-16J A1.3
Force balance	minciple	0.14 1.4	The Control	9:00-11100
	(v) + F"			
Power expens		r		
b. vdV +	+ t. x d/ =	T.V.	rdV	
2	+ t.x dV =	R		
by using the 1				
T. Vx dV	J. T. F.F.	1 dV =	S.F dV	
2	8		Ē	
				0.1
Energy bolan				lity)
, ,	S.F -	ot P(F) } 0	
S.F - 5(F). F >0			
5+			4.	
(5-\$(F))			St. F >0	
$(T - \hat{T}(F))$	· FF 20		T'. FF-12)
++		-/	12/2	
	T = -			
Possible choice	(Vincous !	stress)		
T = 2 m s	ym FF-1		,	
		(34	m FF-1) = F	F-1 >0
viocosity		T+, +		

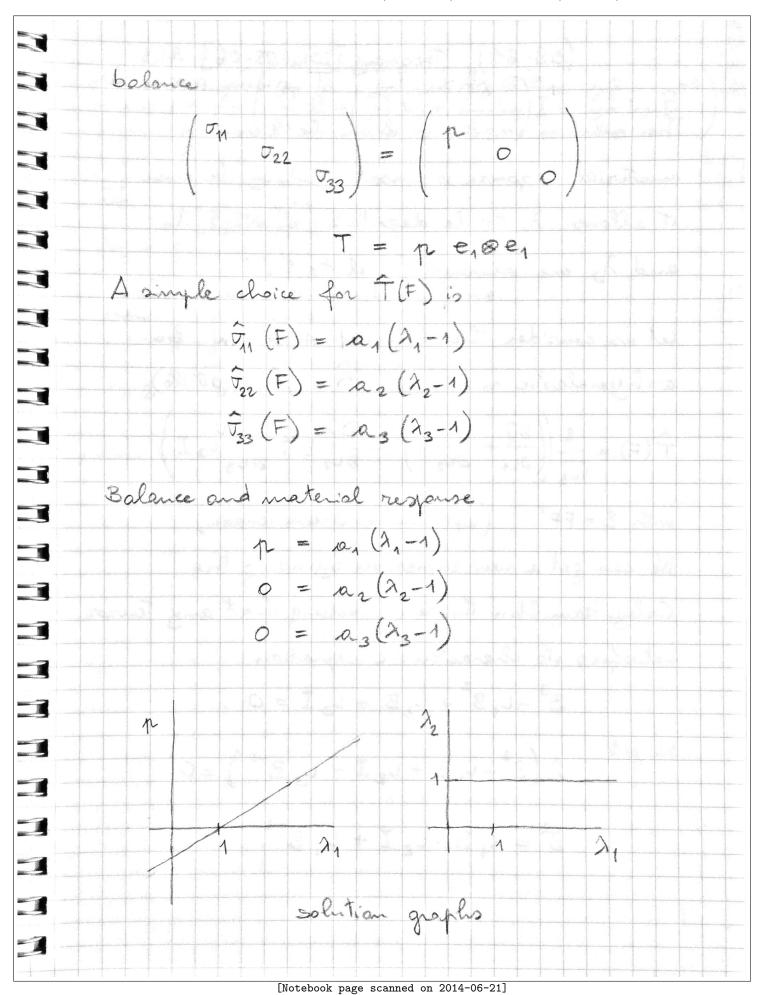
3	
	Incompresible materials
7	$\frac{d}{dt} \det F = (\det F) \operatorname{tr} (\dot{F} F^{-1}) = 0$ (motion)
	$\Rightarrow \operatorname{tr}(\dot{F}F^{-1}) = 0 \Leftrightarrow \operatorname{tr}\nabla_{V} = 0 \Leftrightarrow \operatorname{div}_{V} = 0$
3	aI. Vv = a tr Vv = 0 Y spherical tenzor aI
	$srhT:=\frac{1}{3}(trT)I \Rightarrow (srhT) \cdot \nabla v = 0$
3	$der T := T - sph T \Rightarrow tr (der T) = tr T - \frac{1}{3}(tr T) = 0$
3	T = sphT + devT spherical part deviatoric port
3 3 3	$tr \nabla v = 0 \Rightarrow T \cdot \nabla v = (sph T + dev T) \cdot \nabla v = dev T \cdot \nabla v$ isochoric
1	velocity field $\det F = 1 \Rightarrow \hat{S}(F) \cdot \dot{F} = \hat{T}(F) \cdot \dot{F}F^{-1} = \det \hat{T}(F) \cdot \dot{F}F^{-1}$
1	elastic stress der $\hat{T}(F) \cdot \hat{F} F^{-1} = \frac{d}{dt} \varphi(F)$
1	reactive stress sph T = -pI internal pressure
	[Notebook page scanned on 2014-06-21]


1	
1	
1	
1	Bet I Bet to the substitute of
1	div pI · a = div (pa) = tr(Vpa)
1	
1	= tz(a @ Vp) = Vp·a
3	$\nabla(pa)e = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(p(\alpha + \epsilon) - p(\alpha) \right) a$
1	640 M
1	$= (\nabla_p \cdot e) a = (a \otimes \nabla_p) e$
4	
	$tr(u\otimes v) = vol((u\otimes v)e_1, e_2, e_3) + \dots + \dots$
1	$vol(e_1, e_2, e_3)$
3	
3	$= vol(u(v.e_1), e_2, e_3) + \dots + \dots$
	vol (e1, e2, e3)
3	$= u_1(v_0 e_1) + u_2(v_1 e_2) + u_3(v_1 e_3)$
3	
3	$= \nabla \cdot (u_1 e_1 + u_2 e_2 + u_3 e_3) = \nabla \cdot u$
3	
	div Tv - a = div((Tr)a) = tr Tw w:=(Vv)a
]	
5	$(\nabla w)e = \lim_{h \to 0} \frac{1}{h} (w(z+he) - w(z))$
1	
1	$= \lim_{h \to 0} \frac{1}{h} \left(\nabla \nabla (x + h e) a - \nabla \nabla (x) a \right)$
•	& → o €
1	
•	
1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	
1	
	[Notebook page scanned on 2014-06-21]

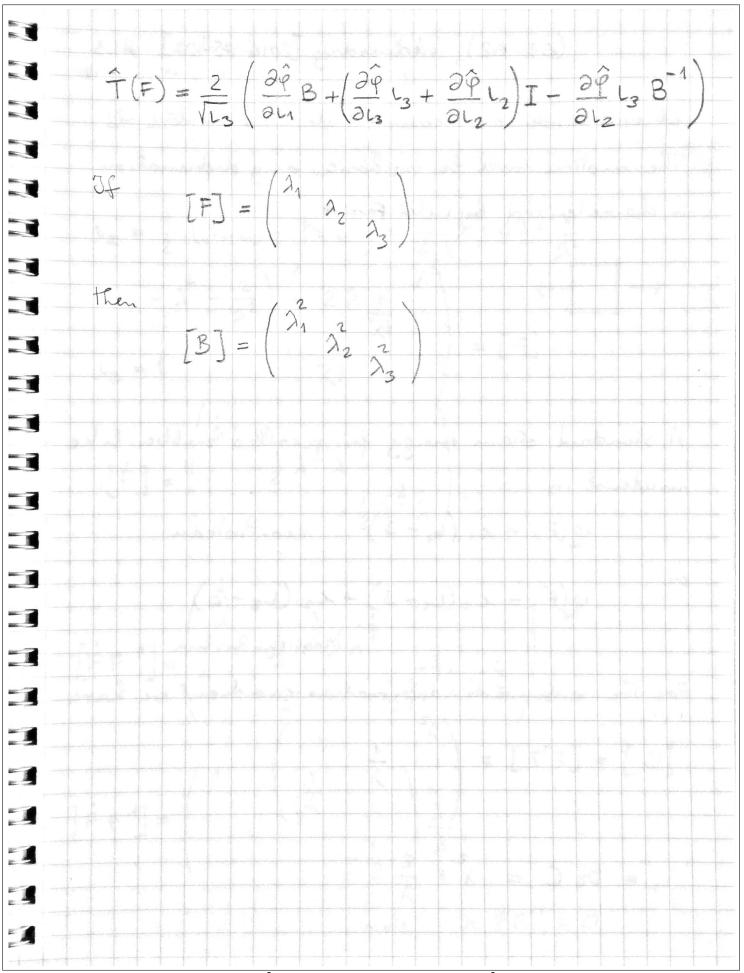
$\nabla v(x+he)a = \lim_{d\to 0} \frac{1}{d} \left(v(x+he+da) - v(x+he)\right)$
$\nabla v(x) a = \lim_{d \to 0} \frac{1}{v(x+da)} - v(x)$
$(\nabla w)e = \lim_{d \to 0} \frac{1}{d} \left(\lim_{k \to 0} \frac{1}{k} \left(v(x+ke+da) - v(x+da) \right) \right)$
$-\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(r \left(x + \epsilon \right) - r(x) \right)$
$= \lim_{d \to 0} \frac{1}{d} \left(\nabla v(x + da) e - \nabla v(x) e \right)$
$\Rightarrow \nabla w = \lim_{d \to 0} \frac{1}{d} \left(\nabla v \left(x + d a \right) - \nabla v \left(x \right) \right)$
tr $\nabla_{w} = \lim_{\delta \to 0} \frac{1}{\delta} \left(\operatorname{tr}(\nabla_{v}(x+d\delta)) - \operatorname{tr}(\nabla_{v}(x)) \right)$ $\int_{0}^{\infty} dv v(x+d\delta) div v(x)$
$tr \nabla w = (\nabla(div v)) \cdot a$
$\Rightarrow \operatorname{div} \nabla v^{T} = \nabla(\operatorname{div} v)$
div v = 0 (incomprenibility) => div Vv = 0
Finally let us define $\Delta v := \operatorname{div} \nabla v$ it is a vector field Laplacian
co is a vector from



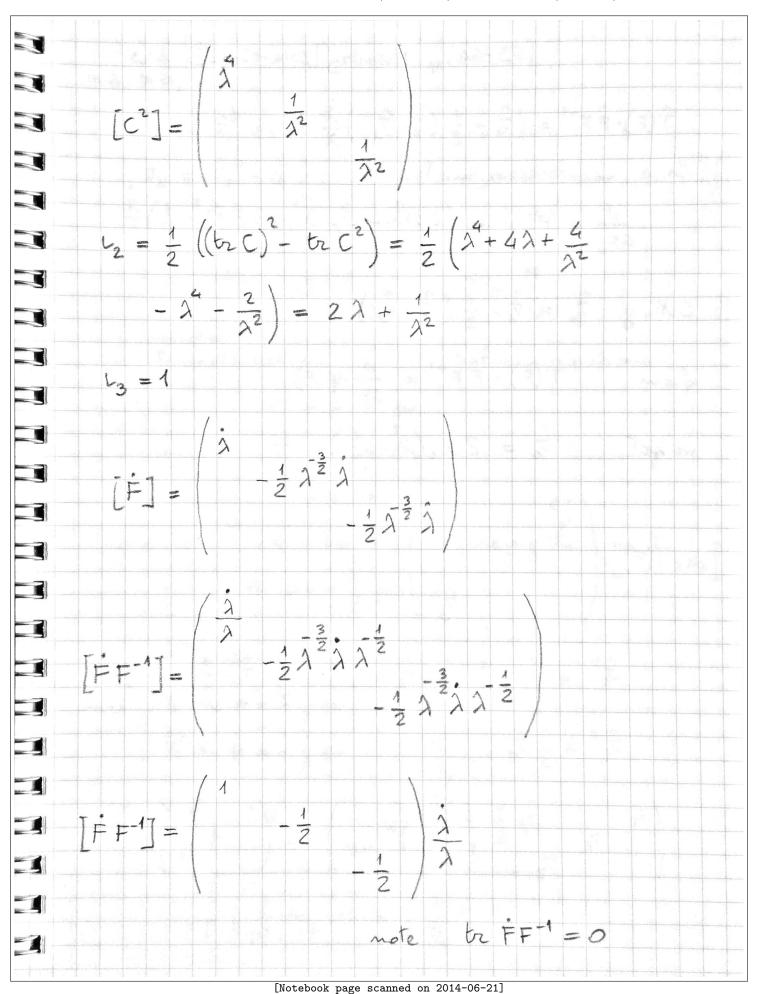
3	(53-54)10	Tuesday	2014-04-2	28] A1.3
1			+ 3 1	9100+11:00
1 Kinetic	energy (density p	er unit a	irrent voli	me)
3	1/2 C 1/V			
1	2 ["	" - 2 [A CONTRACTOR	
		14113	The A	+ +00 6: 1
K = 1 p	$ \mathbf{v} ^2 dV = \int_{0}^{1} \frac{1}{2} \left(d \right)^2 dt$	etFP IV	av I	energy
] 2 [120			6-
3	æ	Po mar	density	nce volume
	Le. F. F dV	per l	in l'expert	W.C. ADEN WEE
	2 -0			
Ī.	kinetic ene	gy density ,	e unitrefer	ence volume
3				
3 Inertial	force (density	re unit.	current vo	Cume)
	$b^{in} \cdot \sqrt{dV} = -\frac{1}{d}$	d 1	IIVII dV	
3	d	t 12 L		
3	1111111	R		
1			,	
_ = -	d 1 2 Po 11711	2 dV = -	d 1 2 Po	v.v dV
3	J _	-	jat 2 Lo	Allerani
3	2 indepe	do. T	2 - +	at in time
3	of time	e	Conta	n in time
1	,			,
3 = -	(c. ā. v dV =	- le dut	- a.v. d1	/
1	ž.		man der	o to
1				current volume
	in,	10/21		
3	$b^{-}(x) = -e(x)$	c)a(r)	11444	
			+	

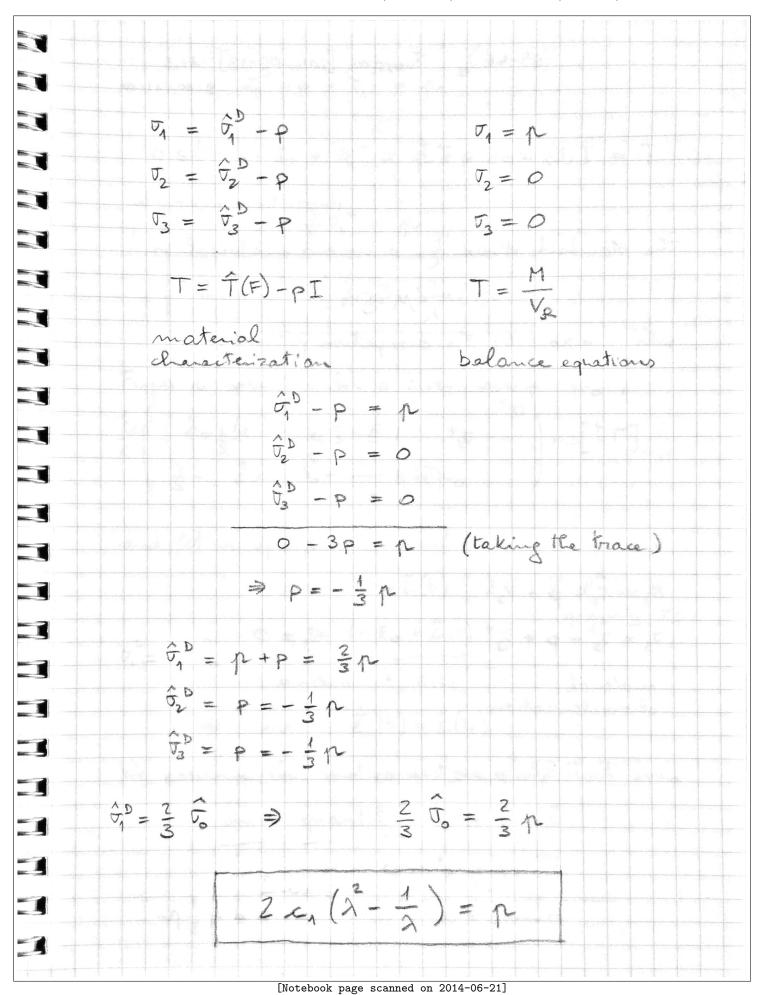


1	
1	(55-56) 10 Wednesday [2014-04-30] A113
1	In any motion, because of the balance mineryle,
3	
1	$ \int b \cdot r dV + \int t \cdot v dA = \int T \cdot \nabla v dV $ $ 2 \partial 2 R $
1	2 82 8
1	If b = bin and t. v = 0 on DR then
3	
3	Join volV = JT. TrdV
]]	R
	with $\int_{Q}^{\ln x} dv = -\frac{d}{dt} K$
3	g at
3	
3	and $T \cdot \nabla_{Y} dV = (\hat{T}(F) - pI + T^{+}) \cdot \nabla_{Y} dV$
3	2 3
3	Further if the material is incompressible then
1	$pI \cdot \nabla v = p t \nabla v = p div v = 0$
3	otherwise we set p=0 because there is no reason
1	to split T(F) into a deviatoric and a spherical parts.
3	So whether the material is incomparible or not
4	(T. Vrav = (T(F). Vrav + (T. Vrav
4	R

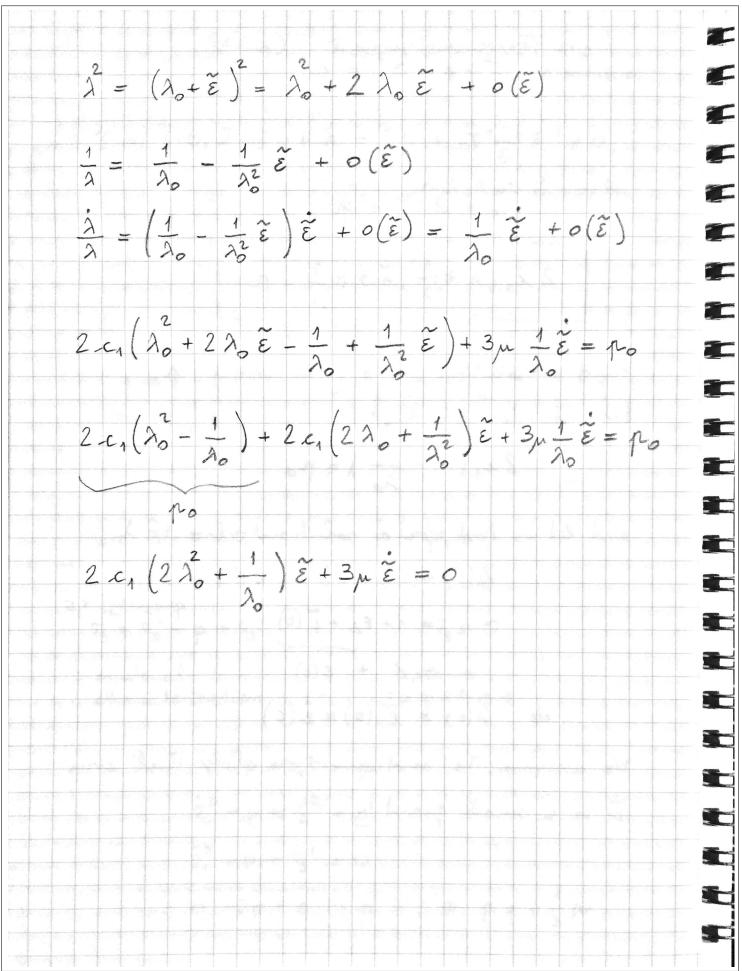


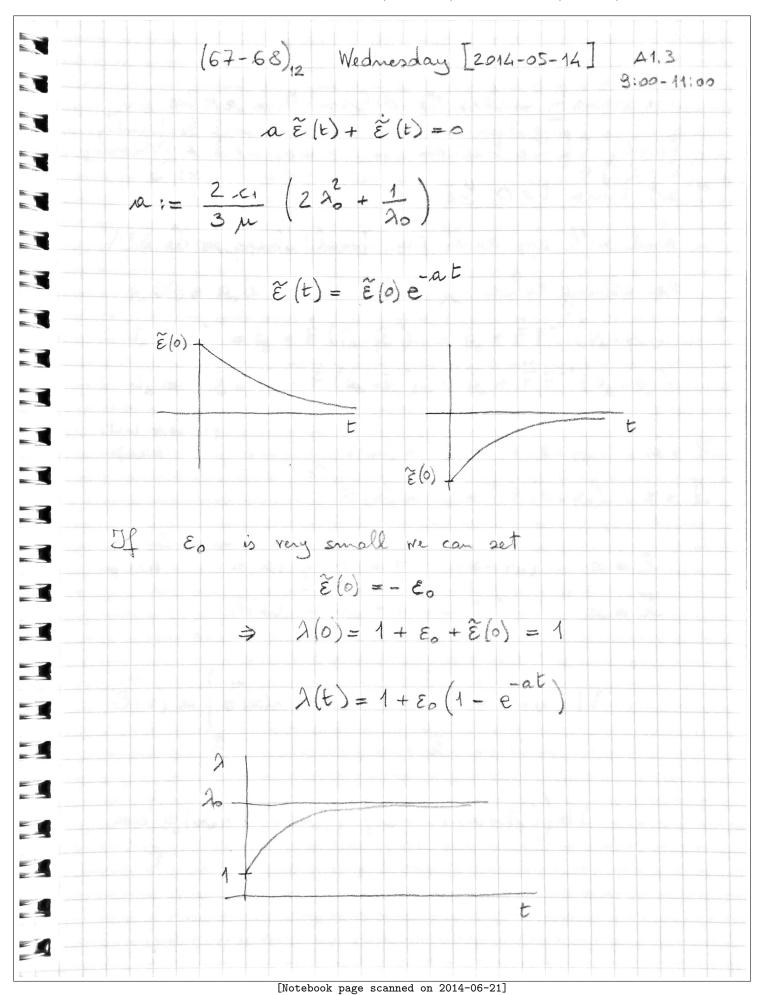
						11.2	
1			day Izo			A1.3	- 18:00
3 A stan	dard pro	Clern	in clas	tosty	u 50-4		
3		> ,	milozm	traction			
The ₁		ve ₁		52			
	lic refe						
letus co	us der "cyl	Pinducal	deform	ations	» on	ly:	
	deformati				2.4140.793		
	Fe, = :	$\lambda_1 e_1$		124			
3	Fez=	See	[F]=		λ_2		
3	Fe3=	$\lambda_3 e_3$				λ_3	
					4		
moment	M	= PFe, c	8 (pe,) A	F ₁	= (2)		
I tensor		= 2 2,	e, 8 e,	(p. A.			
		= l, e,	8 e, (p	l2 l3			
3		= 1, 1,	e3 p	$e_1 \otimes e_1$		3	
4		c	wovent 1	rolume	V _R		
	equation	» le	= 0	1-1-1			
		al de la	w M = 0				
	Karan J						
		M Vs	=				
	- FNT.	atabaak naga	scanned on 2014	1-06-217			

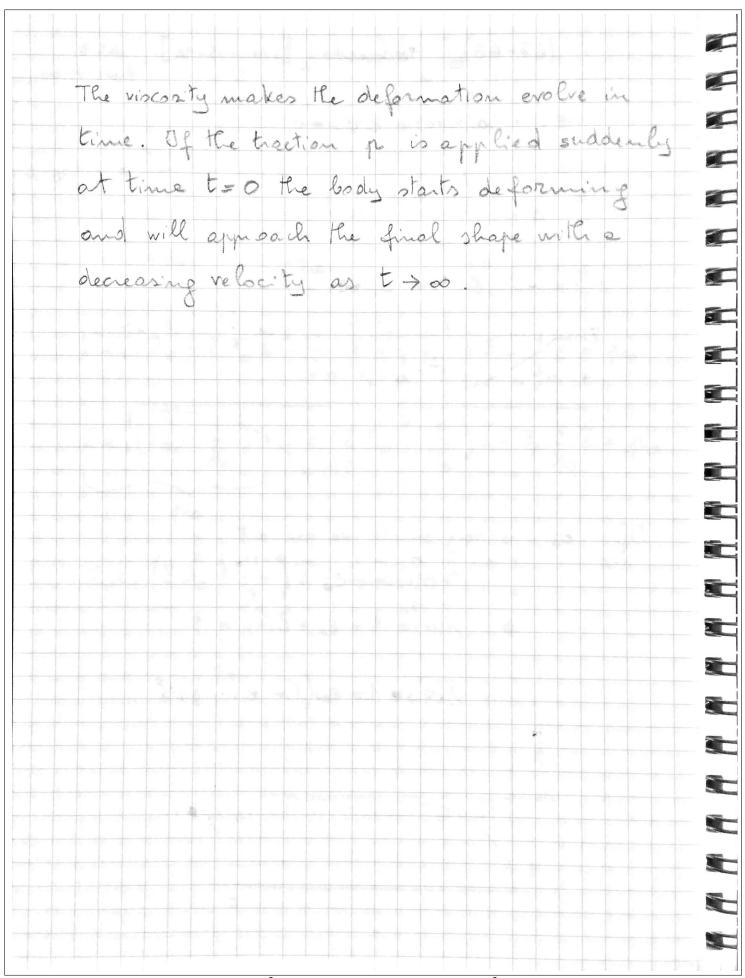



	(59-60)	Thesday	[2014-05.	-06] A1.3	00
	tion we der				
materia	l response	is impat	'sfactory	because	
it allow	o 2, to be	e negati	ve; fur	then 12	
and λ_3	are alway	so equal	2 to 1.		
Let us c	onsider the	respons	e funct	ion for	8
	elastic mas				
Î(F) =	$\frac{2}{\sqrt{L_3}} \left(\frac{\partial \hat{\varphi}}{\partial L_1} + \frac{\partial \hat{\varphi}}{\partial L_2} \right)$	Î L1) B - {	θφ B2 + 6	$\frac{\hat{\varphi}}{c_3}c_3I$	
	FFT (lef.				
We can	get a new e	xpremion	by using	the !	
Caley-H	amilton the	orem st	ating the	at any ten	non
satisfie	s its charac	teristic &	equation		
	B3 - L1 B2	+ L2B -	43 I = 0	,	
We get	B (B2 - 41	B + L2 I	- L3 B-1)=0	
	$B^2 = L_1 B$	- L ₂ I +	L ₃ B ⁻¹		

	(61-62),	Wednesday	[2014-05-07]	A1,3
				00 - 11 140
		4 1 1 1 1 4 1	e materal.	
			any deforme	elion
is chara	cterized by	$\det F = 1$		
		/2		
		1 1		
	LFI =	The second secon		
		1		
A stans	dard strain	energy for s	ocalled rubb	a-like
materi				
		(4-3)	neo-Hookean	
or	4			
	$\varphi(F) = \alpha_1$	(L1-3)+C	2 (12-3)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		Mo	oney-Rivlin	
For the	assumed	deformation	e gradient w	e have
1-	1-1-1	$/\lambda^2$		
193		7	1	
			^ /	
L. =	trc = x	2 + 2		
		λ		
	1-1-1-1-			




$\hat{T}(F) \cdot \dot{F} F^{-1} = (\hat{\nabla}_1 - \frac{1}{2}(\hat{\nabla}_2 + \hat{\nabla}_3)) \frac{\dot{A}}{\dot{A}}$ $for a mea-Hookean material$ $\frac{d}{dt} \varphi(F) = c_1(2\lambda\dot{A} + \frac{2}{\lambda^2}\dot{A}) = 2c_1(\hat{A}^2 - \frac{1}{4}) \frac{\dot{A}}{\dot{A}}$ $Setting \hat{\nabla}_0 := \hat{\nabla}_1 - \frac{1}{2}(\hat{\nabla}_2 + \hat{\nabla}_3)$ $\hat{T}(F) \cdot \dot{F} F^{-1} = \frac{d}{dt} \varphi(F)$ $\text{we get} \qquad \hat{\nabla}_0 = 2c_1(\hat{A}^2 - \frac{1}{4})$ $\hat{\nabla}_1^D = \hat{\nabla}_1 - \frac{1}{3}(\hat{\nabla}_1 + \hat{\nabla}_2 + \hat{\nabla}_3) = \frac{2}{3}(\hat{\nabla}_4 - \frac{1}{2}(\hat{\nabla}_2 + \hat{\nabla}_3))$ $\hat{\nabla}_1^D = \hat{\nabla}_1 - \frac{1}{3}(\hat{\nabla}_1 + \hat{\nabla}_2 + \hat{\nabla}_3) = \frac{2}{3}(\hat{\nabla}_4 - \frac{1}{2}(\hat{\nabla}_2 + \hat{\nabla}_3))$ $\hat{\nabla}_1^D = \frac{2}{3}\hat{\nabla}_0$		(63-64) 12	Monday [2014-05-12]	A13 16100-18:00
Setting $\hat{\nabla}_0 := \hat{\nabla}_1 - \frac{1}{2} \left(\hat{\nabla}_2 + \hat{\nabla}_3 \right) = 2 C_4 \left(\hat{\lambda}^2 - \frac{1}{A} \right) \frac{\hat{\beta}}{\hat{\lambda}}$ Setting $\hat{\nabla}_0 := \hat{\nabla}_1 - \frac{1}{2} \left(\hat{\nabla}_2 + \hat{\nabla}_3 \right)$ from $\hat{T}(F) \cdot \hat{F} = 1 = \frac{d}{dE} \varphi(F)$ we get $\hat{\nabla}_0 = 2 C_4 \left(\hat{\lambda}^2 - \frac{1}{A} \right)$ $\hat{\nabla}_1 \hat{\nabla}_2 = \hat{\nabla}_1 - \frac{1}{3} \left(\hat{\nabla}_1 + \hat{\nabla}_2 + \hat{\nabla}_3 \right) = \frac{2}{3} \left(\hat{\nabla}_4 - \frac{1}{2} \left(\hat{\nabla}_2 + \hat{\nabla}_3 \right) \right)$ $\hat{C}_1 \hat{\nabla}_1 = \hat{C}_1 \hat{C}_2 \hat{C}_3 \hat{C}_3$				
Setting $\hat{\nabla}_0 := \hat{\nabla}_1 - \frac{1}{2} (\hat{\nabla}_2 + \hat{\nabla}_3)$ from $\hat{T}(F) \cdot \hat{F} F^{-1} = \frac{d}{dt} \varphi(F)$ we get $\hat{\nabla}_0 := 2 \mathcal{L}_1 (\hat{A}^2 - \frac{1}{A})$ $\hat{\nabla}_1 = \hat{\nabla}_1 - \hat{\nabla}_2 + \hat{\nabla}_3 = \frac{2}{3} (\hat{\nabla}_1 - \frac{1}{2} (\hat{\nabla}_2 + \hat{\nabla}_3))$ $\hat{\nabla}_1 = \hat{\nabla}_1 - \frac{1}{3} (\hat{\nabla}_1 + \hat{\nabla}_2 + \hat{\nabla}_3) = \frac{2}{3} (\hat{\nabla}_1 - \frac{1}{2} (\hat{\nabla}_2 + \hat{\nabla}_3))$ $\hat{\nabla}_1 = \frac{2}{3} \hat{\nabla}_0$				
From $T(F) \cdot F = \frac{d}{dt} \varphi(F)$ we get $\hat{\nabla}_0 = 2c_4(\hat{\lambda}^2 - \frac{1}{4})$ $[\hat{\nabla}_1] = \hat{\nabla}_2 + \hat{\nabla}_3$ $[\hat{\nabla}_1] = \hat{\nabla}_1 - \frac{1}{3}(\hat{\nabla}_1 + \hat{\nabla}_2 + \hat{\nabla}_3) = \frac{2}{3}(\hat{\nabla}_4 - \frac{1}{2}(\hat{\nabla}_2 + \hat{\nabla}_3))$ $[\hat{\nabla}_1] = \frac{2}{3}\hat{\nabla}_0$	Setting To:	$=\hat{\nabla}_1-\frac{1}{2}(\hat{\nabla}_2)$	+ \hat{V}_3)	
$\begin{bmatrix} \overrightarrow{D} & \overrightarrow{\nabla} $	from	F(F) · FF+1 =	$= \frac{d}{dt} \varphi(F)$	
$ \begin{bmatrix} \hat{\nabla}_{1} \\ \hat{\nabla}_{2} \end{bmatrix} = \begin{pmatrix} \hat{\nabla}_{1} \\ \hat{\nabla}_{3} \end{pmatrix} $ $ \hat{\nabla}_{3} \\ \hat{\nabla}_{4} \\ \hat{\nabla}_{5} \\ \hat{\nabla}_{5} \\ \hat{\nabla}_{7} $	we get	To = 2 c, ($\left(\frac{1}{2} - \frac{1}{2}\right)$	
$\hat{c}_1^{\ b} = \frac{2}{3} \hat{c}_0$	$[\det \hat{T}(t)] = \begin{pmatrix} \hat{v}_{i} \\ \hat{v}_{i} \end{pmatrix}$	72		
$7 = \frac{1}{3}$		\$\frac{1}{3} (\hat{v}_1 + 1)	$(\hat{\nabla}_2 + \hat{\nabla}_3) = \frac{2}{3} (\hat{\nabla}_4 - \frac{1}{2})$	$\left(\widehat{\nabla}_{2} + \widehat{\nabla}_{3}\right)$
	Î =	2 0		
$\begin{pmatrix} \nabla_1 \\ \nabla_2 \\ \nabla_3 \end{pmatrix} = \begin{pmatrix} \hat{\sigma}_1^D \\ \hat{\sigma}_2^D \\ \hat{\sigma}_3^D \end{pmatrix} - P \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$		=	$\left(\hat{\sigma}_{2}^{D}\right) - P \left(1\right)$	
T = der T + sph T		= de.	vT + sph T	



	,				
	(6	9-70)13	Monday	[2014-05-	19 A1.3
	a t -0 0		1 0	100 - 2-1-	of the long franks !
				osa'llation	
	b (x)	$= -\rho(x)\hat{c}$	(32)		→ (53-54) ₁₀
	Pline de	formatio			
The same of the sa					
			1 1 1 1		
					- (PA-PO)
	$a_{\lambda} = \dot{p}_{\lambda}$	= 12 + F	(PA-PO)	$= \dot{p}_o + FF$	F-1 (PA-PO)
	st velocity				
4	ield				- Po) x∈ R
1			V (36) =	10 + VT (2	2-P0) x∈ &
3 0	eccleration	2 ()		-1()	z e 3.
3 4	ua		1 1 2 1	(2-Po)	
3		2(2) =	20 + +	(x-Po)	$x \in \mathcal{K}$
1	in (
	(v) = [b(x). v(x)) dV = -	(a(x) - v (x	Vb(
	J R		+	Ī.	
	y				
=	- 60(20	+ F (x-Po)) · (vo+	Vr (x-Po)	dV
	J_				
1					
			z nage scanned (

$$\begin{aligned} & \overrightarrow{\mathcal{F}}(\mathbf{r}) = -\int \ell_o \, \partial_o \cdot \nabla_o \, dV - \int \ell_o \, \partial_o \cdot \nabla_{\overline{\mathbf{r}}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \, dV \\ & \overline{\mathbf{g}} \end{aligned}$$

$$= \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_o \, dV - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \, dV \end{aligned}$$

$$= \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_o \, dV - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \, dV \end{aligned}$$

$$= \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \, dV = 0$$

$$= \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \, dV = 0$$

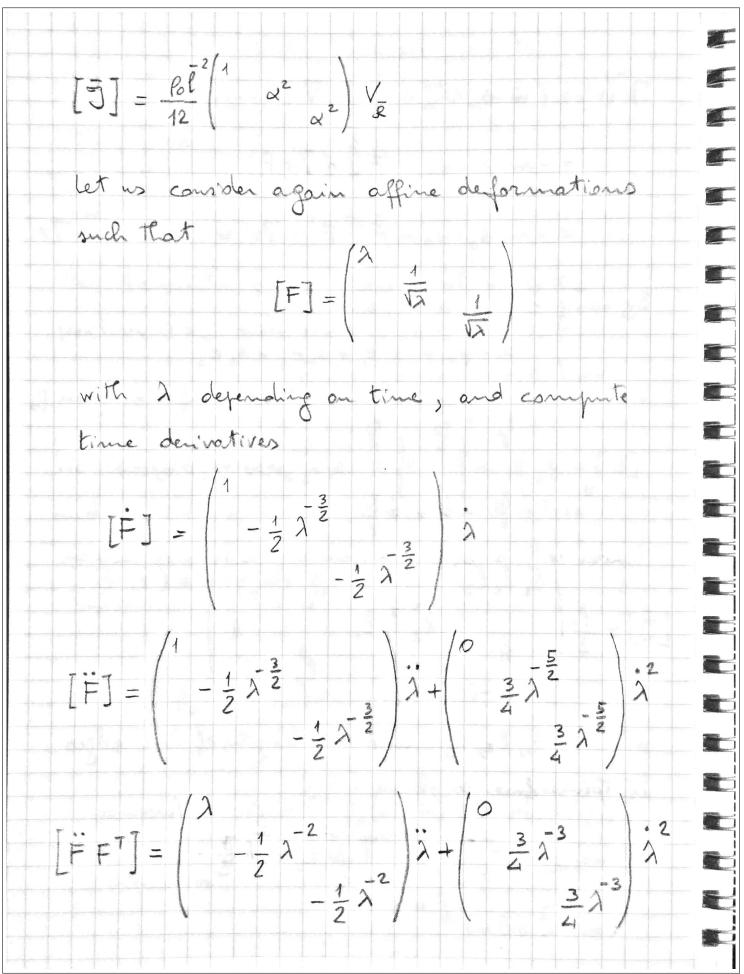
$$= \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

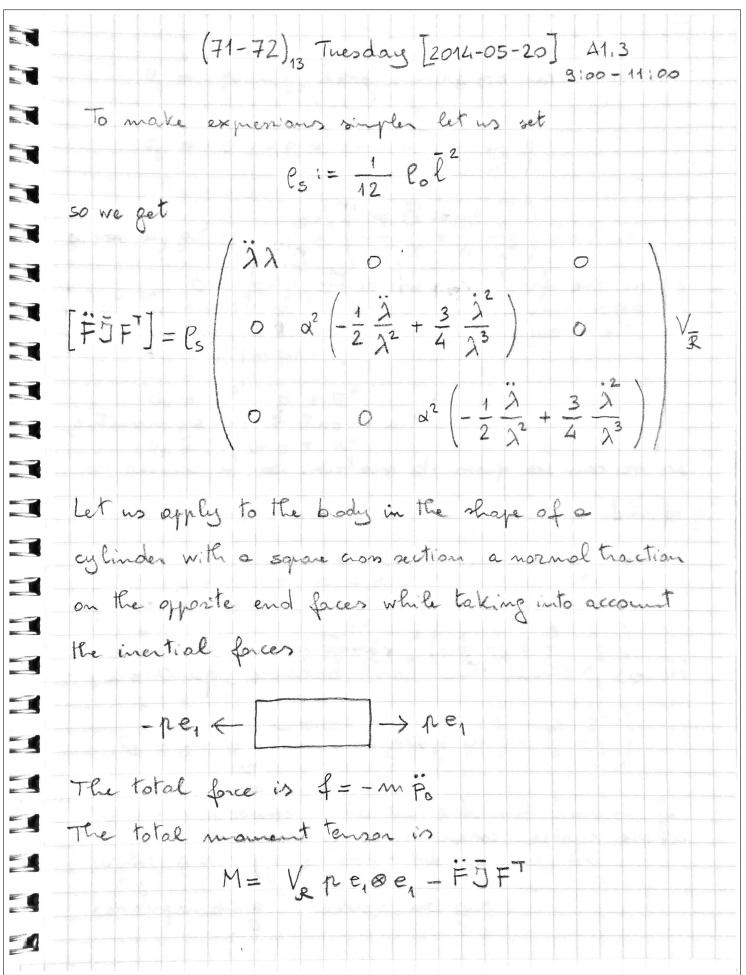
$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes V \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes V \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$


$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes V \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$


$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes V \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes V \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes V \cdot \nabla_{\overline{\mathbf{r}}} \, dV$$

$$= - \int \ell_o \, \overline{\mathbf{F}} \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes \left(\mathbf{x} - \overline{\mathbf{p}}_o \right) \otimes$$

The b	olonce	equation	es or	2 11	1-11-		
		7	=0				
		Complete Service Service	1=0				
			1 (5)	- \			
		sym 1	1 = 1	V.R.			
Fram	the fir	stone.	v pot	-	5 = 0	,	
		The second second					
		inter wi		ove ale	2 con	slami	
speed,							
The m	coment	terror.	turns	out to	be s	ymm	etne,
		from its					OVL
		e equation				7	
Since	The mo	ition is	isothe	orcic	-20-00	THE P	
1-1-1		V _R	= 1		9 10 1		
Hence	, for	The	last	balance	e equ	ration	٠,
		111913		ë Fir	1		
		ne, e	> e, -	FJF	V ₂	11	
			- W 12 3		34		
whose	scalar	form i	s as	follow	2		
							111

1	7.1.1.1.1						
1	σ ₁ =	n-	Ps 22				
1		3			2 12		
3	∇ ₂ =	0 -	- Ps x ($-\frac{1}{2}\frac{2}{2^2}$	$+\frac{3}{4}\frac{\dot{\lambda}^2}{\lambda^3}$		
4			19				
1	$\sigma_3 =$	0 -	- p x2	$-\frac{1}{2}\frac{\lambda}{\lambda^2}$	$+\frac{3}{4}\frac{\lambda^2}{\lambda^3}$		
1							
	Let the n	nsteri	al be	incomp	ressible	and viscoel	antic
1	D ₁ =	0,D -	P + 0,	+			
1	$\nabla_2 =$	- O2 -	P + 02	+			
			b + 23		\rightarrow	(£5-66) ₁₂	
1		3					
3	Substituti	ng these	expression	as into 1	he balan	ce equation	s we get
1					Tennis Sur Con		
	7, - P	+ 0,1		- Ps 27			
	D o	+ 72+		- 0 d2	1-12 22+	3 22	
1	2 - F	7 2		(s	$2\lambda^2$	$4 \lambda^3$	
1				,	/ a*	3 12 1	
-5	53 - P	+ 73	2	- es «	- 2 72+	$\frac{3}{4}\frac{\dot{j}^2}{\lambda^3}$	
1					The state of the s		40
9		,	100			terms on	The
-	right 2	de	like ta	king the	e trace	of the	
9	corringer	grider	tempor	us) me	get		
4		9					

$$-3p = p - e_s \left(\lambda \dot{\lambda} + a^2 \left(-\frac{\dot{\lambda}}{\lambda^2} + \frac{3}{2} \frac{\dot{\lambda}^2}{\lambda^3} \right) \right)$$
where $\hat{y}_1^b + \hat{y}_2^b + \hat{y}_3^b = 0$
 $\hat{y}_1^+ + \hat{y}_2^+ + \hat{y}_3^+ = 0$
because both $\hat{T}(F)$ and \hat{T}^+ are deviatoric tensors.

We solve the last equation for the inner pressure p and ruplace its expression in the first of the previous equations
$$\hat{\hat{y}}_1^b + \hat{y}_1^+ = p - \frac{1}{3}p - e_s \lambda \dot{\lambda} + \frac{1}{3}e_s \left(\lambda \ddot{\lambda} + \frac{\lambda^2}{\lambda^2} + \frac{3}{2} \frac{\dot{\lambda}^2}{\lambda^3} \right)$$

$$\hat{\hat{y}}_1^b + \hat{y}_1^+ = p - \frac{1}{3}p - e_s \lambda \dot{\lambda} + \frac{1}{3}e_s \left(\lambda \ddot{\lambda} + \frac{\lambda^2}{\lambda^2} + \frac{3}{2} \frac{\dot{\lambda}^2}{\lambda^3} \right)$$

$$\hat{\hat{y}}_1^b + \hat{y}_1^+ = p - \frac{1}{3}p - e_s \lambda \dot{\lambda} + \frac{1}{3}e_s \left(\lambda \ddot{\lambda} + \frac{\lambda^2}{\lambda^2} + \frac{3}{2} \frac{\dot{\lambda}^2}{\lambda^3} \right)$$

$$\hat{\hat{y}}_1^b = \frac{2}{3}\hat{\hat{y}}_0; \hat{\hat{y}}_0^c = 2e_4 \left(\lambda^2 - \frac{1}{\lambda} \right) \frac{neo-thookean}{nateriol} \rightarrow (63-64)_{12}$$

$$\hat{\hat{y}}_0^c = 1 - 3\mu \frac{\dot{\lambda}}{\lambda} - e_s \left(\lambda \ddot{\lambda} + \frac{\lambda^2}{\lambda^2} + \frac{3}{2} \frac{\dot{\lambda}^2}{\lambda^3} \right)$$

	The final expression for the equation of
	motion is
	$2z_{4}\left(\lambda^{2} - \frac{1}{\lambda}\right) = \lambda - 3\mu \frac{\dot{\lambda}}{\lambda} - e_{s}\left(\lambda \ddot{\lambda} + \frac{\alpha^{2}}{2}\left(\frac{\ddot{\lambda}}{\lambda^{2}} - \frac{3}{2}\frac{\dot{\lambda}^{2}}{\lambda^{3}}\right)\right)$
	Wa ca Pi ania this an ation according to the
	We can linearize this equation according to the
	following procedure
	Let us set $\lambda(t) = \lambda_0 + \beta \tilde{\epsilon}(t)$
	$p = p_0$
	and replace the original expression with a
	series expansion with reject to β starting at $\beta = 0$,
	up to order 1. Then collect separately terms
	of order o and terms of order 1 with respect
	to B. We get
	$2 \left(\lambda_0^2 - \frac{1}{\lambda_0}\right) = p_0$
	70
	2 2 2 3 3 2
1	$4c_{1}(1+\lambda_{o}^{3})\tilde{\varepsilon}+6\lambda_{o}n\tilde{\varepsilon}+(\alpha^{2}+2\lambda_{o}^{3})e_{s}\tilde{\varepsilon}=0$

(73-74), Wednesday [2014-05-21] A1.3
Summary about the equation of motion and
around the solution (20, po).
Small oscillations Let us consider solutions in the general form
$\widetilde{\varepsilon}(t) = \widetilde{\varepsilon} \cdot e^{kt}$
$4 (1+2\lambda_0^3) + (6\lambda_{0\mu})k + e_s(x^2+2\lambda_0^3)k^2 = 0$
$\Rightarrow k = \frac{-3\lambda_{o}\mu \pm \sqrt{9\lambda_{o}^{2}\mu^{2} - 4x_{1}P_{s}(1+2\lambda_{o}^{3})(x^{2}+2\lambda_{o}^{3})}}{(1^{2} + 2\lambda_{o}^{3})(x^{2} + 2\lambda_{o}^{3})}$
Critical viscosity value ma (depending on to)
$m_o^2 = \frac{2}{3} c_1 l_s \frac{1}{\lambda^2} (1 + 2 \lambda_o^3) (x^2 + 2 \lambda_o^3)$
u < no damped oscillations
[Notebook page scanned on 2014-06-21]

Linearization orand the reference shape

Linearization orand the reference shape

Let us consider a one-parameter family of deformations

$$F(\beta) = R(\beta) U(\beta) \qquad \beta \text{ dimensionless}$$

$$R(\beta) = I + \beta \frac{d}{d\beta} R(\beta) \Big|_{\beta=0} + O(\beta)$$

$$U(\beta) = I + \beta \frac{d}{d\beta} U(\beta) \Big|_{\beta=0} + O(\beta)$$

$$V(\beta) = I + \beta \frac{d}{d\beta} U(\beta) \Big|_{\beta=0} + O(\beta)$$

$$R(\beta)^{T} R(\beta) = I \Rightarrow \frac{d}{d\beta} (R(\beta)^{T} R(\beta)) = 0$$

Infinitesimal rotation

$$\Theta := \frac{d}{d\beta} R(\beta) \Big|_{\beta=0} \Rightarrow \Theta^{T} + \Theta = 0$$

Infinitesimal rotation

$$\Theta := \frac{d}{d\beta} U(\beta) \Rightarrow E^{T} = E$$

Infinitesimal stretch

$$E := \frac{d}{d\beta} U(\beta) \Rightarrow E^{T} = E$$

$$E := \frac{d}{d\beta} U(\beta) \Rightarrow E^{T} = E$$

(77-78) Tuesday [2014-05-27] A1,3
Following the formula about time offerentiation
already derived -> (17-18)3
$\det F(\beta) = \det F(0) + \beta \frac{d}{d\beta} \det F(\beta) + o(\beta)$
$\frac{d}{d\beta} \det F(\beta) = \det F(\beta) \operatorname{tr} \left(\left(\frac{d}{d\beta} F(\beta) \right) F(\beta)^{-1} \right) \Big _{\beta=0}$
$=\operatorname{tr}\left(\left(\Theta+\mathrm{E}\right)\left(\mathrm{I}-\beta\Theta-\beta\mathrm{E}\right)\right)\Big _{\beta=0}$
$= br(\Theta + E) = tr E$
$det F(3) = 1 + \beta tr E + o(3)$
In view of linearization it is customary to
define the displacement vector field
$u(\bar{p}_a) = \phi(\bar{p}_a) - \bar{p}_a \forall \bar{p}_a \in \bar{R}$
Along any curve è ve get
$u(\bar{c}(R)) = \phi(\bar{c}(R)) - \bar{c}(R)$ $u(\bar{c}(0)) = \phi(\bar{c}(0)) - \bar{c}(0)$
[Notebook page scanned on 2014-06-21]

$u(\bar{z}(e_1)) - u(\bar{z}(o)) = \phi(\bar{c}(e_1)) - \phi(\bar{c}(o)) = \bar{c}(e_1) - \bar{c}(o)$ $e_1 \qquad e_2 \qquad e_3 \qquad e_4 \qquad e_4 \qquad e_4 \qquad e_5 \qquad e_6 $
Taking the limit as hoo we arrive at
$\nabla u c' = \nabla \phi c' + c'$
Vu = F - I
By using the corresponding series expansions we get
$\nabla u(\beta) = F(\beta) - I = \beta(\Theta + E) + o(\beta)$
$\lim_{\beta \to 0} \frac{\nabla u(\beta)}{\beta} = \Theta + E$
Since there is a unique decomposition of any
tensor into the sum of a skewsymmetric and a
symmetric Tensor, by setting
O:= sku Vu, E:= sym Vu
$\nabla u(\beta) = \beta \left(skv \nabla u + sym \nabla u \right) + o(\beta) = \beta \nabla u + o(\beta)$
In the linear theory we use quantities like E, E, Vu
which are derivatives with respect to B, a dimensionless.
"scaling factor" for some control parameters like forces.

For the response function of an elastic motoral we write the series expansion
$$\hat{T}(F(\rho)) = \hat{T}(I) + \rho \cdot d \cdot \hat{T}(F(\rho)) \Big|_{\rho=0} + o(\rho)$$
where, become of the objectivity condition
$$\hat{T}(F) = R \hat{T}(V)R^{T} \rightarrow (37-38)_{+}$$
we have
$$\hat{T}(F(\rho)) = d \cdot R(\rho) \hat{T}(U(\rho))R(\rho)^{T} \Big|_{\rho=0}$$

$$= \widehat{\mathcal{D}}\hat{T}(I) + d \cdot \widehat{T}(U(\rho)) - \widehat{T}(I)\widehat{\mathcal{D}}$$
with
$$\hat{J}(U(\rho)) = d \cdot \widehat{T}(I + \rho E) = \widehat{U}E$$
where $\widehat{U}: Sym(\widehat{V}) \rightarrow Sym(\widehat{V})$ is the gradient of of a tense field over the space of symmetric tensors.

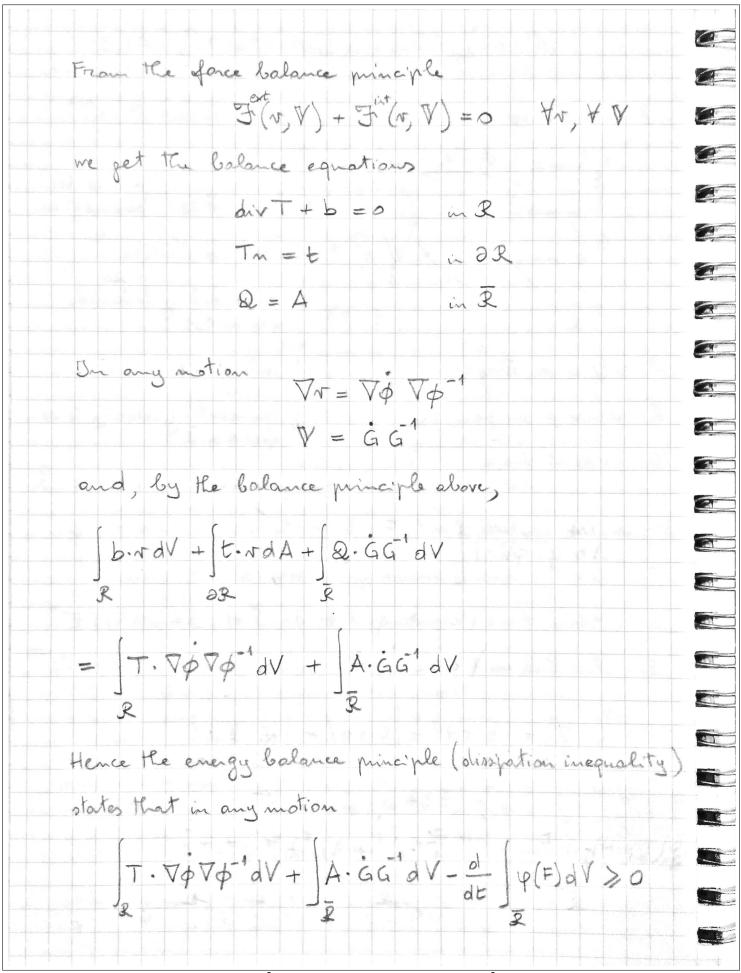
It is referred to as the elasticity tensor.

Notice how
$$d \cdot \widehat{T}(U(\rho)) = \lim_{\rho \to 0} \frac{1}{\rho} \left(\widehat{T}(U(\rho)) - \widehat{T}(U(0))\right) = \widehat{U}E$$
with
$$E = \frac{d}{d\rho} U(\beta)$$

$$\rho = 0$$
limit
$$E = \frac{d}{d\rho} U(\beta)$$

$$\rho = 0$$

$$\lim_{\rho \to 0} \frac{1}{\rho} \left(\widehat{V}(E(\beta)) - \widehat{V}(E(\delta))\right) = \widehat{V}_{T}E'$$

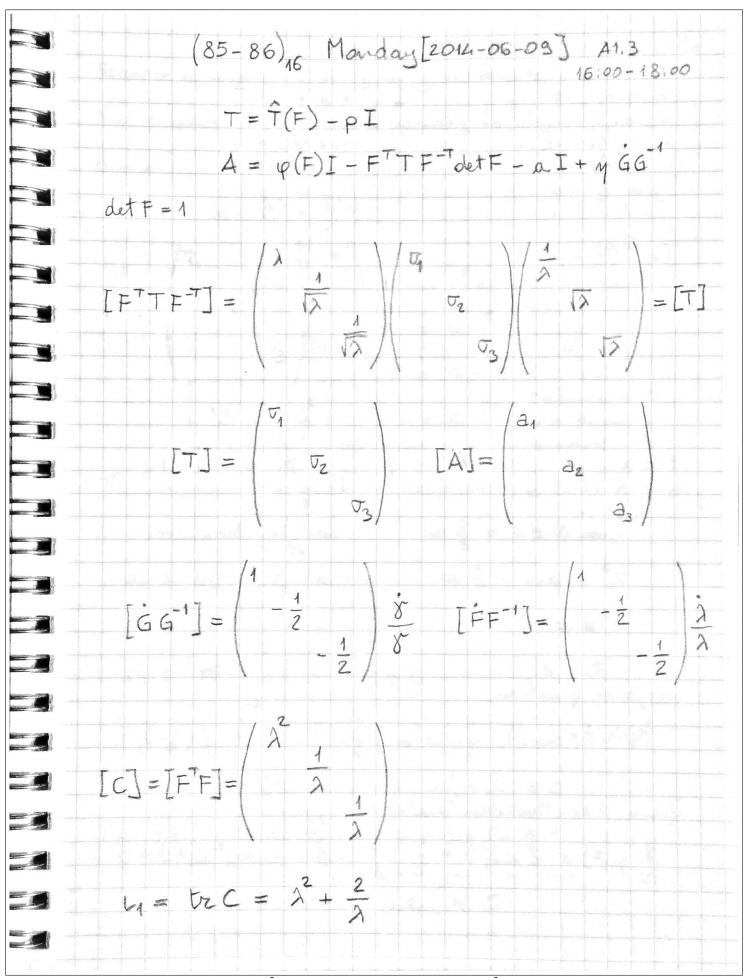

(79-80), Wednesday [2014-05-28] A1.3 8:00-11:00
Let us recall the definition of the Piolo stress
S = (det F) T F - T -> (39-40),
Then the first order tour in the series expansion of
S(B) - (det F(B)) T(B) F(B)-T
will be $S(\beta) = (\det F(\beta))T(\beta)F(\beta)^{-1}$
$\frac{d}{ds}S(\beta) = (\operatorname{tr} E)T(0)F(0)^{T} + (\operatorname{olet} F(0))\frac{d}{ds}T(\beta)F(0)^{T}$
$\frac{d}{d\beta} S(\beta) = (tr E)T(0)F(0)^{-T} + (olet F(0)) \frac{d}{d\beta}T(\beta)F(0)^{-T}$ $ \beta=0 $
+ (det +(0)) (3) (4-t)
$T(0) = 0 \Rightarrow \frac{d}{d\beta} S(\beta) = \frac{d}{d\beta} T(\beta)$
ap B=0 dB
$\Rightarrow S(\beta) = T(\beta) + o(\beta)$
By this property, for a hyperelastic material the
relation $\hat{S}(F(\beta)) \cdot \dot{F}(\beta) = \frac{d}{dt} \varphi(F(\beta))$
can be rewreitten as
$o(\beta) + \hat{T}(F(\beta)) \cdot \dot{F}(\beta) = \frac{d}{d+} \varphi(F(\beta))$
and then, by the results on the merious pages,
$o(\beta^2) + (\beta C(E)) \cdot (\beta \dot{\theta} + \beta \dot{E}) = \frac{d}{dE} \varphi(U(\beta))$
where $\varphi(F(\beta)) = \varphi(U(\beta))$ because of objectivity.

By the symmetry of C(E) we get
0(2) 1 82 ((E) E = d 10 (U(8))
$o(\beta^2) + \beta^2 C(E) \cdot E = \frac{d}{dt} \varphi(U(\beta))$
For a notential to exist the stress power on the left
on a parentine is skirt the mon power out the after
sole should be such that
$C(E) \cdot E = C(E) \cdot E$
since (i Sym (V) -> Sym (V) is a linear function
that means that the elasticity lensor should be symmetic
18 1 1 1 4 A 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$CE \cdot \dot{E} = E \cdot C^{T}E = E \cdot C\dot{E}$
Hence the strain evergy is, up to second order, given by
$\varphi(E) = \frac{1}{2} \mathbb{C}(E) \cdot E$
Since dim (Sym (V)) = 6, the elasticity tensor matrix
is a 6×6 matrix. As a symmetric matrix (in an
orthonornal tensor basis) it has only 21 independent
or nonconal terrior sairs ; (was only 2 . they enser
Kind (1600 C) done le a la talia
It is amazing to find out that by linearizing the
general response function for instropic hyperelastic materials
> (45-46) 8 we get ((E) = 2 (tr E) I + 2 ME
그들은 이번 하게 되었다. 이번 그리고 있는 생활에 가지하는 경에 가장 이번 사람들이 되었다. 그런 그런 사람들이 되었다. 그는 그는 점점 이번 사람들이 모든 그리고 있다. 그리고 있는 것이 없는 사람들이 되었다.
where by instrong, there are only two coefficients lest
- Table Street Land Land Street Street Street Street Land Street Land Street Land Street Land Land Land Land Land Land Land Land
I and in , called the Lamé constants (or moduli).
The state of the s
「経緯では、特別の後、対の行うを、するように、ようには、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、

The symmetry property of the elasticity tensors for a hyperclastic material can be derived through the following detailed computation. Let \[\begin{align*} \text{Till} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Eis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} \\ \text{Cis} & \text{Cis} & \text{Cis} & \text{Cis} &	1 1 1	
The symmetry property of the elasticity tempore for a hyperelastic material can be derived through the following detailed computation. Let \[\begin{array}{cccccccccccccccccccccccccccccccccccc		
for a hyperelastic material can be derived through the following detailed computation. Let \[\begin{array}{cccccccccccccccccccccccccccccccccccc		
for a hyperelastic material can be derived through the following detailed computation. Let \[\begin{array}{cccccccccccccccccccccccccccccccccccc		The symmetry property of the elasticity tensor
the following detailed computation. Let $\begin{cases} \nabla_{11} & C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \end{cases}$ Let $\begin{cases} \nabla_{11} & C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \end{cases}$ $\begin{cases} E_{12} & E_{13} \\ F_{23} & F_{23} \end{cases}$ Details $\begin{cases} F_{23} & F_{23} \\ F_{23} & F_{23} \end{cases}$ Dethe component form of the linear elasticity regards $\begin{cases} F_{23} & F_{23} \\ F_{23} & F_{23} \end{cases}$ The then power can be written by using the above components as The then fower can be written by using the above $\begin{cases} F_{23} & F_{23} \\ F_{23} & F_{23} \end{cases}$ The then fower can be written by using the above $\begin{cases} F_{23} & F_{23} & F_{23} \\ F_{23} & F_{23} & F_{23} \end{cases}$ The then fower $\begin{cases} F_{23} & F_{23} & F_{23} & F_{23} \\ F_{23} & F_{23} & F_{23} \end{cases}$ The then fower $\begin{cases} F_{23} & F_{23} & F_{23} & F_{23} \\ F_{23} & F_{23} & F_{23} & F_{23} \end{cases}$ The then fower $\begin{cases} F_{23} & F_{23} & F_{23} & F_{23} \\ F_{23} & F_{23} & F_{23} & F_{23} \end{cases}$ The then form the first of the fower $\begin{cases} F_{23} & F_{23} & F_{23} \\ F_{23} & F_{23} & F_{23} \end{cases}$ The the conditions for a sum five to exist.		
Let 0.14 0.1		
The steen power can be written by using the above components as $T = CE$ where both T and E are symmetric tempors. The steen power can be written by using the above components as $T \cdot \dot{E} = C(E) \cdot \dot{E}$ $= C_{AA} \ \dot{E}_{AA} \ \dot{E}_{AA} + C_{A2} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{A3} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{2A} \ \dot{E}_{AA} \ \dot{E}_{A3} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A3} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A3} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A3} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A3} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A3} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A2} + C_{32} \ \dot{E}_{A3} \ \dot{E}_{A3} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A2} + C_{32} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A2} + C_{32} \ \dot{E}_{A3} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A1} \ \dot{E}_{A2} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A2} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A3} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$ $+ C_{3A} \ \dot{E}_{A3} \ \dot{E}_{A3} + C_{33} \ \dot{E}_{A3} \ \dot{E}_{A3} + \cdots$		Let / JA / CAN CAZ CAZ CAZ CAZ CAS (EM)
be the component form of the linear elasticity regions. The cher power can be written by using the above components as T. $\dot{E} = C(E) \cdot \dot{E}$ = $C_{AA} = E_{AA} = E_{AA} = E_{AA} = E_{AB} = E_{AB}$		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
be the component form of the linear elasticity regards T = CE where both T and E are symmetric tempors. The stress power can be written by using the above components as T. E = C(E). E = CAL EAL EAL + CAZ EAZ EAL + CAZ EAZ EAL + ALL + CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL + CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL + CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL + CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL + CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL + CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL - CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + ALL - CZL EAL EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ + CZZ EAZ EAZ EAZ + CZZ EAZ EAZ EAZ + CZZ EAZ EAZ EAZ EAZ EAZ EAZ EAZ EAZ EAZ E		σ_{z3} ε_{z3}
where both T and E are symmetric tensors. The others power can be written by using the above comparents as T. $\dot{E} = C(E) \cdot \dot{E}$ = $C_{AA} \stackrel{\cdot}{E}_{AA} \stackrel{\cdot}{E}_{AA} + C_{12} \stackrel{\cdot}{E}_{A2} \stackrel{\cdot}{E}_{A1} + C_{43} \stackrel{\cdot}{E}_{43} \stackrel{\cdot}{E}_{A1} + \cdots$ + $C_{21} \stackrel{\cdot}{E}_{A1} \stackrel{\cdot}{E}_{12} + C_{22} \stackrel{\cdot}{E}_{12} \stackrel{\cdot}{E}_{12} + C_{23} \stackrel{\cdot}{E}_{13} \stackrel{\cdot}{E}_{13} + \cdots$ + $C_{34} \stackrel{\cdot}{E}_{14} \stackrel{\cdot}{E}_{13} + C_{32} \stackrel{\cdot}{E}_{12} \stackrel{\cdot}{E}_{13} + C_{33} \stackrel{\cdot}{E}_{43} \stackrel{\cdot}{E}_{13} + \cdots$ from which it is clear how $C_{12} = C_{24}$, $C_{43} = C_{34}$, $C_{23} = C_{32}$ etc. are the conditions for a minimitive to exist.		
where both T and E are symmetric tensors. The others power can be written by using the above components as $T \cdot \dot{E} = C(E) \cdot \dot{E}$ $= C_{A1} E_{A1} \dot{E}_{A1} + C_{12} E_{A2} \dot{E}_{A1} + C_{43} E_{43} \dot{E}_{A1} + \cdots$ $+ C_{21} E_{A1} \dot{E}_{12} + C_{22} E_{42} \dot{E}_{42} + C_{23} E_{43} \dot{E}_{42} + \cdots$ $+ C_{34} E_{41} \dot{E}_{43} + C_{32} E_{12} \dot{E}_{13} + C_{33} E_{43} \dot{E}_{13} + \cdots$ $+ C_{34} E_{41} \dot{E}_{43} + C_{32} E_{12} \dot{E}_{13} + C_{33} E_{43} \dot{E}_{13} + \cdots$ $+ $		
The stress power can be written by using the above components as $T \cdot \dot{E} = C(E) \cdot \dot{E}$ $= C_{AA} \stackrel{\cdot}{E}_{AA} \stackrel{\cdot}{E}_{AA} + C_{12} \stackrel{\cdot}{E}_{A2} \stackrel{\cdot}{E}_{A1} + C_{13} \stackrel{\cdot}{E}_{13} \stackrel{\cdot}{E}_{A1} + \cdots$ $+ C_{21} \stackrel{\cdot}{E}_{AA} \stackrel{\cdot}{E}_{12} + C_{22} \stackrel{\cdot}{E}_{42} \stackrel{\cdot}{E}_{42} + C_{23} \stackrel{\cdot}{E}_{43} \stackrel{\cdot}{E}_{42} + \cdots$ $+ C_{3A} \stackrel{\cdot}{E}_{4A} \stackrel{\cdot}{E}_{13} + C_{32} \stackrel{\cdot}{E}_{12} \stackrel{\cdot}{E}_{13} + C_{33} \stackrel{\cdot}{E}_{43} \stackrel{\cdot}{E}_{13} + \cdots$ $+ \cdots$ $from which it is clear how C_{12} = C_{2A}, C_{13} = C_{31}, C_{23} = C_{32} etc. are the conditions for a minimitive to swipt$		
components as T. $\dot{E} = C(E) \cdot \dot{E}$ = $C_{11} E_{11} \dot{E}_{11} + C_{12} E_{12} \dot{E}_{11} + C_{13} E_{13} \dot{E}_{11} + \cdots$ + $C_{21} E_{11} \dot{E}_{12} + C_{22} E_{12} \dot{E}_{12} + C_{23} E_{13} \dot{E}_{12} + \cdots$ + $C_{31} E_{11} \dot{E}_{13} + C_{32} E_{12} \dot{E}_{13} + C_{33} E_{13} \dot{E}_{13} + \cdots$ + $C_{31} E_{11} \dot{E}_{13} + C_{32} E_{12} \dot{E}_{13} + C_{33} E_{13} \dot{E}_{13} + \cdots$ + $C_{31} E_{11} \dot{E}_{13} + C_{32} E_{12} \dot{E}_{13} + C_{33} E_{13} \dot{E}_{13} + \cdots$ + $C_{32} E_{12} \dot{E}_{13} + C_{33} E_{13} \dot{E}_{13} + \cdots$ From which it is clear how $C_{12} = C_{21}$, $C_{13} = C_{31}$, $C_{23} = C_{32}$ etc. are the conditions for a minimitive to so int.		where both T and E are symmetric tensors.
T. $\dot{E} = C(E) \cdot \dot{E}$ $= C_{AA} \ \dot{\epsilon}_{AA} \ \dot{\epsilon}_{AA} + C_{12} \ \dot{\epsilon}_{A2} \ \dot{\epsilon}_{A1} + C_{A3} \ \dot{\epsilon}_{A3} \ \dot{\epsilon}_{A1} +$ $+ C_{21} \ \dot{\epsilon}_{AA} \ \dot{\epsilon}_{12} + C_{22} \ \dot{\epsilon}_{A2} \ \dot{\epsilon}_{A2} + C_{23} \ \dot{\epsilon}_{A3} \ \dot{\epsilon}_{A2} +$ $+ C_{31} \ \dot{\epsilon}_{A1} \ \dot{\epsilon}_{A3} + C_{32} \ \dot{\epsilon}_{12} \ \dot{\epsilon}_{13} + C_{33} \ \dot{\epsilon}_{A3} \ \dot{\epsilon}_{A3} +$ $+$ From which it is clear how $C_{12} = C_{21}$, $C_{A3} = C_{31}$, $C_{23} = C_{32}$ $+ \dot{\epsilon}_{C3} \ \dot{\epsilon}_{C3} + \dot{\epsilon}_{C3}$		The others power can be written by using the above
To E = $C(\pm)$ · \pm = C_{14} ϵ_{14} · ϵ_{14} + C_{12} ϵ_{12} ϵ_{14} + C_{13} ϵ_{13} ϵ_{14} + · · · · + C_{24} ϵ_{14} $\dot{\epsilon}_{12}$ + C_{22} ϵ_{12} $\dot{\epsilon}_{12}$ + C_{23} ϵ_{13} $\dot{\epsilon}_{12}$ + · · · · + C_{34} ϵ_{14} $\dot{\epsilon}_{13}$ + C_{32} ϵ_{12} $\dot{\epsilon}_{13}$ + C_{33} ϵ_{13} ϵ_{13} + · · · · + · · · · From which it is clear how $C_{42} = C_{24}$, $C_{43} = C_{31}$, $C_{23} = C_{32}$ etc. one the conditions for a minimitive to societ.		components as
$= C_{11} \stackrel{\epsilon}{\epsilon}_{11} \stackrel{\epsilon}{\epsilon}_{11} + C_{12} \stackrel{\epsilon}{\epsilon}_{12} \stackrel{\epsilon}{\epsilon}_{11} + C_{13} \stackrel{\epsilon}{\epsilon}_{13} \stackrel{\epsilon}{\epsilon}_{11} + \cdots$ $+ C_{21} \stackrel{\epsilon}{\epsilon}_{11} \stackrel{\epsilon}{\epsilon}_{12} + C_{22} \stackrel{\epsilon}{\epsilon}_{12} \stackrel{\epsilon}{\epsilon}_{12} + C_{23} \stackrel{\epsilon}{\epsilon}_{13} \stackrel{\epsilon}{\epsilon}_{12} + \cdots$ $+ C_{31} \stackrel{\epsilon}{\epsilon}_{11} \stackrel{\epsilon}{\epsilon}_{13} + C_{32} \stackrel{\epsilon}{\epsilon}_{12} \stackrel{\epsilon}{\epsilon}_{13} + C_{33} \stackrel{\epsilon}{\epsilon}_{13} \stackrel{\epsilon}{\epsilon}_{13} + \cdots$ $+ \cdots$ $+ \cdots$ $\downarrow \text{from which it is clear how } C_{12} = C_{21}, C_{12} = C_{31}, C_{23} = C_{32}$ $etc. \text{ orce the conditions for a minimitive to exist.}$		T. É = C(E) · É
+ C31 Em E13 + C32 E12 É13 + C33 E13 E13 + + from which it is clear how C12 = C21, C13 = C31, C23 = C32 etc. one the conditions for a minitive to exist.		$= C_{11} \varepsilon_{11} \dot{\varepsilon}_{11} + C_{12} \varepsilon_{12} \dot{\varepsilon}_{11} + C_{13} \varepsilon_{13} \dot{\varepsilon}_{11} + \cdots$
from which it is clear how $C_{12} = C_{21}$, $C_{13} = C_{31}$, $C_{23} = C_{32}$ etc. one the conditions for a minitive to exist.		+ C21 E11 É12 + C22 E12 É12 + C23 E13 É12 + 111
from which it is clear how $C_{12} = C_{21}$, $C_{13} = C_{31}$, $C_{23} = C_{32}$ etc are the conditions for a minitive to exist.		$+ c_{31} \epsilon_{11} \dot{\epsilon}_{13} + c_{32} \epsilon_{12} \dot{\epsilon}_{13} + c_{33} \epsilon_{13} \dot{\epsilon}_{13} + \dots$
etc one the conditions for a minitive to exist.		+ • • • • • • • • • • • • • • • • • • •
etc are the conditions for a minitive to exist.		from which it is clear how $C_{12} = C_{21}$, $C_{18} = C_{21}$, $C_{22} = C_{21}$


The	linearized response function	a for an isotropic
	nelatic material can be de	
	eral expression > (45-46)8	by differentiating
	(F(B)) with respect to B.	
Si	$\frac{d}{d\beta} F(\beta) = \Theta + E$	
	$\frac{d}{d\beta} B(\beta) = \frac{d}{d\beta} F(\beta) + \frac{d}{d\beta}$	
das	$\begin{vmatrix} B^{2}(\beta) \\ \beta=0 \end{vmatrix} = 4E, \frac{d}{d(\beta)}B(\beta)^{-1}$	
	$L_3(\beta) = \det B(\beta) \operatorname{tr} \left(\frac{d}{d\beta} B(\beta) \right)$	
d ds	$ L_1(\beta) = 2 \text{ tr} E$, $\frac{d}{d\beta} L_2(\beta) $	= 4 tr E β=0
We	get an expression as a linea	
	two tensors (trE) I and	
whi	ch we write	
	$C(E) = \lambda_L (biE)I + 2\mu$	E

			(81-	82)	5 Tu	esdo	ry [2014	-05-	03]	A1.3 3:00-11:0	20
N	Ren	mode	ling									
1					7.p	\wedge						
		2	-	φ, \	1						Krönez-	lee
		,		-	(/	^		$\nabla \phi =$	FG	decomposi	tion
7. 7.		G			1	\bigvee	X				rtion	+4
3		夏			F			G	remo	deli-	s olistortian	1
		eferen			465			~	velocit	y file	on R	
3		elaxe						V	remo: field	de ling	velocity to	non
	R (curures	it sh	ape							s density i	
	Basic	ass	maja	tion:	only	3 F o	effect	to th	e stro	in e	norgy q	,
	T								n R)			
	S										(det F) T F	
	\$,					$(\det \nabla \phi) \top$	Vφ'
3	3	xt(v, V	/)=	b. 1	-dV -	rt.	rdV	+	Q.V	dV		
				R		28		j.	2 1	empo	eling force	R
3	3	t (r, V) =	- (T			1		VdV			
				2				1 1/m			ing strem	
1											٥	



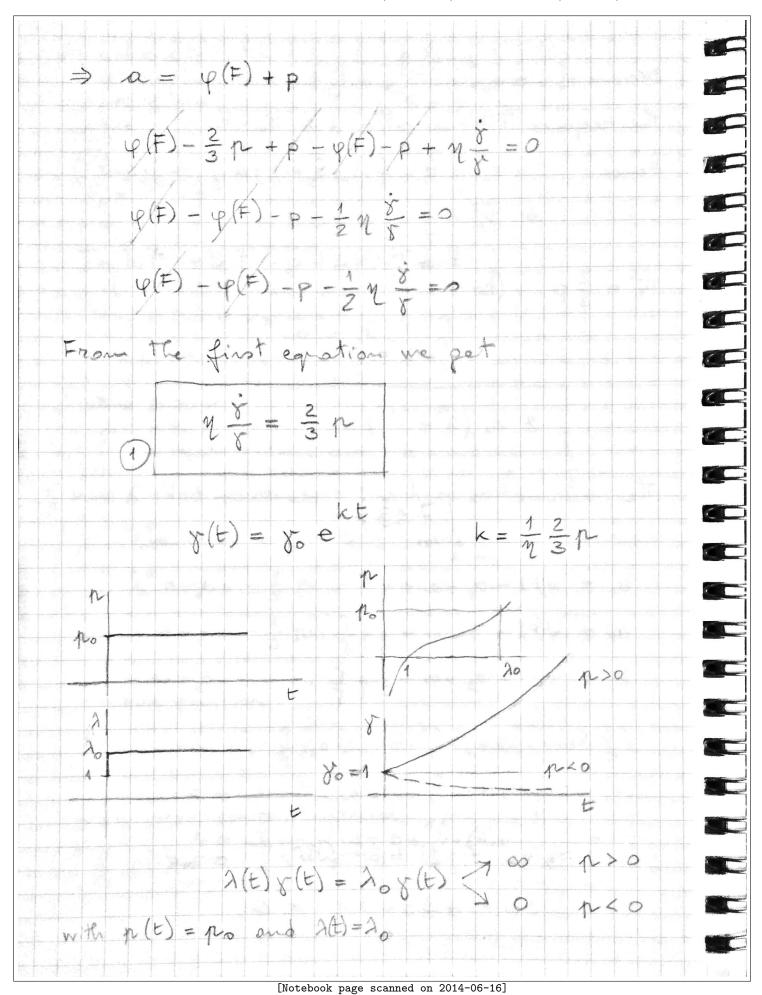
	Alter to and an interest of the interest of
	After transforming the integals into integrals over the reference shape
	[TVφ, Vφ det Vφ dV + A. GG det G dV - d f q(F) det G dV ≥ 0
	we replace the former statement with the localized
	form
	S. \(\phi\phi + A \cdot G \ightarrow \det G - \frac{d}{dt} \phi(F) \det G - \phi(F) \det G + \phi(F) \det G \tau \tau \tau \det G \rightarrow \rightarrow \rightarrow \text{of det G}\) Where the formula for the time derivative of det G
	has been used -> (17-18)3
	Now let us substitute the relation $\hat{S}(F). \dot{F} = \frac{d}{dE} \varphi(F)$
3	together with the expressions for the Piola stress tensors and the Kröner-Lee decomposition, and get in turn
3	5. $(\dot{F}G + F\dot{G}) = \frac{1}{\det G} + A \cdot \dot{G}G^{-1} - \hat{S}(F) \cdot \dot{F} - \varphi(F) I \cdot \dot{G}G^{-1} > 0$
3	$\frac{\det \nabla \phi}{\det G} = \frac{1}{\operatorname{det} G} \cdot (\dot{F} G + F \dot{G}) - \hat{S}(F) \cdot \dot{F} + (A - \varphi(F)I) \cdot \dot{G} \dot{G} > 0$ $\frac{\det \nabla \phi}{\det G} = \frac{1}{\operatorname{det} G} \cdot (\dot{F} G + F \dot{G}) - \hat{S}(F) \cdot \dot{F} + (A - \varphi(F)I) \cdot \dot{G} \dot{G} > 0$
1	det G SG ^T ·(FG+FG)-Ŝ(F)·F+(A-φ(F)I)·GG ¹ 20
3	S. FGG+ FTS. GG-2-S(F). F+ (A-φ(F)I). GG-20

	(83-84) ₁₅ Wednesday [2014-06-04] A1.3 3:00-11:00
T	he final expression for the distration inequality is
	(S-S(F))·F+(A-q(F)I+FTS)·GGT≥0
	z, equivalently,
d	$etF(T-\hat{T}(F))\cdot \dot{F}F^{-1}+(A-(q(F)I-F^{T}S))\cdot \dot{G}G^{-1}≥0$
П	f we set Eshelby tensor
1	$T^{+} = T - \hat{T}(F)$, $A^{+} = A - (\varphi(F)I - F^{T}S)$
H	re inequality can be written as
	/ 1 +- \ -+ =1
W	le can now characterize the dissipation through
1 1	uitable expressions for T+ and A+ consistently
	ith the above inequality in any motion.
	consistent choice is for example
	$T^{+}=2\mu \operatorname{sym}(\dot{F}F^{-1})$
	$A^{+} = \eta \dot{G}G^{-1} \qquad (\eta \ge 0)$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LAPAROTT CALL TO CALL
	ote that while T is a symmetric tensor because of the
	bjectivity condition, no such a property has been
olo	enived for A.

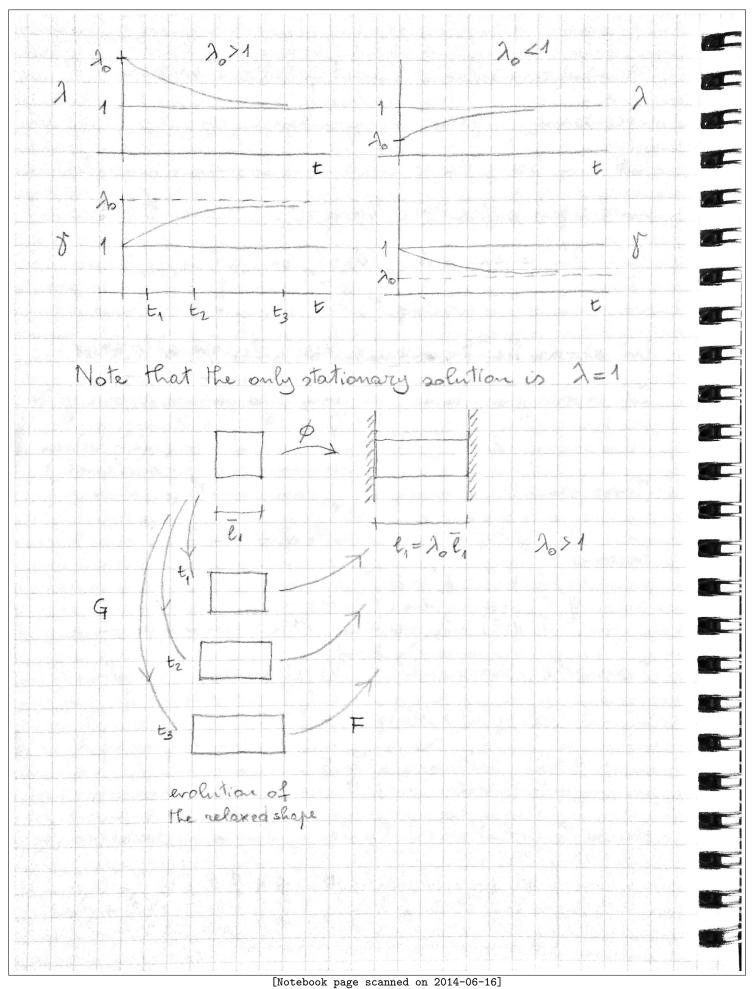
let us set the ren	modeline Lorce
	Q = 0
	equations we get
	T= n e, 8 e,
	A = 0
Material character	
T	Î(F)-PI+T+
A =	φ(F)I - FTS - aI + A+
where the inner p	resure p is the reactive stress
defined by the ma	perty that its power is zero,
because FF-1 is	deviatorie (tr FF'=0) here.
Since GGT is de	enstoric as well, because of the
assumption of is	ochoric remodeling, re have
to add the rem	odeling menure a, whose
power is aI. GG	= 0, because to GG = 0 here.
let us set now	T+=0 (\$ n=0)
	$A^{+}=\eta \dot{G}G^{-1} (\eta > 0)$
and choose a v	reo-Hooke an strain energy
	$= c_1(l_1 - 3)$

k 0 h				
stren charact		bolance		
0, = 0, -		51 = P		
$ u_2 = \hat{\sigma}_2^D - $	P	V2 = 0		
$ abla_3 = \hat{\sigma}_3^D - $	P	T ₃ = 0		
T= T(F)-F	>I	T = M Vg		
	^ b			
7	ρ - P =	1/		3
	√D - P =	0		
trace	0-3p =	P ⇒	$P = -\frac{1}{3} \uparrow$	
$\Delta D = n$	-+p = 2p			3
		Z		2
	D = - 1 A			
7 ₃ = ₹	$=-\frac{1}{3}\mathrm{p}$			
response for	ction			85
		Và =	1/2	
1(-)	$= (\hat{\sigma}_1 + \frac{1}{2}(\hat{\sigma}_2 + \hat{\sigma}_3))$	1/2 0:	= 1-2 (2+	
for a meo-	Hookean mate	val		
			2 /2	
de p(r) =	$2 - c_1 \left(\lambda^2 - \frac{1}{\lambda} \right)$	カラ	$s = 2 c_{\Lambda}(\lambda^2)$	7 7

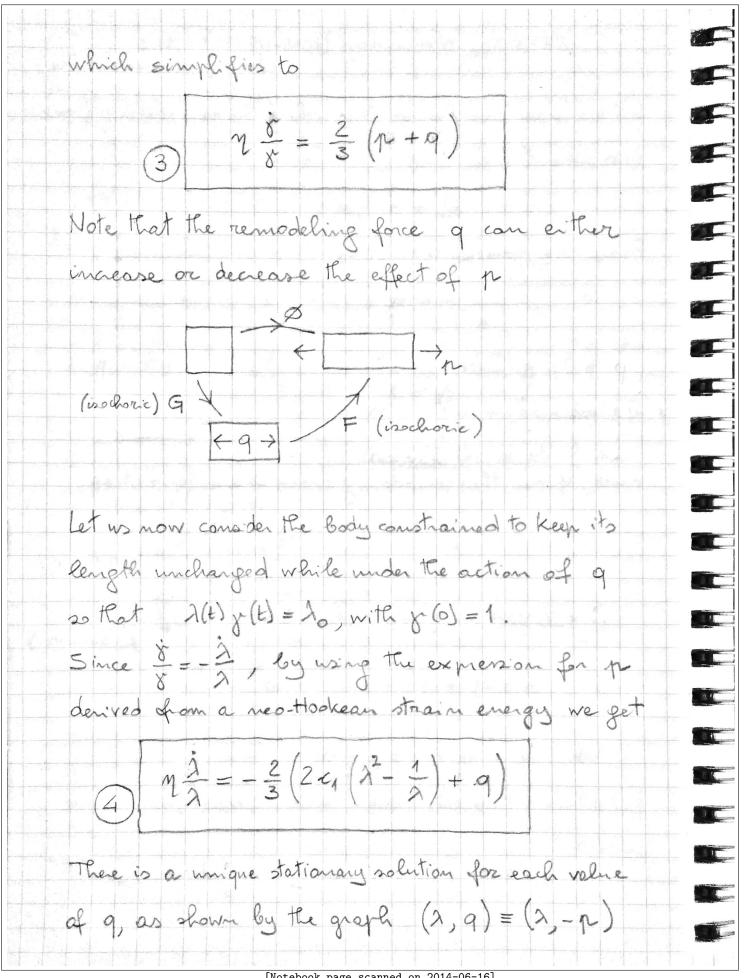
Because of incomparable ty only the denotoric part of the response
$$\widehat{T}(F)$$
 is delivered by the strain energy.

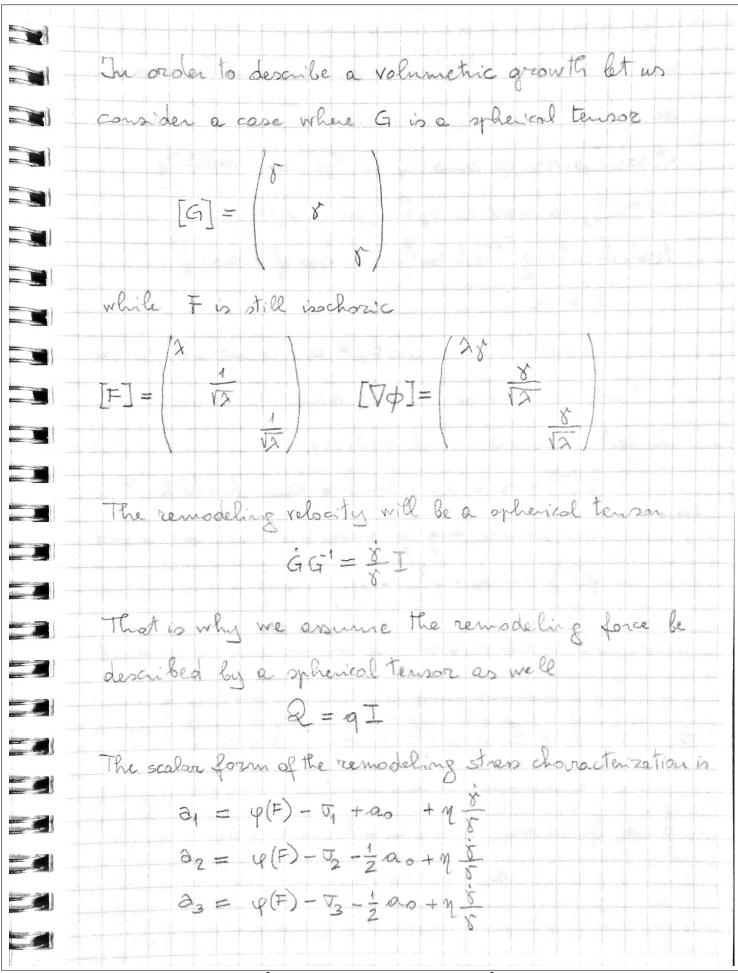

Hence $\widehat{\sigma}_1^{\,p} = \widehat{\sigma}_1^{\,p} + \frac{1}{3}\left(\widehat{\sigma}_1 + \widehat{\sigma}_2 + \widehat{\sigma}_3^{\,p}\right) = \frac{2}{3}\left(\widehat{\sigma}_1^{\,p} + \frac{1}{2}\left(\widehat{\sigma}_2 + \widehat{\sigma}_3^{\,p}\right)\right)$
 $\Rightarrow \widehat{\sigma}_1^{\,p} = \frac{2}{3}\,\widehat{\sigma}_0$
 $\widehat{\sigma}_1^{\,p} = \frac{2}{3}\,p$ (bolonce & stress characterization)


 $\frac{2}{3}\,\widehat{\sigma}_0^{\,p} = \frac{2}{3}\,p$


Dolonce with neo-Hookean response.

The disformation gradient depends on both λ and $\widehat{g}_1^{\,p}$ remodeling stress bolonce.


 $a_1 = q(F) - \sigma_1 - a_1 + \eta \, \widehat{s}_0^{\,p}$
 $a_2 = q(F) - \overline{\sigma}_2 - a_2 + \eta \, \widehat{s}_0^{\,p}$
 $a_3 = q(F) - \overline{\sigma}_3 - a_2 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p}$
 $a_4 = q(F) - \overline{\sigma}_3^{\,p} - a_2 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p}$
 $a_5 = q(F) - \overline{\sigma}_3^{\,p} - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_3 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_7 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_7 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$
 $a_7 = q(F) - \widehat{\sigma}_3^{\,p} + p - a_7 - \frac{1}{2}\eta \, \widehat{s}_0^{\,p} = 0$





(87-88),6 Wednesday [2014-06-11] A1.3
is different from zero
$Q = q e_i \otimes e_i$
From the bolonce equation
A = Q
we get 2, = 9
$\frac{\partial_2}{\partial z} = 0$ $\frac{\partial}{\partial z} = 0$
and, from the remodeling stress characterization,
$\varphi(F) - \sigma_1^D + \rho - \alpha + \eta \frac{\delta}{\delta} = q$
$\varphi(F) - \sigma_2^D + P - a - \frac{1}{2} \frac{y}{8} = 0$
$\varphi(F) - r_3^D + p - a - \frac{1}{2} r_3^{\delta} = 0$
3q(F) + 3p - 3a = q
$\Rightarrow a = \varphi(F) + p - \frac{1}{3}q$
Substituting this expression into the equations above
We get $\varphi(F) - \frac{2}{3} \pi + \beta - \varphi(F) - \beta + \frac{1}{3} q + \eta + \frac{8}{5} = q$
[Notebook page scanned on 2014-06-16]

where as has been used to describe the
deviatorse part of the remodeling stress
whose power is zero since the remodeling
velocity is now a spherical tensor.
Substituting the balance equations
$\sigma_1 = \eta_1$ $\theta_1 = \eta_2$
V2 = 0 02 = 9
53 = 0 03 = A
re get
Q(F) - p + ao + y = 9
$9(F) - \frac{1}{2}a_0 + \eta = 9$
$\varphi(F) - \frac{1}{2}\alpha_0 + \eta \frac{\delta}{\delta} = q$
$3\varphi(F) - p + 3\eta = 3q$
$\Rightarrow \qquad m = -\left(\varphi(F) - \frac{1}{3}n\right) + q$
and, from any of the equations above,
$a_0 = \frac{2}{3} R$
[Notebook page scanned on 2014-06-16]

