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2 RIGID AND AFFINE MOTIONS

1 Motions

By motion of a body B we mean a regular function

p : B × R → E (1)

such that for any t
p(·, t) : B → E (2)

is a placement and
pA(·) ≡ p(A, ·) : R → E (3)

is the motion of any body point A. Hence a motion is a one-parameter family of placements. A
motion can also be described as a one-parameter family of deformations by defining

φ : R̄ × R → E (4)

transforming the position p̄A ≡ p(A, t0) ∈ R̄ of each body point A ∈ B at time t0 into its position
at time t

pA(t) = p(A, t) = φ(p(A, t0), t). (5)

By R̄ we shall denote the shape of the body at a time t0. We call the image in E of pA the trajectory
of the body point A. The velocity at time t of the point A is the vector

ṗA(t) := lim
τ→0

1

τ
(pA(t + τ)− pA(t)). (6)

After setting a coordinate system by selecting an origin o and an orthonormal basis {e1, e2, e3}, a
description of the motion can be given in terms of coordinates as follows

pA(t) = o+ x1A(t)e1 + x2A(t)e2 + x3A(t)e3. (7)

The expression for the velocity turns out to be

ṗA(t) := lim
τ→0

1

τ
((x1A(t + τ)− x1A(t))e1 + (x2A(t + τ)− x2A(t))e2 + (x3A(t + τ)− x3A(t))e3)

=
d

dt
x1A(t)e1 +

d

dt
x2A(t)e2 +

d

dt
x3A(t)e3. (8)

By test velocity field we mean the collection of the body point velocities

ṗA(t), ṗB(t), . . . (9)

2 Rigid motions

A motion is rigid if, for any t0, the deformations (4) are such that for any two body points A e B

and at any time t
φ(p̄B, t) = φ(p̄A, t) + R(t)(p̄B − p̄A), (10)

where R(t) is a rotation. Hence a rigid motion turns out to defined by the motion of any body
point, say A, and by R. The corresponding expression for the velocity is

φ̇(p̄B, t) = φ̇(p̄A, t) + Ṙ(t)(p̄B − p̄A). (11)
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RIGID AND AFFINE MOTIONS 3

Replacing (10) with
pB(t) = pA(t) + R(t)(p̄B − p̄A), (12)

the velocity (11) becomes
ṗB(t) = ṗA(t) + Ṙ(t)(p̄B − p̄A). (13)

Note that from (12) we get
p̄B − p̄A = R(t)T(pB(t)− pA(t)). (14)

By substituting this expression into (13) we obtain

ṗB(t) = ṗA(t) + Ṙ(t)R(t)T(pB(t)− pA(t)). (15)

Setting
W(t) := Ṙ(t)R(t)T, (16)

allows to rewrite expression (15) as

ṗB(t) = ṗA(t) + W(t)(pB(t)− pA(t)). (17)

The tensor W(t), called the spin tensor, turns out to be skew symmetric. To show this let us note
that if R(t) is a rotation then R(t)−1 = R(t)T is a rotation as well. Hence

R(t)R(t)T = I. (18)

Differentiating with respect to t we get

Ṙ(t)R(t)T + R(t)Ṙ(t)T = O ⇒ W(t) + W(t)T = O ⇒ W(t)T = −W(t). (19)

Further, setting
d(t) := pB(t)− pA(t), (20)

from (17) we get
ḋ(t) = W(t)d(t). (21)

Note that by the skew symmetry of the spin

ḋ(t) · d(t) = W(t)d(t) · d(t) = d(t) · W(t)Td(t) = −d(t) · W(t)d(t). (22)

Hence

ḋ(t) · d(t) = 0, (23)

W(t)d(t) · d(t) = 0. (24)

By the first property the velocity difference

ḋ(t) = ṗB(t)− ṗA(t) (25)

is either zero or orthogonal to the difference vector (20). By the second property W(t) transforms
any vector d(t) into a vector orthogonal to d(t). A rigid velocity field is a velocity field satisfying
(17), with W(t) skew symmetric.
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4 RIGID AND AFFINE MOTIONS

3 Spin axis

A skew symmetric tensor W(t), as an endomorphism of a real vector space of dimension three,
has a null eigenvalue. In fact, since the characteristic polynomial is of order three there exists at
least one real eigenvalue λ. Denoting by ao(t) a unit eigenvector corresponding to λ it is

W(t)ao(t) = λ ao(t). (26)

By (24)
λ = W(t)ao(t) · ao(t) = 0. (27)

Hence
W(t)ao(t) = o. (28)

Let us consider, at a time t, a line passing through pA(t)

co(h, t) = pA(t) + h ao(t). (29)

All body points occupying such positions have the same velocity since by (28),

ċo(h, t) = ṗA(t) + W(t)(co(h, t)− pA(t)) = ṗA(t) + hW(t)ao(t) = ṗA(t). (30)

This property holds for any line parallel to ao(t). Hence for each line parallel to ao(t) there is a
common velocity, possibly different from line to line. Let us consider now any two body points A
e B and the difference vector (20). Note that the velocity difference (25) is such that, by (28),

ḋ(t) · ao(t) = W(t)d(t) · ao(t) = d(t) · W(t)Tao(t) = −d(t) · W(t)ao(t) = 0. (31)

Hence the velocity difference is either zero or orthogonal to d(t), by (23), and to ao(t) as well.
Property (31) can be also given a different interpretation. If it is put in the form

(ṗB(t)− ṗA(t)) · ao(t) = 0, (32)

it implies that
ṗB(t) · ao(t) = ṗA(t) · ao(t), (33)

Thus the orthogonal projection of the velocity on ao(t) turns out to be the same for all body points.
Hence the velocity of each body point can be decomposed into the sum of a velocity vo(t) parallel
to the axis ao(t), which is unique for the whole body, and a velocity orthogonal to ao(t).

Let us consider a straight line passing through pA(t) and lying on a plane orthogonal to ao(t)

c(h, t) = pA(t) + hd(t), d(t) · ao(t) = 0. (34)

Velocities along this line can be expressed as

ċ(h, t) = ṗA(t) + hW(t)d(t) = vo(t) + v⊥
A (t) + hW(t)d(t), (35)

with

vo(t) := (ṗA(t) · ao(t))ao(t), (36)

v⊥
A (t) := (ṗA(t)− vo(t)), (37)

where v⊥
A (t), like d(t), is a vector orthogonal to ao(t).

If we choose d(t) orthogonal also to v⊥
A (t) then W(t)d(t), which is orthogonal both to d(t)

and ao(t) by (24) and (31), turns out to be parallel to v⊥
A (t). Then there exists a unique value for h

such that
v⊥
A (t) + hW(t)d(t) = o, (38)

selecting, through (34), a position where the velocity is exactly vo(t), parallel to ao(t). The straight
line passing through this position and parallel to ao(t) is called spin axis.
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RIGID AND AFFINE MOTIONS 5

3.1 Axial vector

Since W(t) transforms any vector d(t) into a vector orthogonal both to d(t) and ao(t), there should
be a vector ω(t) such that

W(t)d(t) = ω(t)× d(t) ∀d(t) ∈ V . (39)

We can prove that it exists and is unique as follows. Since

W(t)ω(t) = ω(t)× ω(t) = o, (40)

ω(t) is an eigenvector corresponding to the eigenvalue λ = 0. Hence it belongs to the same one-
dimensional eigenspace as ao(t). Setting for any given orthonormal basis

ω(t) = ω1(t)e1 + ω2(t)e2 + ω3(t)e3, (41)

the components are obtained through (39)

W(t)e1 · e2 = ω(t)× e1 · e2 = e1 × e2 · ω(t) = e3 · ω(t) ⇒ ω3(t) = W(t)e1 · e2

W(t)e2 · e3 = ω(t)× e2 · e3 = e2 × e3 · ω(t) = e1 · ω(t) ⇒ ω1(t) = W(t)e2 · e3

W(t)e3 · e1 = ω(t)× e3 · e1 = e3 × e1 · ω(t) = e2 · ω(t) ⇒ ω2(t) = W(t)e3 · e1

(42)

The vector ω(t) is called axial vector of W(t). Relation (39) defines, through (42), an isomorphism
between the space of skew symmetric tensors and the three-dimensional vector space V .

3.2 Spin center

In a two-dimensional vector space, for a given rigid velocity field at time t, we call spin center the
position of a point C such that ṗC(t) = 0. Since

ṗA(t)− ṗC(t) = W(t)(pA(t)− pC(t)), (43)

if pC(t) is the spin center then ṗA(t) equals the velocity difference and hence it is orthogonal to
the line joining the placements pA(t) and pC(t). That is why the spin center can be obtained
by the intersection of lines drawn from any two positions and orthogonal to the corresponding
velocities.

4 Rigid motions in coordinate form

Let us consider a two-dimensional Euclidean space and a Cartesian coordinate system defined by
an origin O and an orthonormal basis {e1, e2}. In a rigid motion the rotation R(t) at any time t
can be described by

R(t)e1 = cos θ(t)e1 + sin θ(t)e2, (44)

R(t)e2 = − sin θ(t)e1 + cos θ(t)e2. (45)

Then the relation (10) can be transformed into the following one in terms of coordinates

(

x1B(t)

x2B(t)

)

=

(

x1A(t)

x2A(t)

)

+

(

cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)

)(

x̄1B − x̄1A

x̄2B − x̄2A

)

. (46)
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6 RIGID AND AFFINE MOTIONS

Differentiating with respect to t we get

(

ẋ1B(t)

ẋ2B(t)

)

=

(

ẋ1A(t)

ẋ2A(t)

)

+ θ̇(t)

(

− sin θ(t) − cos θ(t)

cos θ(t) − sin θ(t)

)(

x̄1B − x̄1A

x̄2B − x̄2A

)

. (47)

Then we can replace, from (46), the expression

(

x̄1B − x̄1A

x̄2B − x̄2A

)

=

(

cos θ(t) sin θ(t)

− sin θ(t) cos θ(t)

)(

x1B(t)− x1A(t)

x2B(t)− x2A(t)

)

(48)

into (47), thus obtaining

(

ẋ1B(t)

ẋ2B(t)

)

=

(

ẋ1A(t)

ẋ2A(t)

)

+

(

0 −θ̇(t)

θ̇(t) 0

)(

x1B(t)− x1A(t)

x2B(t)− x2A(t)

)

. (49)

This is the expression relating the components of the velocities in (17). Hence the matrix in (49)
is the matrix of W(t).

In general, in a three-dimensional Euclidean space endowed with a Cartesian coordinate sys-
tem whose orthonormal vector basis is {e1, e2, e3}, the relation (17) can be transformed into the
following one in terms of coordinates









ẋ1B(t)

ẋ2B(t)

ẋ3B(t)









=









ẋ1A(t)

ẋ2A(t)

ẋ3A(t)









+









0 −ω3(t) ω2(t)

ω3(t) 0 −ω1(t)

−ω2(t) ω1(t) 0

















x1B(t)− x1A(t)

x2B(t)− x2A(t)

x3B(t)− x3A(t)









. (50)

The matrix of W is skew symmetric because

WT = −W ⇒ Wei · ej = −ei · Wej. (51)

5 Affine motion

A motion is said to be affine if the one-parameter family of deformations (4) is such that for any
two body points A and B and for any t

φ(p̄B, t) = φ(p̄A, t) + F(t)(p̄B − p̄A), (52)

where F(t) is a tensor such that det F(t) > 0. Hence an affine motion is defined by the motion of
any body point, say A, and by the values of the deformation gradient F(t).

The velocity field in an affine motion is given by

φ̇(p̄B, t) = φ̇(p̄A, t) + Ḟ(t)(p̄B − p̄A). (53)

Replacing (52) with
pB(t) = pA(t) + F(t)(p̄B − p̄A), (54)

we get
ṗB(t) = ṗA(t) + Ḟ(t)(pB(t0)− pA(t0)). (55)

Since from (54)
pB(t0)− pA(t0) = F(t)−1(pB(t)− pA(t)), (56)
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then
ṗB(t) = ṗA(t) + Ḟ(t)F(t)−1(pB(t)− pA(t)). (57)

Setting
L(t) := Ḟ(t)F(t)−1, (58)

the expression (57) can be written

ṗB(t) = ṗA(t) + L(t)(pB(t)− pA(t)). (59)

If we consider a deformation transforming positions at time t into positions at time t + τ

φt(pB(t), τ) = φt(pA(t), τ) + Ft(τ)(pB(t)− pA(t)), (60)

we get the following expression for the velocities at time t

φ̇t(pB(t), 0) = φ̇t(pA(t), 0) + Ḟt(0)(pB(t)− pA(t)). (61)

By comparing this expression with (59) we obtain

L(t) = Ḟ(t)F(t)−1 = Ḟt(0). (62)

This expression allows us to give a useful characterization of L. From the polar decomposition of
the deformation gradient

Ft(τ) = Rt(τ)Ut(τ) (63)

we get, differentiating with respect to time at τ = 0,

L(t) = Ḟt(0) = Ṙt(0)Ut(0) + Rt(0)U̇t(0) = Ṙt(0) + U̇t(0), (64)

since Ft(0) = I implies Rt(0) = I and Ut(0) = I. Note that Ṙt(0) is skew symmetric while U̇t(0)
is symmetric, since

Rt(τ)
TRt(τ) = I ⇒ Ṙt(τ)

TRt(τ) + Rt(τ)
TṘt(τ) = O

⇒ Ṙt(0)
T + Ṙt(0) = O, (65)

U̇t(τ)
T = U̇t(τ) ⇒ U̇t(0)

T = U̇t(0). (66)

If we consider the decomposition of L(t)

L(t) = D(t) + W(t), (67)

with

D(t) :=
1

2
(L(t) + L(t)T), W(t) :=

1

2
(L(t)− L(t)T) (68)

it turns out that
D(t) = U̇t(0), W(t) = Ṙt(0). (69)

This is the reason why D(t) and W(t) are called stretching and spin respectively.
An affine velocity field is a velocity field whose velocities are given by (59), where L(t) is a

tensor.
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6 Velocity gradient

A generic motion at any time t can be described by a deformation

φ(·, t) : R̄ 7→ E . (70)

Let us consider a straight line
c̄(h) = p̄A + h d̄ (71)

on the shape R̄ and for each time t the curve c(·, t) on R such that

c(h, t) = φ(c̄(h), t). (72)

The tangent vector at c(0, t) is defined as the limit

d(t) := lim
h→0

1

h

(

c(h, t)− c(0, t)
)

. (73)

At each time t we can define, for each body point A, the gradient of the vector field φ(·, t) as the
tensor such that

F(p̄A, t) : d̄ 7→ d(t), (74)

transforming vectors which are tangent to curves passing through p̄A into vectors which are tan-
gent to the corresponding curves through pA(t) = φ(p̄A, t).

At time t the velocity of body point is given by

vt : pA(t) 7→ ṗA(t). (75)

whose domain is the shape of the body at time t and which is called spatial velocity field. The
gradient of this vector field [see APPENDIX 2] is the tensor ∇vt such that

∇vtd(t) = lim
h→0

1

h

(

vt(c(h, t))− vt(c(0, t))
)

= lim
h→0

1

h

(

ċ(h, t)− ċ(0, t)
)

. (76)

Since from (73)

ḋ(t) = lim
h→0

1

h

(

ċ(h, t)− ċ(0, t)
)

, (77)

we get from (76)
∇vtd(t) = ḋ(t). (78)

From (74) we get also

ḋ(t) = lim
τ→0

1

τ

(

d(t + τ)− d(t)
)

= Ḟ(p̄A, t)d̄ = Ḟ(p̄A, t)F(p̄A, t)−1d(t). (79)

Replacing this expression into (78) it turns out, dropping function arguments out,

∇vt = ḞF−1. (80)

If we consider the deformation from the shape at a fixed time t to any time t + τ

φt(·, τ) : pA(t) 7→ pA(t + τ), (81)

we can define, for each body point A, the gradient of φt(·, τ), as the tensor

Ft(pA(t), τ) : d(t) 7→ d(t + τ), (82)
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transforming vectors which are tangent to curves through pA(t) into vectors tangent to the corre-
sponding curves through pA(t + τ). Instead of (79) we get

ḋ(t) = lim
τ→0

1

τ

(

d(t + τ)− d(t)
)

= Ḟt(pA(t), t)d(t) (83)

and finally
∇vt = Ḟt. (84)

7 Affine velocity fields

The meaning of the velocity gradient can be illustrated in the following way. In a two-dimensional
space let us consider a body in the shape of a square at a time t. Let us consider also an orthonor-
mal basis whose vectors are parallel to the sides of the square and denote the matrix of the velocity
gradient by

(

g11 g12

g21 g22

)

(85)

The velocity field is described by (59). The shape the body takes in a sufficiently short time
interval τ can be described by the expression

pB(t + τ) = pB(t) + ṗB(t)τ + o(τ)

= pB(t) +
(

ṗO(t) + L(t)(pB(t)− pO(t))
)

τ + o(τ)
(86)

If we assume that the center is at rest (ṗO(t) = 0) we get

pB(t + τ) = pB(t) + L(t)(pB(t)− pO(t))τ + o(τ). (87)

Figures 1, 2, 3, show the shapes the body takes according to the values of L(t) given by the
matrices in the tables below arranged in the same order as the shapes

Fig. 1

(

1 0
0 0

) (

0 1
0 0

)

(

0 0
1 0

) (

0 0
0 1

)

Fig. 2

(

1 0
0 0

) (

0 1
2

1
2 0

)

(

0 1
2

1
2 0

) (

0 0
0 1

)

Fig. 3

(

0 0
0 0

) (

0 1
2

− 1
2 0

)

(

0 − 1
2

1
2 0

) (

0 0
0 0

)
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Figure 1: Illustration of the velocity gradient
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Figure 2: Illustration of the velocity gradient (symmetric part)
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Figure 3: Illustration of the velocity gradient (skew symmetric part)
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