Università degli Studi dell'Aquila

Distributed Systems: Mid-term Evaluation

Tuesday, November 5th, 2019 - Prof. Guido Proietti

	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
TOTAL				

EXERCISE 1: Multiple-choice questions (20 points)

Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer scores 3 points, while a wrong answer receives a -1 penalization. You are allowed to omit an answer. If you wrongly select an answer, just make a circle around the wrong \times (i.e., in the following way \otimes) and select through a \times the newly selected answer. A question collecting more than one answer will be considered as omitted. The final score will be given by summing up all the obtained points (0 for a missing answer), and then normalizing to 20.

1. Let f(n) and g(n) denote the message complexity of the *Chang & Roberts* algorithm in the average and in the worst case, respectively. Which of the following asymptotic relations is wrong?

a)
$$f(n) = \Theta(g(n))$$
 b) $f(n) = O(g(n))$ c) $f(n) = o(g(n))$ d) $g(n) = \Omega(g(n))$

- 2. Specify the largest among the following classes of rings for which the *leader election* problem can be solved through the *Hirshberger* & *Sinclair* algorithm:
 - a) asynchronous, anonymous, uniform, no-synchronized start c) asynchronous, non-anonymous, uniform, synchronized start start
- 3. Assume that in the Hirshberg & Sinclair algorithm, a processor p_i is trying to elect itself as temporary leader during phase $k \ge 0$. What is the maximum number of messages that will be generated by p_i in this phase? *a) $4 \cdot 2^k$ b) $2^k + 2$ c) 2^{k+1} d) 2^k
- 4. Let us consider the *leader election* algorithm for a synchronous ring with n processors, non-anonymous and uniform. Let the minimum id in the ring be equal to 2ⁿ. Then, the algorithm has a number of rounds of:
 a) O(n ⋅ 2ⁿ) b) O(1) *c) O(n ⋅ 2^{2ⁿ}) d) Θ(n)
- 5. Let us consider the asynchronous version of the Prim algorithm. Which of the following claim is false?
 - a) In each phase, each node sends a single *Report* message
 - b) In each phase, each node having incident basic edges sends and then receives at most a single Test followed by a Accept

c) In each phase, each node receives a single $Search_MOE$ message

- *d) In each phase, each node sends a single Connect message
- 6. Let f(n) and g(n) denote the message complexity of the asynchronous versions of the *Prim* and the *GHS* algorithm, respectively, when executed on a dense graph, i.e., with $m = \Theta(n^2)$. Which of the following asymptotic relations is correct? *a) $f(n) = \Theta(g(n))$ b) $f(n) = \omega(g(n))$ c) $f(n) = \Theta(g(n) \cdot \log n)$ d) f(n) = o(g(n))
- 7. Let us consider the synchronous version of the GHS algorithm. Which of the following claim is true?
 - a) In each phase, each node sends $\Theta(n)$ Reject messages
 - b) In each phase, each node sends $\Theta(1)~\mathit{Test}$ messages
 - *c) In each phase, each node receives O(n) Test messages
 - d) In each phase, each node sends and then receives $\Theta(1)$ Test messages followed by a Reject
- 8. The first randomized algorithm for finding a maximal independent set running on a graph with n nodes and with degree Θ(√n), with high probability has a number of phases in the order of:
 *a) O(√n log n) b) O(1) c) O(√n) d) Θ(n log n)
- 9. The Luby algorithm for finding a maximal independent set running on a graph with n nodes and with maximum degree Θ(1), with high probability has a number of phases in the order of:
 a) Θ(log² n) b) O(1) c) Θ(n log n) *d) O(log n)
- 10. Which of the following claim is true for the $(\Delta + 1)$ -coloring algorithm, when $\Delta = \Theta(\log n)$: a) It terminates within $O(\log^2 n)$ rounds;
 - *b) It terminates within $O(\log \log n \log^2 n)$ rounds w.h.p.;
 - c) It terminates within $O(\log \log n \log n)$ rounds w.h.p.;
 - d) It terminates within $O(\log^3 n)$ rounds w.h.p.

Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
с										
d										

EXERCISE 2: Open question (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

- 1. Describe and analyze the $\mathit{slow-fast}\ message$ algorithm for the leader election problem.
- 2. Describe and analyze the synchronous version of the GHS algorithm for the minimum spanning tree problem.