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2 linear elasticity for affine bodies

1 Small deformations

Very often bodies deform very little. That is why it is useful to derive the balance equations and
the material response for “small deformations”. Let us consider a trajectory generated by affine
deformations depending on a control parameter β

φβ(p̄A) = φβ(p̄O) + Fβ(p̄A − p̄O) (1)

and the polar decomposition of the deformation gradient

Fβ = RβUβ . (2)

The series expansions

Rβ = I+Θβ + o(β), (3)

Uβ = I+Eβ + o(β), (4)

are made up of the sum of the value at β = 0, a linear term in β and the rest o(β) such that

lim
β→0

o(β)

β
a = o ∀a ∈ V. (5)

Substituting these espressions into (2) we obtain

Fβ = (I+Θβ)(I+Eβ) + o(β) = I+Θβ +Eβ + o(β), (6)

It is worth noting that Θβ , called infinitesimal rotation, is a skew symmetric tensor, since

RT
βRβ = I ⇒ (I+Θβ)

T(I+Θβ) + o(β) = I ⇒ ΘT
β +Θβ + o(β) = O, (7)

while Eβ , called infinitesimal stretch, is a symmetric tensor like Uβ .
The deformation (1) can also be described by the displacement field

uβ(p̄A) = uβ(p̄O) + (Fβ − I)(p̄A − p̄O), (8)

which, by (6), becomes

u(p̄A) = u(p̄O) + (Θβ +Eβ)(p̄A − p̄O) + o(β). (9)

2 Infinitesimal stretch

By (4) the stretch of a segment parallel to a can be written as

‖Uβ a‖

‖a‖
=

1

‖a‖
(Uβ a ·Uβ a)

1/2 =
1

‖a‖
(‖a‖+Eβ a · a) + o(β) = 1 +

Eβ a · a

a · a
+ o(β). (10)

Dropping the subscript β and denoting the matrix of E in an orthonormal basis {e1, e2, e3} by

[E] =



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33


 , (11)

we get from (10)
‖Ue1‖

‖e1‖
= 1 +Ee1 · e1 + o(β) = 1 + ε11 + o(β). (12)
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Hence up to o(β) ε11 is the elongation in the direction of e1, ε22 is the elongation in the direction
of e2, ε33 is the elongation in the direction of e3. Further, for the couple of basis vectors e1 and
e2 we get

Ue1 ·Ue2 = U2e1 · e2 =
(
I+E+ o(β)

)2
e1 · e2 =

(
I+ 2E+ o(β)

)
e1 · e2

= e1 · e2 + 2Ee1 · e2 + o(β) = 2ε21 + o(β). (13)

By using (12), after computing

‖Ue1‖‖Ue2‖ = (1 + ε11)(1 + ε22) + o(β) = 1 + ε11 + ε22 + o(β) (14)

(‖Ue1‖‖Ue2‖)
−1 = 1− ε11 − ε22 + o(β), (15)

eventually we get for the angle between Ue1 and Ue2

cos
(π
2
− γ21

)
=

Ue1 ·Ue2

‖Ue1‖‖Ue2‖
= 2ε21 + o(β). (16)

Since cos(π2 − γ21) = sin(γ21) ≃ γ21, the shear strain γ21 turns out to be approximated by

γ21 ≃ 2ε21. (17)

By the same reason
γ32 ≃ 2ε32, γ13 ≃ 2ε13. (18)

It is worth noting that if ui is an eigenvector of E and εi is the corresponding eigenvalue, we get

Eui = εiui (19)

and by (4)
Eui = (U− I+ o(β))ui = εiui ⇒ Uui = (1 + εi)ui + o(β). (20)

Hence for a sufficiently small β the eigenvectors of U are close to the eigenvectors of E, while the
principal stretches are approximated by

λi ≃ 1 + εi. (21)

3 Infinitesimal rotations

The series expansion for the rotation can be conveniently derived in the following way. Let us
consider a rotation as a composition of three elementary rotations (see Appendix 3)

Rβ = R
(3)
β R

(2)
β R

(1)
β (22)

whose axes are, respectively, e1, e2, e3 and whose amplitudes θ
(1)
β , θ

(2)
β , θ

(3)
β , are linear functions

of β, zero at β = 0. Let us consider first R
(1)
β . Its series expansion is

R
(1)
β = I+Θ

(1)
β + o(β) (23)

corresponding to its matrix series expansion



1 0 0

0 cos θ
(1)
β − sin θ

(1)
β

0 sin θ
(1)
β cos θ

(1)
β


 =



1 0 0
0 1 0
0 0 1


+



0 0 0

0 0 −θ
(1)
β

0 θ
(1)
β 0


+ o(β). (24)
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4 linear elasticity for affine bodies

Similar expansions can be derived for the other elementary rotations. By composing them we get

Rβ = (I+Θ
(3)
β )(I+Θ

(2)
β )(I+Θ

(1)
β ) + o(β) = I+Θ

(3)
β +Θ

(2)
β +Θ

(1)
β + o(β). (25)

Hence
Θβ = Θ

(3)
β +Θ

(2)
β +Θ

(1)
β . (26)

The matrices of Θ
(3)
β , Θ

(2)
β , Θ

(1)
β turn out to be




0 −θ
(3)
β 0

θ
(3)
β 0 0

0 0 0


 ,




0 0 θ
(2)
β

0 0 0

−θ
(2)
β 0 0


 ,



0 0 0

0 0 −θ
(1)
β

0 θ
(1)
β 0


 . (27)

4 Volume change

By substitution of (4) in the expression for the volume of the parallelepiped with edges {Uβe1,Uβe2,Uβe3}
we get

vol (Uβe1,Uβe2,Uβe3)

= vol ((I+Eβ)e1, (I+Eβ)e2, (I+Eβ)e3) + o(β)

= vol (e1, e2, e3) + vol (Eβe1, e2, e3) + vol (e1,Eβe2, e3) + vol (e1, e2,Eβe3) + o(β) ,

(28)

thus obtaining

detFβ =
vol (Uβe1,Uβe2,Uβe3)

vol (e1, e2, e3)
= 1 + trEβ + o(β). (29)

Hence, for β sufficiently small we find

detFβ ≃ 1 + trEβ . (30)

5 Area change

Let us consider a face F of a parallelepiped. The ratio between the area of that face and the area
the face F̄ in the reference shape is given by

AF

AF̄

= ‖(cof F) n̄‖ (31)

where n is the exterior unit normal to F̄ . From the series expansion of the expression above, for
β sufficiently small we find

‖(cof Fβ) n̄‖ ≃ 1 + trEβ −Eβn̄ · n̄ . (32)

6 Linearized material response

The response function for an elastic material is

Tβ = T̂(Fβ) = Rβ T̂(Uβ)R
T
β . (33)

If we assume
T̂(I) = O, (34)
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we get the following series expansion

T̂(Uβ) = T̂(I+Eβ) = C(Eβ) + o(β), (35)

where C transforms linearly a symmetric tensor into a symmetric tensor. Note that (33) becomes

Tβ = T̂(Fβ) = (I+Θβ)
T
C(Eβ)(I+Θβ) + o(β) = C(Eβ) + o(β) . (36)

7 Linearized total force and moment tensor

Along a trajectory described by a control parameter β, as in (1), the power of a force fβA applied
at A is

fβA · vA = fβA · vO + Fβ(p̄A − p̄O)⊗ fβA · L. (37)

By assuming that the force fβA is linear in β and zero at β = 0, the series expansion of the moment
tensor turns out to be

Fβ(p̄A − p̄O)⊗ fβA = (I+Eβ +Θβ + o(β))(p̄A − p̄O)⊗ fβA = (p̄A − p̄O)⊗ fβA + o(β) . (38)

The power of a force distribution bβ on Rβ in a velocity field v is the integral
∫

Rβ

bβ · v dV (39)

which can be transformed into an integral on the shape R̄ by using the ratio between the volumes
(change of variable formula)

∫

Rβ

bβ · v dV =

∫

R̄

(bβ ◦ φ) · (v ◦ φ) detFβ dV (40)

or, shortly, ∫

R

bβ · v dV =

∫

R̄

bβ · v detFβ dV. (41)

Replacing detFβ with its series expansion (29) we get
∫

Rβ

bβ · v dV =

∫

R̄

bβ · v (1 + trEβ + o(β)) dV

=

∫

R̄

bβ · v dV +

∫

R̄

bβ · v trEβ dV + o(β). (42)

Assuming that bβ is a linear function of β and is zero at β = 0 it turns out that
∫

Rβ

bβ · v dV =

∫

R̄

bβ · v dV + o(β) (43)

because of the linearity of Eβ in β. Further, from the expression for the affine test velocity field

v(pA) = vO + LFβ(p̄A − p̄O) (44)

we get, by using again (29),
∫

Rβ

bβ · v dV =

∫

R̄

bβ · vO dV +

∫

R̄

bβ · LFβ(x− p̄O) dV + o(β)

=

∫

R̄

bβ dV · vO +

∫

R̄

(x− p̄O)⊗ bβ dV · L + o(β).

(45)
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6 linear elasticity for affine bodies

Let us assume also that tβ , like bβ , is a linear function of β and is zero at β = 0. Then, by using
(32), we get

∫

∂Rβ

tβ · v dA =

∫

∂R̄

tβ · v ‖(cof F) n̄‖ dA =

∫

∂R̄

tβ · v dA

=

∫

∂R̄

tβ · vO dA+

∫

∂R̄

tβ · LFβ(x− p̄O) dA+ o(β)

=

∫

∂R̄

tβ dA · vO +

∫

∂R̄

(x− p̄O)⊗ tβ dA · L + o(β).

(46)

8 Linear elasticity

The linear part of T̂(Fβ) given by (36) defines the response function in linear elasticity

T = C(E). (47)

The linear transformation C is called elasticity tensor. Since it transforms symmetric tensors into
symmetric tensors, it will be described by a 6 by 6 matrix in any basis. In order for the strain
energy to exist it can be proved that C has to be a symmetric tensor. Hence the total number
of coefficients (elastic moduli) necessary to define the material response is (6× 6− 6)/2 + 6 = 21.
For isotropic materials that number reduces to 2 and the general form of the response function is

C(E) = λ tr(E)I+ 2µE. (48)

The coefficients λ and µ are called Lamè’s moduli. The infinitesimal rotation and the infinitesimal
stretch are defined as

Θ := skw (F− I) = skw∇u, (49)

E := sym (F− I) = sym∇u, (50)

where ∇u = (F− I) is the displacement gradient. An infinitesimal affine deformation is described
by the expression

φ(p̄A) = φ(p̄O) + F(p̄A − p̄O) = φ(p̄O) + (I+Θ+E)(p̄A − p̄O) (51)

or, as an alternative, through the displacement gradient

u(p̄A) = u(p̄O) +∇u(p̄A − p̄O) = u(p̄O) + (Θ+E)(p̄A − p̄O) . (52)

Let us summarize the linear elasticity theory for an affine body. The balance principle has the
form

f · vO +
(
M−TVR̄

)
· L = 0 ∀vO, ∀L (53)

from which the following balance equations are derived

f = o, (54)

skwM = O, (55)

symM = TVR̄. (56)

The total force and moment tensor are given by the expressions

f =

∫

R̄

b dV +

∫

∂R̄

t dA, (57)

MpO =

∫

R̄

(x− p̄O)⊗ b dV +

∫

∂R̄

(x− p̄O)⊗ t dA (58)

DISAT, University of L’Aquila, May 14, 2011 (1402) A. Tatone – Mechanics of Solids and Materials.



linear elasticity for affine bodies 7

while the response function for the stress T is given by (47). Looking at the matrix of E

[E] =




ε11
γ12
2

γ13
2

γ21
2

ε22
γ23
2

γ31
2

γ32
2

ε33




, (59)

the element ε11 stands for the elongation in the direction e1; the element γ12 stands for the shear
corresponding to directions e1 and e2. Looking at the matrix of Θ

[Θ] =




0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0


 , (60)

the three scalars θ1, θ2, θ3 stand for the amplitudes of the three infinitesimal rotations around e1,
e2, e3, respectively.
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