

Università degli Studi dell'Aquila

Prova di recupero di Algoritmi e Strutture Dati

Martedì 21 Giugno 2011 - Prof. Guido Proietti

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (25 punti): Domande a risposta multipla

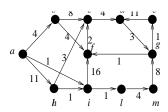
Premessa: Questa parte è costituita da 20 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 25. Se tale somma è negativa, verrà assegnato 0.

- 1. L'algoritmo più efficiente per il calcolo dell' n-esimo numero della sequenza di Fibonacci ha complessità a) $\Omega(n)$ b) $\Theta(n)$ *c) $O(\log n)$ d) $\Theta(n \log n)$
- 2. $f(n) = \Theta(n)$ se e solo se: a) f(n) = O(n) e $f(n) = \omega(n)$ *b) f(n) = O(n) e $f(n) = \Omega(n)$ c) f(n) = o(n) e $f(n) = \omega(n)$ d) f(n) = o(n) e $f(n) = \Omega(n)$
- 3. Quale delle seguenti relazioni asintotiche è vera: a) $n \log^2 n = O(n \log n^2)$ b) $n = \Theta(4^{\log n})$ c) $2^{n+1} = \omega(2^n)$ *d) $n \log n^2 = \Theta(n \log n)$
- 4. Il numero di foglie dell'albero di decisione di un qualsiasi algoritmo per il problema della ricerca in un insieme ordinato è: a) $\Theta(n \log n)$ b) $\Theta(\log n)$ *c) $\Omega(n!)$ d) O(n!)
- 5. L'algoritmo di ordinamento non crescente INSERTION SORT applicato ad una sequenza di input ordinata in modo non crescente esegue un numero di confronti tra elementi pari a:

 *a) n-1 b) n c) n+1 d) n(n-1)/2
- 6. L'algoritmo ottimale di fusione di due sequenze ordinate di lunghezza n e n^2 rispettivamente, ha complessità: a) $\Theta(n)$ b) O(n) c) $\omega(n^2)$ *d) $\Theta(n^2)$
- 7. Durante l'esecuzione del QUICKSORT, applicando la procedura di partizione in loco al vettore [28, 47, 12, 98, 20, 6, 32], con perno l'elemento 28, si ottiene
 - $\hbox{*a)} \ [20,6,12,28,98,47,32] \quad \ \ \hbox{b)} \ [12,6,20,28,98,47,32] \quad \ \ \hbox{c)} \ [6,12,20,28,47,98,32] \quad \ \ \hbox{d)} \ [6,12,20,28,32,47,98] \\$
- 8. Qual è la complessità spaziale dell'algoritmo Integer Sort applicato ad un array A di n elementi in cui $A[i] = 2i^2 + i$ per i = 1, ..., n?
- a) $\Theta(n^3)$ b) $\Theta(n)$ *c) $O(n^2)$ d) $\Theta(n \log n)$ 9. La procedura FixHeap(A, i) per il mantenimento di un heap nel caso migliore costa:
- a) $\Theta(\log n)$ b) $\Omega(\log n)$ c) $\Theta(n)$ *d) O(1)10. Dato un nodo v di un albero AVL di altezza h, sia $\ell(v)$ l'altezza del sottoalbero sinistro di v, e sia r(v) l'altezza del sottoalbero
- 10. Dato un nodo v di un albero AVL di altezza h, sia $\ell(v)$ l'altezza del sottoalbero sinistro di v, e sia r(v) l'altezza del sottoalbero destro di v. Quale delle seguenti espressioni rappresenta il fattore di bilanciamento di v:

 a) $h \ell(v)$ b) h r(v) *c) $|\ell(v) r(v)|$ d) $r(v) \ell(v)$
- 11. Dati due elementi u,v appartenenti ad un universo totalmente ordinato U, una funzione hash $h(\cdot)$ si dice perfetta se:

 a) $u=v \implies h(u) \neq h(v)$ b) $u \neq v \implies h(u) = h(v)$ c) $u=v \implies h(u) = h(v)$ *d) $u \neq v \implies h(u) \neq h(v)$
- 12. Una coda di priorità realizzata con una lista lineare ordinata supporta l'estrazione del massimo in: *a) O(1) b) $\Theta(n)$ c) $\Theta(\log n)$ d) $\Omega(\log n)$
- 13. La fusione di un heap binomiale di n elementi con un heap binomiale di 3 elementi costa: *a) $O(\log n)$ b) $\Theta(1)$ c) O(1) d) $\Theta(n)$
- 14. Un grafo $non\ connesso$ di n vertici, ha un numero minimo di archi pari a:
- *a) 0 b) n-1 c) n-2 d) 1


 4 b 2

 5 to see seguita partendo dal nodo a genera un albero BFS di altezza pari a:
 a) 1 b) 2 *c) 3 d) 4
- 16. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m = \Theta(n \log n)$, ha complessità: a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) $\Theta(n^3)$ *d) $O(n^2 \log n)$
- 17. Dato un grafo pesato e completo con n vertici, l'algoritmo di Dijkstra realizzato con un heap binario costa: *a) $\Theta(n^2 \log n)$ b) $\Theta(m + n \log n)$ c) $\Theta(n^2)$ d) $O(n \log n)$
- 18. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti ad n-1 Union ed $m=n^2$ Find può essere risolto in:

 a) $\Theta(n)$ b) $\Theta(n+m)$ c) $\Theta(n^2)$ *d) $O(n^2 \log n)$
- 20. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Boruvka ha una complessità pari a: a) $\Theta(m)$ b) $\Theta(n)$ c) $\Theta(m+n\log n)$ *d) $\Theta(m\log n)$

Griglia Risposte

		Domanda																			
[Risposta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	a																				
Ì	b																				
	c																				
	d																				
-																					

