Rigid and affine motions

Contents

1 Motions 2
2 Rigid motions 2
3 Spin axis 4
3.1 Axial vector 5
3.2 Spin center 5
4 Rigid motions in coordinate form 5
5 Affine motion 6
6 Velocity gradient 8
7 Affine velocity fields 9

1 Motions

By motion of a body \mathcal{B} we mean a regular function

$$
\begin{equation*}
\mathrm{p}: \mathcal{B} \times \mathbb{R} \rightarrow \mathcal{E} \tag{1}
\end{equation*}
$$

such that for any t

$$
\begin{equation*}
\mathrm{p}(\cdot, t): \mathcal{B} \rightarrow \mathcal{E} \tag{2}
\end{equation*}
$$

is a placement and

$$
\begin{equation*}
\mathrm{p}_{\mathrm{A}}(\cdot) \equiv \mathrm{p}(\mathrm{~A}, \cdot): \mathbb{R} \rightarrow \mathcal{E} \tag{3}
\end{equation*}
$$

is the motion of any body point A. Hence a motion is a one-parameter family of placements. A motion can also be described as a one-parameter family of deformations by defining

$$
\begin{equation*}
\phi: \overline{\mathcal{R}} \times \mathbb{R} \rightarrow \mathcal{E} \tag{4}
\end{equation*}
$$

transforming the position $\overline{\mathrm{p}}_{\mathrm{A}} \equiv \mathrm{p}\left(\mathrm{A}, t_{0}\right) \in \overline{\mathcal{R}}$ of each body point $\mathrm{A} \in \mathcal{B}$ at time t_{0} into its position at time t

$$
\begin{equation*}
\mathrm{p}_{\mathrm{A}}(t)=\mathrm{p}(\mathrm{~A}, t)=\boldsymbol{\phi}\left(\mathrm{p}\left(\mathrm{~A}, t_{0}\right), t\right) . \tag{5}
\end{equation*}
$$

By $\overline{\mathcal{R}}$ we shall denote the shape of the body at a time t_{0}. We call the image in \mathcal{E} of p_{A} the trajectory of the body point A. The velocity at time t of the point A is the vector

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{A}}(t):=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left(\mathrm{p}_{\mathrm{A}}(t+\tau)-\mathrm{p}_{\mathrm{A}}(t)\right) . \tag{6}
\end{equation*}
$$

After setting a coordinate system by selecting an origin \boldsymbol{o} and an orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, a description of the motion can be given in terms of coordinates as follows

$$
\begin{equation*}
\mathrm{p}_{\mathrm{A}}(t)=\boldsymbol{o}+x_{1 \mathrm{~A}}(t) \mathbf{e}_{1}+x_{2 \mathrm{~A}}(t) \mathbf{e}_{2}+x_{3 \mathrm{~A}}(t) \mathbf{e}_{3} . \tag{7}
\end{equation*}
$$

The expression for the velocity turns out to be

$$
\begin{align*}
\dot{\mathrm{p}}_{\mathrm{A}}(t) & :=\lim _{\tau \rightarrow 0} \frac{1}{\tau}\left(\left(x_{1 \mathrm{~A}}(t+\tau)-x_{1 \mathrm{~A}}(t)\right) \mathbf{e}_{1}+\left(x_{2 \mathrm{~A}}(t+\tau)-x_{2 \mathrm{~A}}(t)\right) \mathbf{e}_{2}+\left(x_{3 \mathrm{~A}}(t+\tau)-x_{3 \mathrm{~A}}(t)\right) \mathbf{e}_{3}\right) \\
& =\frac{d}{d t} x_{1 \mathrm{~A}}(t) \mathbf{e}_{1}+\frac{d}{d t} x_{2 \mathrm{~A}}(t) \mathbf{e}_{2}+\frac{d}{d t} x_{3 \mathrm{~A}}(t) \mathbf{e}_{3} \tag{8}
\end{align*}
$$

By test velocity field we mean the collection of the body point velocities

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{A}}(t), \dot{\mathrm{p}}_{\mathrm{B}}(t), \ldots \tag{9}
\end{equation*}
$$

2 Rigid motions

A motion is rigid if, for any t_{0}, the deformations (4) are such that for any two body points A e B and at any time t

$$
\begin{equation*}
\boldsymbol{\phi}\left(\overline{\mathrm{p}}_{\mathrm{B}}, t\right)=\boldsymbol{\phi}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right)+\mathbf{R}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right), \tag{10}
\end{equation*}
$$

where $\mathbf{R}(t)$ is a rotation. Hence a rigid motion turns out to defined by the motion of any body point, say A, and by \mathbf{R}. The corresponding expression for the velocity is

$$
\begin{equation*}
\dot{\boldsymbol{\phi}}\left(\overline{\mathrm{p}}_{\mathrm{B}}, t\right)=\dot{\boldsymbol{\phi}}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right)+\dot{\mathbf{R}}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right) . \tag{11}
\end{equation*}
$$

Replacing (10) with

$$
\begin{equation*}
\mathrm{p}_{\mathrm{B}}(t)=\mathrm{p}_{\mathrm{A}}(t)+\mathbf{R}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right), \tag{12}
\end{equation*}
$$

the velocity (11) becomes

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\dot{\mathbf{R}}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right) \tag{13}
\end{equation*}
$$

Note that from (12) we get

$$
\begin{equation*}
\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}=\mathbf{R}(t)^{\top}\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right) . \tag{14}
\end{equation*}
$$

By substituting this expression into (13) we obtain

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\dot{\mathbf{R}}(t) \mathbf{R}(t)^{\top}\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right) \tag{15}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mathbf{W}(t):=\dot{\mathbf{R}}(t) \mathbf{R}(t)^{\top}, \tag{16}
\end{equation*}
$$

allows to rewrite expression (15) as

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\mathbf{W}(t)\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right) . \tag{17}
\end{equation*}
$$

The tensor $\mathbf{W}(t)$, called the spin tensor, turns out to be skew symmetric. To show this let us note that if $\mathbf{R}(t)$ is a rotation then $\mathbf{R}(t)^{-1}=\mathbf{R}(t)^{\top}$ is a rotation as well. Hence

$$
\begin{equation*}
\mathbf{R}(t) \mathbf{R}(t)^{\top}=\mathbf{I} \tag{18}
\end{equation*}
$$

Differentiating with respect to t we get

$$
\begin{equation*}
\dot{\mathbf{R}}(t) \mathbf{R}(t)^{\top}+\mathbf{R}(t) \dot{\mathbf{R}}(t)^{\top}=\mathbf{O} \quad \Rightarrow \quad \mathbf{W}(t)+\mathbf{W}(t)^{\top}=\mathbf{O} \quad \Rightarrow \quad \mathbf{W}(t)^{\top}=-\mathbf{W}(t) \tag{19}
\end{equation*}
$$

Further, setting

$$
\begin{equation*}
\mathrm{d}(t):=\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t), \tag{20}
\end{equation*}
$$

from (17) we get

$$
\begin{equation*}
\dot{\mathbf{d}}(t)=\mathbf{W}(t) \mathbf{d}(t) \tag{21}
\end{equation*}
$$

Note that by the skew symmetry of the spin

$$
\begin{equation*}
\dot{\mathbf{d}}(t) \cdot \mathbf{d}(t)=\mathbf{W}(t) \mathbf{d}(t) \cdot \mathbf{d}(t)=\mathbf{d}(t) \cdot \mathbf{W}(t)^{\top} \mathbf{d}(t)=-\mathbf{d}(t) \cdot \mathbf{W}(t) \mathbf{d}(t) \tag{22}
\end{equation*}
$$

Hence

$$
\begin{align*}
\dot{\mathbf{d}}(t) \cdot \mathbf{d}(t) & =0 \tag{23}\\
\mathbf{W}(t) \mathbf{d}(t) \cdot \mathbf{d}(t) & =0 \tag{24}
\end{align*}
$$

By the first property the velocity difference

$$
\begin{equation*}
\dot{\mathbf{d}}(t)=\dot{\mathrm{p}}_{\mathrm{B}}(t)-\dot{\mathrm{p}}_{\mathrm{A}}(t) \tag{25}
\end{equation*}
$$

is either zero or orthogonal to the difference vector (20). By the second property $\mathbf{W}(t)$ transforms any vector $\mathbf{d}(t)$ into a vector orthogonal to $\mathbf{d}(t)$. A rigid velocity field is a velocity field satisfying (17), with $\mathbf{W}(t)$ skew symmetric.

3 Spin axis

A skew symmetric tensor $\mathbf{W}(t)$, as an endomorphism of a real vector space of dimension three, has a null eigenvalue. In fact, since the characteristic polynomial is of order three there exists at least one real eigenvalue λ. Denoting by $\mathbf{a}_{0}(t)$ a unit eigenvector corresponding to λ it is

$$
\begin{equation*}
\mathbf{W}(t) \mathbf{a}_{o}(t)=\lambda \mathbf{a}_{o}(t) \tag{26}
\end{equation*}
$$

By (24)

$$
\begin{equation*}
\lambda=\mathbf{W}(t) \mathbf{a}_{o}(t) \cdot \mathbf{a}_{o}(t)=0 . \tag{27}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathbf{W}(t) \mathbf{a}_{o}(t)=\mathbf{o} \tag{28}
\end{equation*}
$$

Let us consider, at a time t, a line passing through $\mathrm{p}_{\mathrm{A}}(t)$

$$
\begin{equation*}
c_{o}(h, t)=\mathrm{p}_{\mathrm{A}}(t)+h \mathbf{a}_{o}(t) \tag{29}
\end{equation*}
$$

All body points occupying such positions have the same velocity since by (28),

$$
\begin{equation*}
\dot{c}_{o}(h, t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\mathbf{W}(t)\left(c_{o}(h, t)-\mathrm{p}_{\mathrm{A}}(t)\right)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+h \mathbf{W}(t) \mathbf{a}_{o}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t) . \tag{30}
\end{equation*}
$$

This property holds for any line parallel to $\mathbf{a}_{0}(t)$. Hence for each line parallel to $\mathbf{a}_{0}(t)$ there is a common velocity, possibly different from line to line. Let us consider now any two body points A e B and the difference vector (20). Note that the velocity difference (25) is such that, by (28),

$$
\begin{equation*}
\dot{\mathbf{d}}(t) \cdot \mathbf{a}_{o}(t)=\mathbf{W}(t) \mathbf{d}(t) \cdot \mathbf{a}_{o}(t)=\mathbf{d}(t) \cdot \mathbf{W}(t)^{\top} \mathbf{a}_{o}(t)=-\mathbf{d}(t) \cdot \mathbf{W}(t) \mathbf{a}_{o}(t)=0 \tag{31}
\end{equation*}
$$

Hence the velocity difference is either zero or orthogonal to $\mathbf{d}(t)$, by (23), and to $\mathbf{a}_{0}(t)$ as well. Property (31) can be also given a different interpretation. If it is put in the form

$$
\begin{equation*}
\left(\dot{\mathrm{p}}_{\mathrm{B}}(t)-\dot{\mathrm{p}}_{\mathrm{A}}(t)\right) \cdot \mathbf{a}_{o}(t)=0 \tag{32}
\end{equation*}
$$

it implies that

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t) \cdot \mathbf{a}_{o}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t) \cdot \mathbf{a}_{o}(t), \tag{33}
\end{equation*}
$$

Thus the orthogonal projection of the velocity on $\mathbf{a}_{0}(t)$ turns out to be the same for all body points. Hence the velocity of each body point can be decomposed into the sum of a velocity $\mathbf{v}_{o}(t)$ parallel to the axis $\mathbf{a}_{0}(t)$, which is unique for the whole body, and a velocity orthogonal to $\mathbf{a}_{0}(t)$.

Let us consider a straight line passing through $\mathrm{p}_{\mathrm{A}}(t)$ and lying on a plane orthogonal to $\mathbf{a}_{0}(t)$

$$
\begin{equation*}
\boldsymbol{c}(h, t)=\mathrm{p}_{\mathrm{A}}(t)+h \mathbf{d}(t), \quad \mathbf{d}(t) \cdot \mathbf{a}_{o}(t)=0 \tag{34}
\end{equation*}
$$

Velocities along this line can be expressed as

$$
\begin{equation*}
\dot{\boldsymbol{c}}(h, t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+h \mathbf{W}(t) \mathbf{d}(t)=\mathbf{v}_{o}(t)+\mathbf{v}_{\mathrm{A}}^{\perp}(t)+h \mathbf{W}(t) \mathbf{d}(t), \tag{35}
\end{equation*}
$$

with

$$
\begin{align*}
\mathbf{v}_{o}(t) & :=\left(\dot{\mathrm{p}}_{\mathrm{A}}(t) \cdot \mathbf{a}_{o}(t)\right) \mathbf{a}_{o}(t), \tag{36}\\
\mathbf{v}_{\mathrm{A}}^{\perp}(t) & :=\left(\dot{\mathrm{p}}_{\mathrm{A}}(t)-\mathbf{v}_{o}(t)\right), \tag{37}
\end{align*}
$$

where $\mathbf{v}_{\mathrm{A}}^{\perp}(t)$, like $\mathbf{d}(t)$, is a vector orthogonal to $\mathbf{a}_{o}(t)$.
If we choose $\mathbf{d}(t)$ orthogonal also to $\mathbf{v}_{\mathbf{A}}^{\perp}(t)$ then $\mathbf{W}(t) \mathbf{d}(t)$, which is orthogonal both to $\mathbf{d}(t)$ and $\mathbf{a}_{0}(t)$ by (24) and (31), turns out to be parallel to $\mathbf{v}_{\mathrm{A}}^{\perp}(t)$. Then there exists a unique value for h such that

$$
\begin{equation*}
\mathbf{v}_{\mathrm{A}}^{\perp}(t)+h \mathbf{W}(t) \mathbf{d}(t)=\mathbf{o}, \tag{38}
\end{equation*}
$$

selecting, through (34), a position where the velocity is exactly $\mathbf{v}_{o}(t)$, parallel to $\mathbf{a}_{o}(t)$. The straight line passing through this position and parallel to $\mathbf{a}_{0}(t)$ is called spin axis.

3.1 Axial vector

Since $\mathbf{W}(t)$ transforms any vector $\mathbf{d}(t)$ into a vector orthogonal both to $\mathbf{d}(t)$ and $\mathbf{a}_{0}(t)$, there should be a vector $\boldsymbol{\omega}(t)$ such that

$$
\begin{equation*}
\mathbf{W}(t) \mathbf{d}(t)=\boldsymbol{\omega}(t) \times \mathbf{d}(t) \quad \forall \mathbf{d}(t) \in \mathcal{V} . \tag{39}
\end{equation*}
$$

We can prove that it exists and is unique as follows. Since

$$
\begin{equation*}
\mathbf{W}(t) \boldsymbol{\omega}(t)=\boldsymbol{\omega}(t) \times \boldsymbol{\omega}(t)=\mathbf{o} \tag{40}
\end{equation*}
$$

$\boldsymbol{\omega}(t)$ is an eigenvector corresponding to the eigenvalue $\lambda=0$. Hence it belongs to the same onedimensional eigenspace as $\mathbf{a}_{o}(t)$. Setting for any given orthonormal basis

$$
\begin{equation*}
\boldsymbol{\omega}(t)=\omega_{1}(t) \mathbf{e}_{1}+\omega_{2}(t) \mathbf{e}_{2}+\omega_{3}(t) \mathbf{e}_{3} \tag{41}
\end{equation*}
$$

the components are obtained through (39)

$$
\begin{align*}
& \mathbf{W}(t) \mathbf{e}_{1} \cdot \mathbf{e}_{2}=\boldsymbol{\omega}(t) \times \mathbf{e}_{1} \cdot \mathbf{e}_{2}=\mathbf{e}_{1} \times \mathbf{e}_{2} \cdot \boldsymbol{\omega}(t)=\mathbf{e}_{3} \cdot \boldsymbol{\omega}(t) \quad \Rightarrow \quad \omega_{3}(t)=\mathbf{W}(t) \mathbf{e}_{1} \cdot \mathbf{e}_{2} \\
& \mathbf{W}(t) \mathbf{e}_{2} \cdot \mathbf{e}_{3}=\boldsymbol{\omega}(t) \times \mathbf{e}_{2} \cdot \mathbf{e}_{3}=\mathbf{e}_{2} \times \mathbf{e}_{3} \cdot \boldsymbol{\omega}(t)=\mathbf{e}_{1} \cdot \boldsymbol{\omega}(t) \quad \Rightarrow \quad \omega_{1}(t)=\mathbf{W}(t) \mathbf{e}_{2} \cdot \mathbf{e}_{3} \tag{42}\\
& \mathbf{W}(t) \mathbf{e}_{3} \cdot \mathbf{e}_{1}=\boldsymbol{\omega}(t) \times \mathbf{e}_{3} \cdot \mathbf{e}_{1}=\mathbf{e}_{3} \times \mathbf{e}_{1} \cdot \boldsymbol{\omega}(t)=\mathbf{e}_{2} \cdot \boldsymbol{\omega}(t) \quad \Rightarrow \quad \omega_{2}(t)=\mathbf{W}(t) \mathbf{e}_{3} \cdot \mathbf{e}_{1}
\end{align*}
$$

The vector $\boldsymbol{\omega}(t)$ is called axial vector of $\mathbf{W}(t)$. Relation (39) defines, through (42), an isomorphism between the space of skew symmetric tensors and the three-dimensional vector space \mathcal{V}.

3.2 Spin center

In a two-dimensional vector space, for a given rigid velocity field at time t, we call spin center the position of a point C such that $\dot{\mathrm{p}}_{\mathrm{C}}(t)=0$. Since

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{A}}(t)-\dot{\mathrm{p}}_{\mathrm{C}}(t)=\mathbf{W}(t)\left(\mathrm{p}_{\mathrm{A}}(t)-\mathrm{p}_{\mathrm{C}}(t)\right), \tag{43}
\end{equation*}
$$

if $\mathrm{p}_{\mathrm{C}}(t)$ is the spin center then $\dot{\mathrm{p}}_{\mathrm{A}}(t)$ equals the velocity difference and hence it is orthogonal to the line joining the placements $\mathrm{p}_{\mathrm{A}}(t)$ and $\mathrm{p}_{\mathrm{C}}(t)$. That is why the spin center can be obtained by the intersection of lines drawn from any two positions and orthogonal to the corresponding velocities.

4 Rigid motions in coordinate form

Let us consider a two-dimensional Euclidean space and a Cartesian coordinate system defined by an origin O and an orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$. In a rigid motion the rotation $\mathbf{R}(t)$ at any time t can be described by

$$
\begin{align*}
& \mathbf{R}(t) \mathbf{e}_{1}=\cos \theta(t) \mathbf{e}_{1}+\sin \theta(t) \mathbf{e}_{2} \tag{44}\\
& \mathbf{R}(t) \mathbf{e}_{2}=-\sin \theta(t) \mathbf{e}_{1}+\cos \theta(t) \mathbf{e}_{2} \tag{45}
\end{align*}
$$

Then the relation (10) can be transformed into the following one in terms of coordinates

$$
\binom{x_{1 \mathrm{~B}}(t)}{x_{2 \mathrm{~B}}(t)}=\binom{x_{1 \mathrm{~A}}(t)}{x_{2 \mathrm{~A}}(t)}+\left(\begin{array}{cc}
\cos \theta(t) & -\sin \theta(t) \tag{46}\\
\sin \theta(t) & \cos \theta(t)
\end{array}\right)\binom{\bar{x}_{1 \mathrm{~B}}-\bar{x}_{1 \mathrm{~A}}}{\bar{x}_{2 \mathrm{~B}}-\bar{x}_{2 \mathrm{~A}}}
$$

Differentiating with respect to t we get

$$
\binom{\dot{x}_{1 \mathrm{~B}}(t)}{\dot{x}_{2 \mathrm{~B}}(t)}=\binom{\dot{x}_{1 \mathrm{~A}}(t)}{\dot{x}_{2 \mathrm{~A}}(t)}+\dot{\theta}(t)\left(\begin{array}{cc}
-\sin \theta(t) & -\cos \theta(t) \tag{47}\\
\cos \theta(t) & -\sin \theta(t)
\end{array}\right)\binom{\bar{x}_{1 \mathrm{~B}}-\bar{x}_{1 \mathrm{~A}}}{\bar{x}_{2 \mathrm{~B}}-\bar{x}_{2 \mathrm{~A}}} .
$$

Then we can replace, from (46), the expression

$$
\binom{\bar{x}_{1 \mathrm{~B}}-\bar{x}_{1 \mathrm{~A}}}{\bar{x}_{2 \mathrm{~B}}-\bar{x}_{2 \mathrm{~A}}}=\left(\begin{array}{cc}
\cos \theta(t) & \sin \theta(t) \tag{48}\\
-\sin \theta(t) & \cos \theta(t)
\end{array}\right)\binom{x_{1 \mathrm{~B}}(t)-x_{1 \mathrm{~A}}(t)}{x_{2 \mathrm{~B}}(t)-x_{2 \mathrm{~A}}(t)}
$$

into (47), thus obtaining

$$
\binom{\dot{x}_{1 \mathrm{~B}}(t)}{\dot{x}_{2 \mathrm{~B}}(t)}=\binom{\dot{x}_{1 \mathrm{~A}}(t)}{\dot{x}_{2 \mathrm{~A}}(t)}+\left(\begin{array}{cc}
0 & -\dot{\theta}(t) \tag{49}\\
\dot{\theta}(t) & 0
\end{array}\right)\binom{x_{1 \mathrm{~B}}(t)-x_{1 \mathrm{~A}}(t)}{x_{2 \mathrm{~B}}(t)-x_{2 \mathrm{~A}}(t)} .
$$

This is the expression relating the components of the velocities in (17). Hence the matrix in (49) is the matrix of $\mathbf{W}(t)$.

In general, in a three-dimensional Euclidean space endowed with a Cartesian coordinate system whose orthonormal vector basis is $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, the relation (17) can be transformed into the following one in terms of coordinates

$$
\left(\begin{array}{l}
\dot{x}_{1 \mathrm{~B}}(t) \tag{50}\\
\dot{x}_{2 \mathrm{~B}}(t) \\
\dot{x}_{3 \mathrm{~B}}(t)
\end{array}\right)=\left(\begin{array}{c}
\dot{x}_{1 \mathrm{~A}}(t) \\
\dot{x}_{2 \mathrm{~A}}(t) \\
\dot{x}_{3 \mathrm{~A}}(t)
\end{array}\right)+\left(\begin{array}{ccc}
0 & -\omega_{3}(t) & \omega_{2}(t) \\
\omega_{3}(t) & 0 & -\omega_{1}(t) \\
-\omega_{2}(t) & \omega_{1}(t) & 0
\end{array}\right)\left(\begin{array}{l}
x_{1 \mathrm{~B}}(t)-x_{1 \mathrm{~A}}(t) \\
x_{2 \mathrm{~B}}(t)-x_{2 \mathrm{~A}}(t) \\
x_{3 \mathrm{~B}}(t)-x_{3 \mathrm{~A}}(t)
\end{array}\right) .
$$

The matrix of \mathbf{W} is skew symmetric because

$$
\begin{equation*}
\mathbf{W}^{\top}=-\mathbf{W} \quad \Rightarrow \quad \mathbf{W e} \mathbf{e}_{i} \cdot \mathbf{e}_{j}=-\mathbf{e}_{i} \cdot \mathbf{W} \mathbf{e}_{j} . \tag{51}
\end{equation*}
$$

5 Affine motion

A motion is said to be affine if the one-parameter family of deformations (4) is such that for any two body points A and B and for any t

$$
\begin{equation*}
\boldsymbol{\phi}\left(\overline{\mathrm{p}}_{\mathrm{B}}, t\right)=\boldsymbol{\phi}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right)+\mathbf{F}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right), \tag{52}
\end{equation*}
$$

where $\mathbf{F}(t)$ is a tensor such that $\operatorname{det} \mathbf{F}(t)>0$. Hence an affine motion is defined by the motion of any body point, say A , and by the values of the deformation gradient $\mathbf{F}(t)$.

The velocity field in an affine motion is given by

$$
\begin{equation*}
\dot{\boldsymbol{\phi}}\left(\overline{\mathrm{p}}_{\mathrm{B}}, t\right)=\dot{\boldsymbol{\phi}}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right)+\dot{\mathrm{F}}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right) \tag{53}
\end{equation*}
$$

Replacing (52) with

$$
\begin{equation*}
\mathrm{p}_{\mathrm{B}}(t)=\mathrm{p}_{\mathrm{A}}(t)+\mathbf{F}(t)\left(\overline{\mathrm{p}}_{\mathrm{B}}-\overline{\mathrm{p}}_{\mathrm{A}}\right), \tag{54}
\end{equation*}
$$

we get

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\dot{\mathbf{F}}(t)\left(\mathrm{p}_{\mathrm{B}}\left(t_{0}\right)-\mathrm{p}_{\mathrm{A}}\left(t_{0}\right)\right) . \tag{55}
\end{equation*}
$$

Since from (54)

$$
\begin{equation*}
\mathrm{p}_{\mathrm{B}}\left(t_{0}\right)-\mathrm{p}_{\mathrm{A}}\left(t_{0}\right)=\mathbf{F}(t)^{-1}\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right), \tag{56}
\end{equation*}
$$

then

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\dot{\mathbf{F}}(t) \mathbf{F}(t)^{-1}\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right) \tag{57}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mathbf{L}(t):=\dot{\mathbf{F}}(t) \mathbf{F}(t)^{-1} \tag{58}
\end{equation*}
$$

the expression (57) can be written

$$
\begin{equation*}
\dot{\mathrm{p}}_{\mathrm{B}}(t)=\dot{\mathrm{p}}_{\mathrm{A}}(t)+\mathrm{L}(t)\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right) . \tag{59}
\end{equation*}
$$

If we consider a deformation transforming positions at time t into positions at time $t+\tau$

$$
\begin{equation*}
\boldsymbol{\phi}_{t}\left(\mathrm{p}_{\mathrm{B}}(t), \tau\right)=\boldsymbol{\phi}_{t}\left(\mathrm{p}_{\mathrm{A}}(t), \tau\right)+\mathbf{F}_{t}(\tau)\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right), \tag{60}
\end{equation*}
$$

we get the following expression for the velocities at time t

$$
\begin{equation*}
\dot{\boldsymbol{\phi}}_{t}\left(\mathrm{p}_{\mathrm{B}}(t), 0\right)=\dot{\boldsymbol{\phi}}_{t}\left(\mathrm{p}_{\mathrm{A}}(t), 0\right)+\dot{\mathbf{F}}_{t}(0)\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{A}}(t)\right) . \tag{61}
\end{equation*}
$$

By comparing this expression with (59) we obtain

$$
\begin{equation*}
\mathbf{L}(t)=\dot{\mathbf{F}}(t) \mathbf{F}(t)^{-1}=\dot{\mathbf{F}}_{t}(0) . \tag{62}
\end{equation*}
$$

This expression allows us to give a useful characterization of \mathbf{L}. From the polar decomposition of the deformation gradient

$$
\begin{equation*}
\mathbf{F}_{t}(\tau)=\mathbf{R}_{t}(\tau) \mathbf{U}_{t}(\tau) \tag{63}
\end{equation*}
$$

we get, differentiating with respect to time at $\tau=0$,

$$
\begin{equation*}
\mathbf{L}(t)=\dot{\mathbf{F}}_{t}(0)=\dot{\mathbf{R}}_{t}(0) \mathbf{U}_{t}(0)+\mathbf{R}_{t}(0) \dot{\mathbf{U}}_{t}(0)=\dot{\mathbf{R}}_{t}(0)+\dot{\mathbf{U}}_{t}(0), \tag{64}
\end{equation*}
$$

since $\mathbf{F}_{t}(0)=\mathbf{I}$ implies $\mathbf{R}_{t}(0)=\mathbf{I}$ and $\mathbf{U}_{t}(0)=\mathbf{I}$. Note that $\dot{\mathbf{R}}_{t}(0)$ is skew symmetric while $\dot{\mathbf{U}}_{t}(0)$ is symmetric, since

$$
\begin{align*}
\mathbf{R}_{t}(\tau)^{\top} \mathbf{R}_{t}(\tau)=\mathbf{I} & \Rightarrow \quad \dot{\mathbf{R}}_{t}(\tau)^{\top} \mathbf{R}_{t}(\tau)+\mathbf{R}_{t}(\tau)^{\top} \dot{\mathbf{R}}_{t}(\tau)=\mathbf{O} \\
& \Rightarrow \dot{\mathbf{R}}_{t}(0)^{\top}+\dot{\mathbf{R}}_{t}(0)=\mathbf{O}, \tag{65}\\
\dot{\mathbf{U}}_{t}(\tau)^{\top}=\dot{\mathbf{U}}_{t}(\tau) & \Rightarrow \dot{\mathbf{U}}_{t}(0)^{\top}=\dot{\mathbf{U}}_{t}(0) . \tag{66}
\end{align*}
$$

If we consider the decomposition of $\mathbf{L}(t)$

$$
\begin{equation*}
\mathbf{L}(t)=\mathbf{D}(t)+\mathbf{W}(t) \tag{67}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{D}(t):=\frac{1}{2}\left(\mathbf{L}(t)+\mathbf{L}(t)^{\top}\right), \quad \mathbf{W}(t):=\frac{1}{2}\left(\mathbf{L}(t)-\mathbf{L}(t)^{\top}\right) \tag{68}
\end{equation*}
$$

it turns out that

$$
\begin{equation*}
\mathbf{D}(t)=\dot{\mathbf{U}}_{t}(0), \quad \mathbf{W}(t)=\dot{\mathbf{R}}_{t}(0) \tag{69}
\end{equation*}
$$

This is the reason why $\mathbf{D}(t)$ and $\mathbf{W}(t)$ are called stretching and spin respectively.
An affine velocity field is a velocity field whose velocities are given by (59), where $\mathbf{L}(t)$ is a tensor.

6 Velocity gradient

A generic motion at any time t can be described by a deformation

$$
\begin{equation*}
\phi(\cdot, t): \overline{\mathcal{R}} \mapsto \mathcal{E} \tag{70}
\end{equation*}
$$

Let us consider a straight line

$$
\begin{equation*}
\overline{\boldsymbol{c}}(h)=\overline{\mathrm{p}}_{\mathrm{A}}+h \overline{\mathbf{d}} \tag{71}
\end{equation*}
$$

on the shape $\overline{\mathcal{R}}$ and for each time t the curve $c(\cdot, t)$ on \mathcal{R} such that

$$
\begin{equation*}
\boldsymbol{c}(h, t)=\boldsymbol{\phi}(\overline{\boldsymbol{c}}(h), t) \tag{72}
\end{equation*}
$$

The tangent vector at $\boldsymbol{c}(0, t)$ is defined as the limit

$$
\begin{equation*}
\mathbf{d}(t):=\lim _{h \rightarrow 0} \frac{1}{h}(\boldsymbol{c}(h, t)-\boldsymbol{c}(0, t)) . \tag{73}
\end{equation*}
$$

At each time t we can define, for each body point A, the gradient of the vector field $\boldsymbol{\phi}(\cdot, t)$ as the tensor such that

$$
\begin{equation*}
\mathbf{F}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right): \overline{\mathbf{d}} \mapsto \mathbf{d}(t), \tag{74}
\end{equation*}
$$

transforming vectors which are tangent to curves passing through \bar{p}_{A} into vectors which are tangent to the corresponding curves through $\mathrm{p}_{\mathrm{A}}(t)=\boldsymbol{\phi}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right)$.

At time t the velocity of body point is given by

$$
\begin{equation*}
\mathbf{v}_{t}: \mathrm{p}_{\mathrm{A}}(t) \mapsto \dot{\mathrm{p}}_{\mathrm{A}}(t) \tag{75}
\end{equation*}
$$

whose domain is the shape of the body at time t and which is called spatial velocity field. The gradient of this vector field [see Appendix 2] is the tensor $\nabla \mathbf{v}_{t}$ such that

$$
\begin{equation*}
\nabla \mathbf{v}_{t} \mathbf{d}(t)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\mathbf{v}_{t}(\boldsymbol{c}(h, t))-\mathbf{v}_{t}(\boldsymbol{c}(0, t))\right)=\lim _{h \rightarrow 0} \frac{1}{h}(\dot{\boldsymbol{c}}(h, t)-\dot{\boldsymbol{c}}(0, t)) \tag{76}
\end{equation*}
$$

Since from (73)

$$
\begin{equation*}
\dot{\mathbf{d}}(t)=\lim _{h \rightarrow 0} \frac{1}{h}(\dot{\boldsymbol{c}}(h, t)-\dot{\boldsymbol{c}}(0, t)) \tag{77}
\end{equation*}
$$

we get from (76)

$$
\begin{equation*}
\nabla \mathbf{v}_{t} \mathbf{d}(t)=\dot{\mathbf{d}}(t) \tag{78}
\end{equation*}
$$

From (74) we get also

$$
\begin{equation*}
\dot{\mathbf{d}}(t)=\lim _{\tau \rightarrow 0} \frac{1}{\tau}(\mathbf{d}(t+\tau)-\mathbf{d}(t))=\dot{\mathbf{F}}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right) \overline{\mathbf{d}}=\dot{\mathbf{F}}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right) \mathbf{F}\left(\overline{\mathrm{p}}_{\mathrm{A}}, t\right)^{-1} \mathbf{d}(t) \tag{79}
\end{equation*}
$$

Replacing this expression into (78) it turns out, dropping function arguments out,

$$
\begin{equation*}
\nabla \mathbf{v}_{t}=\dot{\mathbf{F}} \mathbf{F}^{-1} \tag{80}
\end{equation*}
$$

If we consider the deformation from the shape at a fixed time t to any time $t+\tau$

$$
\begin{equation*}
\boldsymbol{\phi}_{t}(\cdot, \tau): \mathrm{p}_{\mathrm{A}}(t) \mapsto \mathrm{p}_{\mathrm{A}}(t+\tau) \tag{81}
\end{equation*}
$$

we can define, for each body point A, the gradient of $\boldsymbol{\phi}_{t}(\cdot, \tau)$, as the tensor

$$
\begin{equation*}
\mathbf{F}_{t}\left(\mathrm{p}_{\mathrm{A}}(t), \tau\right): \mathbf{d}(t) \mapsto \mathbf{d}(t+\tau) \tag{82}
\end{equation*}
$$

transforming vectors which are tangent to curves through $\mathrm{p}_{\mathrm{A}}(t)$ into vectors tangent to the corresponding curves through $\mathrm{p}_{\mathrm{A}}(t+\tau)$. Instead of (79) we get

$$
\begin{equation*}
\dot{\mathbf{d}}(t)=\lim _{\tau \rightarrow 0} \frac{1}{\tau}(\mathbf{d}(t+\tau)-\mathbf{d}(t))=\dot{\mathbf{F}}_{t}\left(\mathrm{p}_{\mathrm{A}}(t), t\right) \mathbf{d}(t) \tag{83}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\nabla \mathbf{v}_{t}=\dot{\mathbf{F}}_{t} \tag{84}
\end{equation*}
$$

7 Affine velocity fields

The meaning of the velocity gradient can be illustrated in the following way. In a two-dimensional space let us consider a body in the shape of a square at a time t. Let us consider also an orthonormal basis whose vectors are parallel to the sides of the square and denote the matrix of the velocity gradient by

$$
\left(\begin{array}{ll}
g_{11} & g_{12} \tag{85}\\
g_{21} & g_{22}
\end{array}\right)
$$

The velocity field is described by (59). The shape the body takes in a sufficiently short time interval τ can be described by the expression

$$
\begin{align*}
\mathrm{p}_{\mathrm{B}}(t+\tau) & =\mathrm{p}_{\mathrm{B}}(t)+\dot{\mathrm{p}}_{\mathrm{B}}(t) \tau+\mathbf{o}(\tau) \tag{86}\\
& =\mathrm{p}_{\mathrm{B}}(t)+\left(\dot{\mathrm{p}}_{\mathrm{O}}(t)+\mathbf{L}(t)\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{O}}(t)\right)\right) \tau+\mathbf{o}(\tau)
\end{align*}
$$

If we assume that the center is at rest $\left(\dot{\mathrm{p}}_{\mathrm{O}}(t)=0\right)$ we get

$$
\begin{equation*}
\mathrm{p}_{\mathrm{B}}(t+\tau)=\mathrm{p}_{\mathrm{B}}(t)+\mathrm{L}(t)\left(\mathrm{p}_{\mathrm{B}}(t)-\mathrm{p}_{\mathrm{O}}(t)\right) \tau+\mathbf{o}(\tau) \tag{87}
\end{equation*}
$$

Figures 1, 2, 3, show the shapes the body takes according to the values of $\mathbf{L}(t)$ given by the matrices in the tables below arranged in the same order as the shapes

Fig. 1

$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
$\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

Fig. 2

$$
\begin{array}{ll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right) \\
\left(\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\left(\begin{array}{cc}0 & \frac{1}{2} \\ -\frac{1}{2} & 0\end{array}\right)$
$\left(\begin{array}{cc}0 & -\frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)$	$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

Figure 1: Illustration of the velocity gradient

Figure 2: Illustration of the velocity gradient (symmetric part)

Figure 3: Illustration of the velocity gradient (skew symmetric part)

