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2 ELASTIC AFFINE BODIES

1 Balance principles

1.1 Rigid body

A rigid body is a body whose placements are such that the deformation between any two of them
is rigid. The space of test velocity fields is made of all the rigid velocity fields.

Let us assume the following principle: in any motion at each time t the forces are such that their
power in any test velocity field is zero:

W
(out)(v) = 0 ∀v. (1)

Since for any rigid test velocity field the power takes the form

W
(out)(v) = f · vO + MpO · W, (2)

where f is the total force and MpO is the total moment with respect to any position pO, the principle
above is equivalent to the following balance equations

f = o, (3)

skw MpO = O. (4)

1.2 Affine body and Cauchy stress

An affine body is a body whose placements are such that the deformation between any two of them
is affine. The space of the test velocity fields is made of all the affine velocity fields.

The affine body is the simplest model of deformable body. Since for an affine test velocity the
power is

W
(out)(v) = f · vO + MpO · L, (5)

if we assumed that at any time t the power be zero for any test velocity field, we would get the
following balance equations

f = o, (6)

skw MpO = O, (7)

sym MpO = O. (8)

The last condition will filter out any force distribution with a symmetric moment tensor. In order
to allow for such force distributions we can introduce an inner power

W
(in)(v) = −(z · vO + T · L)VR, (9)

and assume that in any motion at each time t

W
(out)(v) +W

(in)(v) = 0 (10)

for any affine test velocity field. Such a new balance principle turns out to be equivalent to the
balance equations

f − z VR = o, (11)

MpO − T VR = O. (12)

.
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ELASTIC AFFINE BODIES 3

2 Stress characterization

Since the inner power W (in) has been introduced for a body which can undergo non rigid defor-
mations, it is reasonable to assume that it vanishes for any rigid test velocity field. Hence

z · vO + T · W = 0, (13)

for any skew symmetric tensor W. This condition is equivalent to

z = o, (14)

skw T = O. (15)

The balance equations for an affine body become

f = o, (16)

skw M = O, (17)

sym M = T VR. (18)

It is worth noting that the moment tensor turns out to be independent of pO because the total
force is zero.

2.1 Objectivity

In a more general setting we consider two different “observers”. An affine motion is seen by the
first observer as described by φ, such that

φ(p̄A, t) = φ(p̄O, t) + F(t)(p̄A − p̄O) ∀A ∈ B (19)

which can be rewritten as
pA(t) = pO(t) + F(t)(p̄A − p̄O). (20)

A different observer will see the same body point A at time t in a different position given by

p∗A(t) = q∗(t) + Q(t)(pA(t)− q(t)), (21)

where Q, q, q∗ are three time functions, and Q(t) is an orthogonal tensor. Since

p∗O(t) = q∗(t) + Q(t)(pO(t)− q(t)), (22)

subtracting (22) from (21) we get, using (20) and dropping the argument t,

p∗A − p∗O = Q(pA − pO) = QF(p̄A − p̄O). (23)

Hence
p∗A = p∗O + F∗(p̄A − p̄O) (24)

with
F∗ = QF. (25)

By differentiating (21) with respect to time, we get the relation between the velocities measured
by the two observers

ṗ∗A = q̇∗ + Q̇(pA − q) + Q(ṗA − q̇)

= q̇∗ + Q̇QT(p∗A − q∗) + Q(ṗA − q̇)

= QṗA + (q̇∗ − Qq̇) + Q̇QT(p∗A − q∗).

(26)
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4 ELASTIC AFFINE BODIES
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Figure 1: Change of observer

For any given test velocity field
vA = vO + L(pA − pO), (27)

in a change of observer the corresponding test velocity field is the field

v∗
A = v∗

O + L∗(p∗A − p∗O) (28)

such that
v∗
A = QvA + (q̇∗ − Qq̇) + Q̇QT(p∗A − q∗). (29)

Replacing A with O we get

v∗
O = QvO + (q̇∗ − Qq̇) + Q̇QT(p∗O − q∗), (30)

and, taking the difference,

v∗
A − v∗

O = Q(vA − vO) + Q̇QT(p∗A − p∗O)

= QL(pA − pO) + Q̇QT(p∗A − p∗O)

= QLQT(p∗A − p∗O) + Q̇QT(p∗A − p∗O)

= (QLQT + Q̇QT)(p∗A − p∗O).

(31)

Thus
L∗ = QLQT + Q̇QT. (32)

The material objectivity principle is stated as follows: the inner power, for any test velocity field, is
invariant under a change of observer.

As a consequence we get that at any time t and for any change of observer, as defined by the
three time functions Q, q, q∗,

z∗ · v∗
O + T∗

· L∗ = z · vO + T · L (33)

for any test velocity field. By using (30) and (32) we obtain

z∗ ·
(

QvO + (q̇∗ − Qq̇) + Q̇QT(p∗O − q∗)
)
− z · vO

+T∗
·

(
QLQT + Q̇QT

)
− T · L = 0. (34)
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ELASTIC AFFINE BODIES 5

Selecting only those changes of observer such that Q̇QT = O, q̇∗ = Qq̇ we get

(
QTz∗ − z

)
· vO +

(
QTT∗Q − T

)
· L = 0 (35)

which must hold for any test velocity field. Hence

z = QTz∗, (36)

T = QTT∗Q. (37)

Replacing these expressions into (34) we obtain

z∗ ·
(
(q̇∗ − Qq̇) + Q̇QT(p∗O − q∗)

)
+ T∗

· Q̇QT = 0. (38)

Selecting those changes of observer such that Q̇QT = O we get

z∗ · (q̇∗ − Qq̇) = 0 (39)

which must hold whatever be the vector (q̇∗ − Qq̇). Hence

z∗ = o, (40)

while (38) becomes
T∗

· Q̇QT = 0. (41)

In order for this condition to hold for any change of observer the stress must be such that

skw T∗ = O , (42)

since Q̇QT is skew symmetric. It is worth noting that (40) and (42) implies again (14) and (15).
For from (36) and (40) we get

z = QTz∗ = o , (43)

while from (37) and (42) we get

skw T =
1

2

(
QTT∗Q − QT(T∗)TQ

)
= QT 1

2

(
T∗

− (T∗)T
)

Q

= QT (skw T∗)Q = O . (44)

2.2 Composition with a rigid motion

A different point of view, which turns out to be equivalent to the previous one, consists in com-
posing the affine motion (19) with a rigid motion as described, at time t, by the expression

φr(pA(t), t) = φr(q(t), t) + Q(t)(pA(t)− q(t)). (45)

If we set

p∗A(t) = φr(pA(t), t), (46)

q∗(t) = φr(q(t), t), (47)

then (45) turns into (21). Restating the material objectivity principle as follows: the inner power, for any
test velocity field be invariant for any composition with a rigid motion, we get at the same conclusions
we arrived at by stating the principle in terms of invariance under a change of observer.
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6 ELASTIC AFFINE BODIES

3 Material response

The characterization of the relationship between stress and motion is based on these principles:

• Principle of determinism: the stress is determined by the past history of the motion.

• Principle of local action: the stress in a body point does not depend on the deformation in any other
point at a finite distance.

Let us consider an affine motion as described by the expression (19). At any time the deformation
is defined by its value in pO and by the deformation gradient F. Since by the principle of local
action the stress cannot depend on the value of the deformation in a particular position, then it
will depend on the gradient. Hence the response function at time t gets the following form

T = T̂(Ft), (48)

where Ft denotes the history of the motion through the deformation gradient. A very important
class of materials is made up of the elastic materials, characterized by the following property: the
stress depends only on the current value of the deformation gradient. The response function becomes

T = T̂(F). (49)

Note that the response function contains the description of a placement p̄, on which the deforma-
tion φ applies, characterized by a zero stress.

Let us consider for a body made up of an elastic material the affine motion (20) and the corre-
sponding motion (24) as seen by a different observer through (21). The response from the point
of view of the second observer will be, by (25),

T∗ = T̂(F∗) = T̂(QF). (50)

Since the principle of material objectivity leads to (37), by replacing there (49) and (50) we get

T̂(F) = QTT̂(QF)Q (51)

This condition has to be fulfilled by the response function for any Q. By choosing Q = RT, where
R is the rotation in

F = RU, (52)

we get as a necessary condition to be fulfilled

T̂(F) = RT̂(U)RT, (53)

or equivalently
RTT̂(F)R = T̂(U). (54)

Viceversa, if a response function has the property (53), then it satisfies (37) for any Q. For, replac-
ing (53) in (50) we get

T∗ = T̂(QF) = (QR)T̂(U)(QR)T = Q(RT̂(U)RT)QT = QT̂(F)QT = QTQT (55)

which is equivalent to (37). Hence the property (53) characterizes all the elastic materials and is
called reduced form of the response function for elastic materials.
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Q

Figure 2: A rotation Q belongs to the material symmetry group if T̂(FQ) = T̂(F).

4 Material symmetry group

Note that if the affine deformation φ is applied after a rigid deformation φr such that

p̄A = φr(p̌A) = φr(p̌O) + Q(p̌A − p̌O) (56)

then the composition φ⋆ := φ ◦ φr is again an affine deformation such that

φ⋆(p̌A) = φ(φr(p̌A)) = φ(φr(p̌O)) + FQ(p̌A − p̌O). (57)

Since the deformation gradient turns out to be F⋆ = FQ, the corresponding stress is

T⋆ = T̂(F⋆) = T̂(FQ). (58)

The group made up of the rotations Q such that, when followed by the same deformation, leave
the response unchanged, i.e. such that

T̂(FQ) = T̂(F) ∀F , (59)

is called symmetry group of the material.
As an example, if the rotation Q in Fig 2 and in Fig. 3 belongs to the symmetry group, any F

gives rise to the same stress. It is worth noting that the application of F after Q leads to a different
configuration than the one reached by applying just F, even though the shapes are the same.

4.1 Isotropy

Those materials whose symmetry group is the whole rotation group of V are called isotropic. Since
for isotropic materials (59) holds for any rotation Q it should hold in particular for Q = RT, thus
becoming

T̂(RURT) = T̂(F), (60)

which on turn, by (53), becomes

T̂(RURT) = RT̂(U)RT. (61)

Viceversa, any material whose response function satisfies (61) turns out to be isotropic. For, be-
cause the polar decomposition of FQ is

FQ = RUQ = (RQ)(QTUQ), (62)
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F F F
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Figure 3: A material is isotropic if T̂(FQ) = T̂(F) for any rotation Q.

by applying (53) first, then (61) and again (53), we get

T̂(FQ) = (RQ)T̂(QTUQ)(RQ)T = RT̂(U)RT = T̂(F) (63)

5 Piola-Kirchhoff stress

The expression for the inner power can be written replacing the current volume with the volume
before deformation

T · L VR = T · L det F VR̄. (64)

This allows us to define a stress S, depending on T, in the following way. In an affine test velocity
field the difference between the velocities at pA and pO è given by

L(pA − pO). (65)

Since
L(pA − pO) = LF(p̄A − p̄O), (66)

the same difference can be obtained by applying LF to the difference between the corresponding
positions in R̄. We can define a new stress as the tensor S such that

T · L VR = S · LF VR̄, ∀L. (67)

s By (64) we get
T · L det F VR̄ = S · LF VR̄, (68)

and then
T · L det F = SFT

· L, ∀L. (69)

Hence it turns out that
T det F = SFT, (70)

from which we get the sought expression

S = T(FT)−1 det F. (71)
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6 Constraints and reactive forces

Let us consider an affine body whose points, possibly only a subset of them, are constrained to
move on a surface or along a curve or simply to stay still. From our every day experience we
know that we can apply a load over a body laying on a table, though those forces do not satisfy the
balance equations (16) and (17). That is why we have to admit that other forces do exist, which we
call reactive, that are different from the forces we can assign as a constant or as a function of time
or through a more general constitutive function depending on the motion. Further, it is reasonable
to assume that reactive forces are orthogonal to any trajectory allowed by the constraints.

Hence we assume that the outer power is the sum of the power of the assigned forces and the
power of the reactive forces

W
(out)(v) = (fa + fr) · vO + (Ma

pO
+ Mr

pO
) · L. (72)

Denoting by vv
O and Lv the descriptors of the affine test velocity fields compatible with the con-

straints, we introduce the following principle

fr
· vv

O + Mr
pO

· Lv = 0, ∀vv
O, ∀Lv (73)

which reads: the power of the reactive forces in any test velocity field compatible with the constraints is
zero.
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