Linear elasticity for affine bodies
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2 LINEAR ELASTICITY FOR AFFINE BODIES

1 Small deformations

Very often bodies deform very little. That is why it is useful to derive the balance equations and
the material response for “small deformations”. Let us consider a trajectory generated by affine
deformations depending on a control parameter (3

®5(Pa) = ¢5(Po) + Fs(Pa — Po) (1)

and the polar decomposition of the deformation gradient

Fz =RgUg. (2)

The series expansions
Rs =1+ 03 +0(8), (3)
Us =1+ Eg +0(B), (4)

are made up of the sum of the value at S = 0, a linear term in 3 and the rest o(8) such that

ﬁlig})%azo Ya e V. (5)

Substituting these espressions into (2) we obtain
Fps = (I+03)(I+Eg)+o(f) =1+ O3+ Es + 0o(B), (6)
It is worth noting that @g, called infinitesimal rotation, is a skew symmetric tensor, since
RiR;=1 = (I+05) (I+0s) +0(B)=1 = ©Oj+06z+0(8) =0, (7)

while Eg, called infinitesimal stretch, is a symmetric tensor like Ug.
The deformation (1) can also be described by the displacement field

ug(pa) = ug(po) + (Fs — I)(pa — Po), (8)
which, by (6), becomes

u(pa) = u(po) + (5 + Eg)(pa — Po) + o(f). (9)

2 Infinitesimal stretch

By (4) the stretch of a segment parallel to a can be written as

”Uﬁ 2l ! 1/2 ! Ega-a
= r(Usa-Uga)'/? = Eza- —1
Tl (072 Vsl = il Boa-a) o) =14 =7

Dropping the subscript 8 and denoting the matrix of E in an orthonormal basis {e;, es,e3} by

+o(B). (10)

€11 €12 €13
[E] = (€21 €22 €23, (11)
€31 €32 £33

we get from (10)
[Uel

llex]l

=1+Ee;-e;+0(8) =14¢e11+0(B). (12)
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LINEAR ELASTICITY FOR AFFINE BODIES 3

Hence up to o(8) €11 is the elongation in the direction of e;, €95 is the elongation in the direction
of es, €33 is the elongation in the direction of e3. Further, for the couple of basis vectors e; and
ey we get

Uel . U62 = U261 €y = (I+E+ 0(5))261 €9 = (I+ 2E +O(ﬁ))el - €9

=e;-ey+2Ee; - ey +0(3) = 2201 + o(B). (13)

By using (12), after computing
[Uer||[|Uez]| = (14 e11)(1 +e22) +0(8) = 1+ €11 + €22 + 0(B) (14)
(IUer]|[Ueal) ™ =1 — 11 — e22 + 0(B), (15)

eventually we get for the angle between Ue; and U e,

U81 'Uez

= 7||Ue1||||Ue2H = 2e91 + 0(B). (16)

COS (g — ’)/21)

Since cos(§ — 721) = sin(y21) =~ 721, the shear strain 721 turns out to be approximated by
Y21 ~ 2621. (17)

By the same reason
Y32 ~ 2832, Y13 ~ 2813. (18)

It is worth noting that if u; is an eigenvector of E and ¢; is the corresponding eigenvalue, we get
Elli = &;u; (].9)

and by (4)
Eu,=(U-I+0(p)u; =cu; = TUu; = (1+¢)u; +o(p). (20)

Hence for a sufficiently small 5 the eigenvectors of U are close to the eigenvectors of E, while the
principal stretches are approximated by

A~ 1+e; (21)

3 Infinitesimal rotations

The series expansion for the rotation can be conveniently derived in the following way. Let us
consider a rotation as a composition of three elementary rotations (see APPENDIX 3)

3) 5 (2 (1
R; = RYRRY) (22)
whose axes are, respectively, e, es, e3 and whose amplitudes 0/(31), 0/(32), 0/(33), are linear functions

of 3, zero at f = 0. Let us consider first R(ﬁl). Its series expansion is

RY =1+0Y +0(8) (23)

corresponding to its matrix series expansion

10 0 10 0 0 0 0

(SO N ¢ VI _pM)
0 cosfy sinflg’ | =10 1 0]+ [0 0 057 | +0(B). (24)
0 sin Ggl) cos 9;1) 0 01 0 9231) 0

DISAT, University of L'Aquila, May 14, 2011 (1402) A. Tatone — Mechanics of Solids and Materials.



4 LINEAR ELASTICITY FOR AFFINE BODIES

Similar expansions can be derived for the other elementary rotations. By composing them we get

Rs=(I+0)1+07)1+6)+0(s) =1+0Y + 0§+ +qs). (25)
Hence
0;=0y +0y +e). (26)
The matrices of @gs), @E;), (9(51) turn out to be
0 -5 o 0 o 6P\ (0 0 0
: (1)
9233) 0 0l, 02 0o 0 1],|0 01 —95 . (27)
0o 0o o) \-65 0 o 0o 6y o

4 Volume change

By substitution of (4) in the expression for the volume of the parallelepiped with edges {Uge1, Uges, Uges}
we get
vol (U/gel, Uﬁeg, Uﬂeg)
= vol ((I—f—EB)el,(I+E5)e2,(I+E5)e3) —I—O(ﬂ) (28)
= vol (e1, e2,e3) + vol (Egey, e2,e3) + vol (e1, Eges, e3) + vol (e1,e2, Eges) + o(8) ,

thus obtaining
vol (Uger, Ugey, Uges)

det Fg = =1+ trEg+ o(f). (29)

vol (e, e, €3)
Hence, for g sufficiently small we find

detFg ~ 1+ trEg. (30)

5 Area change

Let us consider a face F of a parallelepiped. The ratio between the area of that face and the area
the face F in the reference shape is given by

Ar

= el By m (31)

where n is the exterior unit normal to F. From the series expansion of the expression above, for
B sufficiently small we find

||(COf Fg) ﬁ” ~1-+tr Eﬁ — Eﬁfl ‘n. (32)

6 Linearized material response
The response function for an elastic material is
Ts = T(Fs) =R T(Up) R}, (33)

If we assume R
(1) = 0, (34)
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LINEAR ELASTICITY FOR AFFINE BODIES 5

we get the following series expansion
T(Ug) = T(I+Eg) = C(Eg) + o(8), (35)
where C transforms linearly a symmetric tensor into a symmetric tensor. Note that (33) becomes

Ty =T(Fy) = (1+©3) C(E)(I+ O3) + o(8) = C(Eg) + 0(B) . (36)

7 Linearized total force and moment tensor

Along a trajectory described by a control parameter 3, as in (1), the power of a force f3, applied
at A is
fﬁA'VA:f,BA'VOJFFB(ISA*f’O)@f,BA'L- (37)

By assuming that the force fg, is linear in 3 and zero at 3 = 0, the series expansion of the moment
tensor turns out to be

Fs(pa —po) @fgy = (I+Ep+Ops +0(8))(pa — po) @ fsp = (pa — po) @ fg, +0(B).  (38)

The power of a force distribution bg on Rs in a velocity field v is the integral
/ bs - v dV (39)
R/g

which can be transformed into an integral on the shape R by using the ratio between the volumes
(change of variable formula)

/ bg-vde/(bﬁoqb)-(vocj))dethdV (40)
Rs R
or, shortly,

/bﬁ-VdV=/7b5~VdetFﬁdV (41)
R R

Replacing det Fg with its series expansion (29) we get

/ bﬂ-vdV:/bﬁ-v(l—i—trEB—&-o(B))dV
Rs R

:/7b5~vdV+/7 bg - v trEg dV + o(B). (42)
R R

Assuming that bg is a linear function of 8 and is zero at 8 = 0 it turns out that

/ b/j-VdVZ/bﬁ-VdV-i-O(ﬂ) (43)

because of the linearity of Eg in 8. Further, from the expression for the affine test velocity field
v(pa) = vo + LF3(pa — Po) (44)
we get, by using again (29),
/ bB~VdV:/7bﬁ'Vodv+/b3'LF5(mfﬁo)dV+0(ﬂ)
Rg R R

(45)

Z/bﬁdV-Vo+/($—ﬁo)®b5dV-L +0<ﬁ).
R
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6 LINEAR ELASTICITY FOR AFFINE BODIES

Let us assume also that tg, like bg, is a linear function of 8 and is zero at 8 = 0. Then, by using
(32), we get

/ t/3~VdA:/ t5~V||(COfF)ﬁH dA:/ tﬁ-VdA
ORps OR OR

Z/itg-Vo dA+/7t,3~LF/3(£L‘—[_)o) dA—l—O(B) (46)
OR OR

Z/_tﬂdA~Vo—|-/ (w—[_)o)®t3dA-L +o(B).
OR OR

8 Linear elasticity

The linear part of T‘(Fﬂ) given by (36) defines the response function in linear elasticity
T = C(E). (47)

The linear transformation C is called elasticity tensor. Since it transforms symmetric tensors into
symmetric tensors, it will be described by a 6 by 6 matrix in any basis. In order for the strain
energy to exist it can be proved that C has to be a symmetric tensor. Hence the total number
of coefficients (elastic moduli) necessary to define the material response is (6 x 6 — 6)/2 + 6 = 21.
For isotropic materials that number reduces to 2 and the general form of the response function is

C(E) = A tr(E)I + 24E. (48)

The coefficients A and p are called Lame’s moduli. The infinitesimal rotation and the infinitesimal
stretch are defined as

O :=skw (F — I) = skw Vu, (49)
E :=sym (F —I) = sym Vu, (50)

where Vu = (F —1I) is the displacement gradient. An infinitesimal affine deformation is described
by the expression

#(pa) = @(po) + F(pa — Po) = ¢(po) + (I+© + E)(pa — Po) (51)
or, as an alternative, through the displacement gradient
u(pa) = u(po) + Vu(pa — po) = u(po) + (© + E)(pa — po) - (52)

Let us summarize the linear elasticity theory for an affine body. The balance principle has the
form

f-vo+(M—TV7g)-L:0 Vvo, VL (53)
from which the following balance equations are derived
f=o, (54)
skw M = O, (55)
symM =T V. (56)

The total force and moment tensor are given by the expressions

f:/bdv+/ £ dA, (57)
R OR

Mpo:/ﬁ(w—ﬁo)@)de—k/ak(w—ﬁo)@tdA (58)
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LINEAR ELASTICITY FOR AFFINE BODIES 7

while the response function for the stress T is given by (47). Looking at the matrix of E

LMz s
11 B 5
_ | 723
[E] = 5 22 5 | (59)
Y31 32
B) B) €33

the element 17 stands for the elongation in the direction ep; the element ;5 stands for the shear
corresponding to directions e; and e;. Looking at the matrix of @

0 -6 6,
©]=1]6 0 -6, (60)
—6 6 0

the three scalars 61, 05, 03 stand for the amplitudes of the three infinitesimal rotations around ey,
ey, es, respectively.
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