Linear elasticity for affine bodies

Contents

1 Small deformations 2
2 Infinitesimal stretch 2
3 Infinitesimal rotations 3
4 Volume change 4
5 Area change 4
6 Linearized material response 4
7 Linearized total force and moment tensor 5
8 Linear elasticity 6

1 Small deformations

Very often bodies deform very little. That is why it is useful to derive the balance equations and the material response for "small deformations". Let us consider a trajectory generated by affine deformations depending on a control parameter β

$$
\begin{equation*}
\phi_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{A}}\right)=\phi_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+\mathbf{F}_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \tag{1}
\end{equation*}
$$

and the polar decomposition of the deformation gradient

$$
\begin{equation*}
\mathbf{F}_{\beta}=\mathbf{R}_{\beta} \mathbf{U}_{\beta} \tag{2}
\end{equation*}
$$

The series expansions

$$
\begin{align*}
& \mathbf{R}_{\beta}=\mathbf{I}+\boldsymbol{\Theta}_{\beta}+o(\beta) \tag{3}\\
& \mathbf{U}_{\beta}=\mathbf{I}+\mathbf{E}_{\beta}+o(\beta) \tag{4}
\end{align*}
$$

are made up of the sum of the value at $\beta=0$, a linear term in β and the rest $o(\beta)$ such that

$$
\begin{equation*}
\lim _{\beta \rightarrow 0} \frac{o(\beta)}{\beta} \mathbf{a}=\mathbf{o} \quad \forall \mathbf{a} \in \mathcal{V} \tag{5}
\end{equation*}
$$

Substituting these espressions into (2) we obtain

$$
\begin{equation*}
\mathbf{F}_{\beta}=\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}\right)\left(\mathbf{I}+\mathbf{E}_{\beta}\right)+o(\beta)=\mathbf{I}+\boldsymbol{\Theta}_{\beta}+\mathbf{E}_{\beta}+o(\beta), \tag{6}
\end{equation*}
$$

It is worth noting that $\boldsymbol{\Theta}_{\beta}$, called infinitesimal rotation, is a skew symmetric tensor, since

$$
\begin{equation*}
\mathbf{R}_{\beta}^{\top} \mathbf{R}_{\beta}=\mathbf{I} \Rightarrow\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}\right)^{\top}\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}\right)+o(\beta)=\mathbf{I} \Rightarrow \boldsymbol{\Theta}_{\beta}^{\top}+\boldsymbol{\Theta}_{\beta}+o(\beta)=\mathbf{O} \tag{7}
\end{equation*}
$$

while \mathbf{E}_{β}, called infinitesimal stretch, is a symmetric tensor like \mathbf{U}_{β}.
The deformation (1) can also be described by the displacement field

$$
\begin{equation*}
\mathbf{u}_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{A}}\right)=\mathbf{u}_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+\left(\mathbf{F}_{\beta}-\mathbf{I}\right)\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right), \tag{8}
\end{equation*}
$$

which, by (6), becomes

$$
\begin{equation*}
\mathbf{u}\left(\overline{\mathrm{p}}_{\mathrm{A}}\right)=\mathbf{u}\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+\left(\boldsymbol{\Theta}_{\beta}+\mathbf{E}_{\beta}\right)\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right)+o(\beta) \tag{9}
\end{equation*}
$$

2 Infinitesimal stretch

By (4) the stretch of a segment parallel to a can be written as

$$
\begin{equation*}
\frac{\left\|\mathbf{U}_{\beta} \mathbf{a}\right\|}{\|\mathbf{a}\|}=\frac{1}{\|\mathbf{a}\|}\left(\mathbf{U}_{\beta} \mathbf{a} \cdot \mathbf{U}_{\beta} \mathbf{a}\right)^{1 / 2}=\frac{1}{\|\mathbf{a}\|}\left(\|\mathbf{a}\|+\mathbf{E}_{\beta} \mathbf{a} \cdot \mathbf{a}\right)+o(\beta)=1+\frac{\mathbf{E}_{\beta} \mathbf{a} \cdot \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}+o(\beta) . \tag{10}
\end{equation*}
$$

Dropping the subscript β and denoting the matrix of \mathbf{E} in an orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ by

$$
[\mathbf{E}]=\left(\begin{array}{lll}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \tag{11}\\
\varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
\varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
\end{array}\right)
$$

we get from (10)

$$
\begin{equation*}
\frac{\left\|\mathbf{U} \mathbf{e}_{1}\right\|}{\left\|\mathbf{e}_{1}\right\|}=1+\mathbf{E} \mathbf{e}_{1} \cdot \mathbf{e}_{1}+o(\beta)=1+\varepsilon_{11}+o(\beta) . \tag{12}
\end{equation*}
$$

Hence up to $o(\beta) \varepsilon_{11}$ is the elongation in the direction of $\mathbf{e}_{1}, \varepsilon_{22}$ is the elongation in the direction of $\mathbf{e}_{2}, \varepsilon_{33}$ is the elongation in the direction of \mathbf{e}_{3}. Further, for the couple of basis vectors \mathbf{e}_{1} and \mathbf{e}_{2} we get

$$
\begin{align*}
\mathbf{U} \mathbf{e}_{1} \cdot \mathbf{U} \mathbf{e}_{2}=\mathbf{U}^{2} \mathbf{e}_{1} \cdot \mathbf{e}_{2} & =(\mathbf{I}+\mathbf{E}+o(\beta))^{2} \mathbf{e}_{1} \cdot \mathbf{e}_{2}=(\mathbf{I}+2 \mathbf{E}+o(\beta)) \mathbf{e}_{1} \cdot \mathbf{e}_{2} \\
& =\mathbf{e}_{1} \cdot \mathbf{e}_{2}+2 \mathbf{E} \mathbf{e}_{1} \cdot \mathbf{e}_{2}+o(\beta)=2 \varepsilon_{21}+o(\beta) \tag{13}
\end{align*}
$$

By using (12), after computing

$$
\begin{align*}
\left\|\mathbf{U} \mathbf{e}_{1}\right\|\left\|\mathbf{U ~}_{2}\right\| & =\left(1+\varepsilon_{11}\right)\left(1+\varepsilon_{22}\right)+o(\beta)=1+\varepsilon_{11}+\varepsilon_{22}+o(\beta) \tag{14}\\
\left(\left\|\mathbf{U} \mathbf{e}_{1}\right\|\left\|\mathbf{U} \mathbf{e}_{2}\right\|\right)^{-1} & =1-\varepsilon_{11}-\varepsilon_{22}+o(\beta), \tag{15}
\end{align*}
$$

eventually we get for the angle between $\mathbf{U} \mathbf{e}_{1}$ and $\mathbf{U} \mathbf{e}_{2}$

$$
\begin{equation*}
\cos \left(\frac{\pi}{2}-\gamma_{21}\right)=\frac{\mathbf{U} \mathbf{e}_{1} \cdot \mathbf{U} \mathbf{e}_{2}}{\left\|\mathbf{U} \mathbf{e}_{1}\right\|\left\|\mathbf{U} \mathbf{e}_{2}\right\|}=2 \varepsilon_{21}+o(\beta) \tag{16}
\end{equation*}
$$

Since $\cos \left(\frac{\pi}{2}-\gamma_{21}\right)=\sin \left(\gamma_{21}\right) \simeq \gamma_{21}$, the shear strain γ_{21} turns out to be approximated by

$$
\begin{equation*}
\gamma_{21} \simeq 2 \varepsilon_{21} \tag{17}
\end{equation*}
$$

By the same reason

$$
\begin{equation*}
\gamma_{32} \simeq 2 \varepsilon_{32}, \quad \gamma_{13} \simeq 2 \varepsilon_{13} \tag{18}
\end{equation*}
$$

It is worth noting that if \mathbf{u}_{i} is an eigenvector of \mathbf{E} and ε_{i} is the corresponding eigenvalue, we get

$$
\begin{equation*}
\mathbf{E} \mathbf{u}_{i}=\varepsilon_{i} \mathbf{u}_{i} \tag{19}
\end{equation*}
$$

and by (4)

$$
\begin{equation*}
\mathbf{E} \mathbf{u}_{i}=(\mathbf{U}-\mathbf{I}+o(\beta)) \mathbf{u}_{i}=\varepsilon_{i} \mathbf{u}_{i} \quad \Rightarrow \quad \mathbf{U} \mathbf{u}_{i}=\left(1+\varepsilon_{i}\right) \mathbf{u}_{i}+o(\beta) \tag{20}
\end{equation*}
$$

Hence for a sufficiently small β the eigenvectors of \mathbf{U} are close to the eigenvectors of \mathbf{E}, while the principal stretches are approximated by

$$
\begin{equation*}
\lambda_{i} \simeq 1+\varepsilon_{i} . \tag{21}
\end{equation*}
$$

3 Infinitesimal rotations

The series expansion for the rotation can be conveniently derived in the following way. Let us consider a rotation as a composition of three elementary rotations (see Appendix 3)

$$
\begin{equation*}
\mathbf{R}_{\beta}=\mathbf{R}_{\beta}^{(3)} \mathbf{R}_{\beta}^{(2)} \mathbf{R}_{\beta}^{(1)} \tag{22}
\end{equation*}
$$

whose axes are, respectively, $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and whose amplitudes $\theta_{\beta}^{(1)}, \theta_{\beta}^{(2)}, \theta_{\beta}^{(3)}$, are linear functions of β, zero at $\beta=0$. Let us consider first $\mathbf{R}_{\beta}^{(1)}$. Its series expansion is

$$
\begin{equation*}
\mathbf{R}_{\beta}^{(1)}=\mathbf{I}+\mathbf{\Theta}_{\beta}^{(1)}+o(\beta) \tag{23}
\end{equation*}
$$

corresponding to its matrix series expansion

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{24}\\
0 & \cos \theta_{\beta}^{(1)} & -\sin \theta_{\beta}^{(1)} \\
0 & \sin \theta_{\beta}^{(1)} & \cos \theta_{\beta}^{(1)}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\theta_{\beta}^{(1)} \\
0 & \theta_{\beta}^{(1)} & 0
\end{array}\right)+o(\beta)
$$

Similar expansions can be derived for the other elementary rotations. By composing them we get

$$
\begin{equation*}
\mathbf{R}_{\beta}=\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}^{(3)}\right)\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}^{(2)}\right)\left(\mathbf{I}+\mathbf{\Theta}_{\beta}^{(1)}\right)+o(\beta)=\mathbf{I}+\boldsymbol{\Theta}_{\beta}^{(3)}+\boldsymbol{\Theta}_{\beta}^{(2)}+\boldsymbol{\Theta}_{\beta}^{(1)}+o(\beta) \tag{25}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\boldsymbol{\Theta}_{\beta}=\boldsymbol{\Theta}_{\beta}^{(3)}+\boldsymbol{\Theta}_{\beta}^{(2)}+\boldsymbol{\Theta}_{\beta}^{(1)} \tag{26}
\end{equation*}
$$

The matrices of $\boldsymbol{\Theta}_{\beta}^{(3)}, \boldsymbol{\Theta}_{\beta}^{(2)}, \boldsymbol{\Theta}_{\beta}^{(1)}$ turn out to be

$$
\left(\begin{array}{ccc}
0 & -\theta_{\beta}^{(3)} & 0 \tag{27}\\
\theta_{\beta}^{(3)} & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & \theta_{\beta}^{(2)} \\
0 & 0 & 0 \\
-\theta_{\beta}^{(2)} & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\theta_{\beta}^{(1)} \\
0 & \theta_{\beta}^{(1)} & 0
\end{array}\right)
$$

4 Volume change

By substitution of (4) in the expression for the volume of the parallelepiped with edges $\left\{\mathbf{U}_{\beta} \mathbf{e}_{1}, \mathbf{U}_{\beta} \mathbf{e}_{2}, \mathbf{U}_{\beta} \mathbf{e}_{3}\right\}$ we get

$$
\begin{align*}
& \operatorname{vol}\left(\mathbf{U}_{\beta} \mathbf{e}_{1}, \mathbf{U}_{\beta} \mathbf{e}_{2}, \mathbf{U}_{\beta} \mathbf{e}_{3}\right) \\
& \quad=\operatorname{vol}\left(\left(\mathbf{I}+\mathbf{E}_{\beta}\right) \mathbf{e}_{1},\left(\mathbf{I}+\mathbf{E}_{\beta}\right) \mathbf{e}_{2},\left(\mathbf{I}+\mathbf{E}_{\beta}\right) \mathbf{e}_{3}\right)+o(\beta) \tag{28}\\
& \quad=\operatorname{vol}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)+\operatorname{vol}\left(\mathbf{E}_{\beta} \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)+\operatorname{vol}\left(\mathbf{e}_{1}, \mathbf{E}_{\beta} \mathbf{e}_{2}, \mathbf{e}_{3}\right)+\operatorname{vol}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{E}_{\beta} \mathbf{e}_{3}\right)+o(\beta),
\end{align*}
$$

thus obtaining

$$
\begin{equation*}
\operatorname{det} \mathbf{F}_{\beta}=\frac{\operatorname{vol}\left(\mathbf{U}_{\beta} \mathbf{e}_{1}, \mathbf{U}_{\beta} \mathbf{e}_{2}, \mathbf{U}_{\beta} \mathbf{e}_{3}\right)}{\operatorname{vol}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)}=1+\operatorname{tr} \mathbf{E}_{\beta}+o(\beta) \tag{29}
\end{equation*}
$$

Hence, for β sufficiently small we find

$$
\begin{equation*}
\operatorname{det} \mathbf{F}_{\beta} \simeq 1+\operatorname{tr} \mathbf{E}_{\beta} \tag{30}
\end{equation*}
$$

5 Area change

Let us consider a face \mathcal{F} of a parallelepiped. The ratio between the area of that face and the area the face $\overline{\mathcal{F}}$ in the reference shape is given by

$$
\begin{equation*}
\frac{A_{\mathcal{F}}}{A_{\overline{\mathcal{F}}}}=\|(\operatorname{cof} \mathbf{F}) \overline{\mathbf{n}}\| \tag{31}
\end{equation*}
$$

where \mathbf{n} is the exterior unit normal to $\overline{\mathcal{F}}$. From the series expansion of the expression above, for β sufficiently small we find

$$
\begin{equation*}
\left\|\left(\operatorname{cof} \mathbf{F}_{\beta}\right) \overline{\mathbf{n}}\right\| \simeq 1+\operatorname{tr} \mathbf{E}_{\beta}-\mathbf{E}_{\beta} \overline{\mathbf{n}} \cdot \overline{\mathbf{n}} . \tag{32}
\end{equation*}
$$

6 Linearized material response

The response function for an elastic material is

$$
\begin{equation*}
\mathbf{T}_{\beta}=\widehat{\mathbf{T}}\left(\mathbf{F}_{\beta}\right)=\mathbf{R}_{\beta} \widehat{\mathbf{T}}\left(\mathbf{U}_{\beta}\right) \mathbf{R}_{\beta}^{\top} \tag{33}
\end{equation*}
$$

If we assume

$$
\begin{equation*}
\widehat{\mathbf{T}}(\mathbf{I})=\mathbf{O} \tag{34}
\end{equation*}
$$

we get the following series expansion

$$
\begin{equation*}
\widehat{\mathbf{T}}\left(\mathbf{U}_{\beta}\right)=\widehat{\mathbf{T}}\left(\mathbf{I}+\mathbf{E}_{\beta}\right)=\mathbb{C}\left(\mathbf{E}_{\beta}\right)+o(\beta), \tag{35}
\end{equation*}
$$

where \mathbb{C} transforms linearly a symmetric tensor into a symmetric tensor. Note that (33) becomes

$$
\begin{equation*}
\mathbf{T}_{\beta}=\widehat{\mathbf{T}}\left(\mathbf{F}_{\beta}\right)=\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}\right)^{\top} \mathbb{C}\left(\mathbf{E}_{\beta}\right)\left(\mathbf{I}+\boldsymbol{\Theta}_{\beta}\right)+o(\beta)=\mathbb{C}\left(\mathbf{E}_{\beta}\right)+o(\beta) \tag{36}
\end{equation*}
$$

7 Linearized total force and moment tensor

Along a trajectory described by a control parameter β, as in (1), the power of a force $\mathbf{f}_{\beta_{\mathbf{A}}}$ applied at A is

$$
\begin{equation*}
\mathbf{f}_{\beta_{\mathrm{A}}} \cdot \mathbf{v}_{\mathrm{A}}=\mathbf{f}_{\beta_{\mathrm{A}}} \cdot \mathbf{v}_{\mathrm{O}}+\mathbf{F}_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{f}_{\beta_{\mathrm{A}}} \cdot \mathbf{L} \tag{37}
\end{equation*}
$$

By assuming that the force $\mathbf{f}_{\beta_{\mathrm{A}}}$ is linear in β and zero at $\beta=0$, the series expansion of the moment tensor turns out to be

$$
\begin{equation*}
\mathbf{F}_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{f}_{\beta_{\mathrm{A}}}=\left(\mathbf{I}+\mathbf{E}_{\beta}+\boldsymbol{\Theta}_{\beta}+o(\beta)\right)\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{f}_{\beta_{\mathrm{A}}}=\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{f}_{\beta_{\mathrm{A}}}+o(\beta) \tag{38}
\end{equation*}
$$

The power of a force distribution \mathbf{b}_{β} on \mathcal{R}_{β} in a velocity field \mathbf{v} is the integral

$$
\begin{equation*}
\int_{\mathcal{R}_{\beta}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V \tag{39}
\end{equation*}
$$

which can be transformed into an integral on the shape $\overline{\mathcal{R}}$ by using the ratio between the volumes (change of variable formula)

$$
\begin{equation*}
\int_{\mathcal{R}_{\beta}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V=\int_{\overline{\mathcal{R}}}\left(\mathbf{b}_{\beta} \circ \phi\right) \cdot(\mathbf{v} \circ \phi) \operatorname{det} \mathbf{F}_{\beta} d V \tag{40}
\end{equation*}
$$

or, shortly,

$$
\begin{equation*}
\int_{\mathcal{R}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V=\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{v} \operatorname{det} \mathbf{F}_{\beta} d V \tag{41}
\end{equation*}
$$

Replacing $\operatorname{det} \mathbf{F}_{\beta}$ with its series expansion (29) we get

$$
\begin{align*}
\int_{\mathcal{R}_{\beta}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V & =\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{v}\left(1+\operatorname{tr} \mathbf{E}_{\beta}+o(\beta)\right) d V \\
& =\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V+\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{v} \operatorname{tr} \mathbf{E}_{\beta} d V+o(\beta) \tag{42}
\end{align*}
$$

Assuming that \mathbf{b}_{β} is a linear function of β and is zero at $\beta=0$ it turns out that

$$
\begin{equation*}
\int_{\mathcal{R}_{\beta}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V=\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V+o(\beta) \tag{43}
\end{equation*}
$$

because of the linearity of \mathbf{E}_{β} in β. Further, from the expression for the affine test velocity field

$$
\begin{equation*}
\mathbf{v}\left(\mathrm{p}_{\mathrm{A}}\right)=\mathbf{v}_{\mathrm{O}}+\mathbf{L} \mathbf{F}_{\beta}\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \tag{44}
\end{equation*}
$$

we get, by using again (29),

$$
\begin{align*}
\int_{\mathcal{R}_{\beta}} \mathbf{b}_{\beta} \cdot \mathbf{v} d V & =\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{v}_{\mathrm{O}} d V+\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} \cdot \mathbf{L} \mathbf{F}_{\beta}\left(\boldsymbol{x}-\overline{\mathrm{p}}_{\mathrm{O}}\right) d V+o(\beta) \\
& =\int_{\overline{\mathcal{R}}} \mathbf{b}_{\beta} d V \cdot \mathbf{v}_{\mathrm{O}}+\int_{\overline{\mathcal{R}}}\left(\boldsymbol{x}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{b}_{\beta} d V \cdot \mathbf{L}+o(\beta) \tag{45}
\end{align*}
$$

Let us assume also that \mathbf{t}_{β}, like \mathbf{b}_{β}, is a linear function of β and is zero at $\beta=0$. Then, by using (32), we get

$$
\begin{align*}
\int_{\partial \mathcal{R}_{\beta}} \mathbf{t}_{\beta} \cdot \mathbf{v} d A & =\int_{\partial \overline{\mathcal{R}}} \mathbf{t}_{\beta} \cdot \mathbf{v}\|(\operatorname{cof} \mathbf{F}) \overline{\mathbf{n}}\| d A=\int_{\partial \overline{\mathcal{R}}} \mathbf{t}_{\beta} \cdot \mathbf{v} d A \\
& =\int_{\partial \overline{\mathcal{R}}} \mathbf{t}_{\beta} \cdot \mathbf{v}_{\mathrm{O}} d A+\int_{\partial \overline{\mathcal{R}}} \mathbf{t}_{\beta} \cdot \mathbf{L} \mathbf{F}_{\beta}\left(\boldsymbol{x}-\overline{\mathrm{p}}_{\mathrm{O}}\right) d A+o(\beta) \tag{46}\\
& =\int_{\partial \overline{\mathcal{R}}} \mathbf{t}_{\beta} d A \cdot \mathbf{v}_{\mathrm{O}}+\int_{\partial \overline{\mathcal{R}}}\left(\boldsymbol{x}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{t}_{\beta} d A \cdot \mathbf{L}+o(\beta)
\end{align*}
$$

8 Linear elasticity

The linear part of $\widehat{\mathbf{T}}\left(\mathbf{F}_{\beta}\right)$ given by (36) defines the response function in linear elasticity

$$
\begin{equation*}
\mathbf{T}=\mathbb{C}(\mathbf{E}) \tag{47}
\end{equation*}
$$

The linear transformation \mathbb{C} is called elasticity tensor. Since it transforms symmetric tensors into symmetric tensors, it will be described by a 6 by 6 matrix in any basis. In order for the strain energy to exist it can be proved that \mathbb{C} has to be a symmetric tensor. Hence the total number of coefficients (elastic moduli) necessary to define the material response is $(6 \times 6-6) / 2+6=21$. For isotropic materials that number reduces to 2 and the general form of the response function is

$$
\begin{equation*}
\mathbb{C}(\mathbf{E})=\lambda \operatorname{tr}(\mathbf{E}) \mathbf{I}+2 \mu \mathbf{E} . \tag{48}
\end{equation*}
$$

The coefficients λ and μ are called Lamè's moduli. The infinitesimal rotation and the infinitesimal stretch are defined as

$$
\begin{align*}
& \Theta:=\operatorname{skw}(\mathbf{F}-\mathbf{I})=\operatorname{skw} \nabla \mathbf{u} \tag{49}\\
& \mathbf{E}:=\operatorname{sym}(\mathbf{F}-\mathbf{I})=\operatorname{sym} \nabla \mathbf{u} \tag{50}
\end{align*}
$$

where $\nabla \mathbf{u}=(\mathbf{F}-\mathbf{I})$ is the displacement gradient. An infinitesimal affine deformation is described by the expression

$$
\begin{equation*}
\phi\left(\overline{\mathrm{p}}_{\mathrm{A}}\right)=\phi\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+\mathbf{F}\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right)=\phi\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+(\mathbf{I}+\mathbf{\Theta}+\mathbf{E})\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \tag{51}
\end{equation*}
$$

or, as an alternative, through the displacement gradient

$$
\begin{equation*}
\mathbf{u}\left(\overline{\mathrm{p}}_{\mathrm{A}}\right)=\mathbf{u}\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+\nabla \mathbf{u}\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right)=\mathbf{u}\left(\overline{\mathrm{p}}_{\mathrm{O}}\right)+(\boldsymbol{\Theta}+\mathbf{E})\left(\overline{\mathrm{p}}_{\mathrm{A}}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \tag{52}
\end{equation*}
$$

Let us summarize the linear elasticity theory for an affine body. The balance principle has the form

$$
\begin{equation*}
\mathbf{f} \cdot \mathbf{v}_{\mathrm{O}}+\left(\mathbf{M}-\mathbf{T} V_{\overline{\mathcal{R}}}\right) \cdot \mathbf{L}=0 \quad \forall \mathbf{v}_{\mathrm{O}}, \forall \mathbf{L} \tag{53}
\end{equation*}
$$

from which the following balance equations are derived

$$
\begin{align*}
\mathbf{f} & =\mathbf{o}, \tag{54}\\
\operatorname{skw} \mathbf{M} & =\mathbf{O}, \tag{55}\\
\operatorname{sym} \mathbf{M} & =\mathbf{T} V_{\overline{\mathcal{R}}} . \tag{56}
\end{align*}
$$

The total force and moment tensor are given by the expressions

$$
\begin{align*}
\mathbf{f} & =\int_{\overline{\mathcal{R}}} \mathbf{b} d V+\int_{\partial \overline{\mathcal{R}}} \mathbf{t} d A, \tag{57}\\
\mathbf{M}_{\mathrm{p}_{\mathrm{o}}} & =\int_{\overline{\mathcal{R}}}\left(\boldsymbol{x}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{b} d V+\int_{\partial \overline{\mathcal{R}}}\left(\boldsymbol{x}-\overline{\mathrm{p}}_{\mathrm{O}}\right) \otimes \mathbf{t} d A \tag{58}
\end{align*}
$$

while the response function for the stress \mathbf{T} is given by (47). Looking at the matrix of \mathbf{E}

$$
[\mathbf{E}]=\left(\begin{array}{ccc}
\varepsilon_{11} & \frac{\gamma_{12}}{2} & \frac{\gamma_{13}}{2} \tag{59}\\
\frac{\gamma_{21}}{2} & \varepsilon_{22} & \frac{\gamma_{23}}{2} \\
\frac{\gamma_{31}}{2} & \frac{\gamma_{32}}{2} & \varepsilon_{33}
\end{array}\right)
$$

the element ε_{11} stands for the elongation in the direction \mathbf{e}_{1}; the element γ_{12} stands for the shear corresponding to directions \mathbf{e}_{1} and \mathbf{e}_{2}. Looking at the matrix of Θ

$$
[\boldsymbol{\Theta}]=\left(\begin{array}{ccc}
0 & -\theta_{3} & \theta_{2} \tag{60}\\
\theta_{3} & 0 & -\theta_{1} \\
-\theta_{2} & \theta_{1} & 0
\end{array}\right)
$$

the three scalars $\theta_{1}, \theta_{2}, \theta_{3}$ stand for the amplitudes of the three infinitesimal rotations around \mathbf{e}_{1}, $\mathbf{e}_{2}, \mathbf{e}_{3}$, respectively.

