dan o RELs

Leader Election

A Definition:

e each processor has a set of elected states and a set of
not-elected states. Once an elected state is entered,
the processor always is in an elected state; similarly
for non-elected. l.e., irreversible decision.

e In every admissible execution,

— €VEry processor é‘\%entuafly enters either an elected
or a not-elected state (liveness)

— eactly one processor (the leader) enters «n elected
state (safety)

A leader can be used to coordinate future activities of
the system. For instance:

e find a spanning tree using the leader as the root

e reconstruct a lost token for a token-ring

We will study leader election in rings.

[

In an oriented ring, processors have a consistent notion
of left and right:
| = left = clockwise O

2 = right = counter-clockwise O

Ring

For example, if messages are always forwarded on in-

cident channel 1, they will cycle clockwise around the
ring.

Why study rings?
e simple starting point, easy to analyze

e abstraction of a token ring @

e lower bounds for ring topology also apply to arbi-
trary topologies

Anonymous Rings

Intuition is that processors do not have unique identi-
fiers.

Related issue is whether an algorithm A relies on pro-

cessors knowing the ring size. CNON UNnFoRn)

e uniform algorithm — does not use the ring size
(same algorithm for each size ring)

Formally, every processor in every size ring is mod-
eled with the same state machine A.

e non-uniform algorithm — does use the ring size
(different algorithm for each size ring; may be only
trivially different)

Formally, for every value of n, there is a state ma-
chine An such that every processor in a ring of size

n is modeled with A Thus A is the collection of
all the Ap’s.

Leader Election in Anonymous Rings

Theorem 3.2: There is 10 leader election algorithm for
anonymous rings, even if the algorithm knows the ring
size (1.e., 18 non-uniform) and the ring is synchronous.

Proof Sketch: (BY conTRADICTION)

e Every processor begins in the same state with the
same messages originally in transit.

e Every processor receives the same messages and thus
makes the same state transition and sends the same
~messages in round 1.

e Every processor receives the same messages and thus

makes the same state transition and sends the same
messages in round 2.
o Etc.

ALLA F ;
Eventu.&ﬁfy some processor 1s supposed to enter an elected

state. But then they all would, a contradiction.

£

Consequently, there is no uniform or asynchronous leader
election algorithm.

. « . / '\ Trf‘\)\ | /‘. [’/-\ ;, .‘/;
Rings with Identifiers NON ANONIM |)

Assume each processor has a_unique identifier. Distin-
guish between indices and identifiers:

e indices are 0 through n — 1 and are unavailable to
the processors; used only for analysis

e identifiers are arbitrary nonnegative integers and are
available to the processors via a special state com-
ponent called id.

Specify a ring by starting with the smallest 1d and list-
ing ids in clockwise order. E.g., 3, 37, 19, 4, 25.
el 37

4 |
Uniform algorithm: There is one state machine for
every id, no matter what size ring.
Non-uniform algorithm: There is one state machine
for every id and every different ring size.

Overview of Leader Election in Rings with Ids
| E——

In this case, there are algorithms. We will evaluate
them according to their message complexity.

Overview of Upcoming Results:

e asynchronous ring: O(n log n) messages

e synchronous ring:

— O(n) messages under certain conditions

— otherwise ©(n log n) messages

All bounds are aslm_p_t_otically tight.

s ‘ — ﬂ ﬂ\\ (' f“ ! h (f
? Messages Lead'er Electlon Algorlthm

Each processor follows these rules:

e Initially send your id to the left

e When you receive an id (from the right):
—1f it 1s greater than your id then forward it to the
left (you will never be the leader)
—1f it is equal to your id then elect yourself leader
— it it is smaller than your id then do nothing

Correctness: Elects processor with largest id. Mes-
sage containing that id passes through every processor.

Message complexity: Depends how ids are arranged.

e [argest 1d travels all around the ring, 1 messages

e Second largest id travels until reaching largest

e Third largest id travels until reaching largest or sec-

ond largest

e Etc.

O(n?) Messages Algorithm (cont’d)

ol

Worst way to arrange the 1ds 1s in decreasing order:

e Second largest id contributes n — 1 messages.
e Third largest id contributes n — 2 messages.
e Etc.

Total number of messages is

5 i =0(nd).
=1

AFHCECNDIMENTD : GuANTO CoA NEL Ao
Ml@quE? E NEL CASo MEDIO?Y

O(nlog n) Messages Leader Election Algorithm

SONDARE
e Each processor tries to probe successively larger neigh

borhoods. Size of neighborhood doubles in each

— NE|GHEokHaoD : ‘)E"rcf W%_ﬁ‘\ W IFIN
M K Oll: LBOK DISTANCE K FROM P

e A probe is initiated by send1ng a probe message
containing the initiator’s 1d.

e If a processor receives a probe message whose 1d
1S largerl than its own id, the processor will either

forward it on or send back a reply, as appropriate.

e If a processor receives a probe message whose id 1

than its own id, it does nothing.

e If a processor receives a probe message with
id, then it becomes the leader.

——mma

e If a processor receives a reply message not destined
for itself, it forwards it.

e If a processor receives both reply messages destlned
for itself, it Eroceeds to the next phase.

=P MeSheL =< ud, Phesenouber, leponier

O(nlog n) Messages Algorithm (cont’d)

- e R =reply
Pupse O %é R == R

’ *
THASE P P P P _

99 B P P P P P P
R._IL._IL.L.L._EL<_R_._R_

Correctness: Similar to previous algorithm.

—_———

Message Complexity:

GENERATD
e Each message belongs to a phase and 1s 1nitiated by

a particular processor.

e Probe distance in phase i is 2°.

e The number of messages initiated by a particular
processor in phase ¢ is¢4 - 2' (probes and replies in
both directions).

O(nlog n) Messages Algorithm (cont’d)

How many processors initiate probes in phase 27

e For: =0, all_-g_rof them do.

e For i > 0, every processor that is a “‘winner” in
e 23 B 3 —1 .
phase i — 1 does (has largest id 1n 1ts 2'~= neigh-

borhood)

Maximum number of phase ¢ — 1 winners occurs when
they are packed as densely as possible:

i- 1
1
2 rocessors

//’/m , \\ m
-/ a phase N ~_(aphase \
w T et -] winner

Total number of phase i — 1 winners 1s at most
n
n-l41

LS

How many phases are there? Phases continue until
there is only one winner, so log n phases sutfice.

,t’ﬂ,;; n
(IN macr, 2 U = _,)

O(nlogn) Messages Algorithm (cont’d)

p Total number of messages is

LastT
sa,\p,;g log n 71, n PHHSE
§+ 4 {21 1 @
log n 2! :
< &n+4n (_)En — LWD«X’M{{M
=12 NUMBER
OF
= 6n + 8nlogn IWINNER
IN $HAse
L-4

mP. NEWA e L Ho
VINC\TOR °2w£

Leader Election in Synchronous Rings

‘BQ"UNIFORMT
First, a simple algorithm for the synchronousmode

e Group the rounds into phases so that each phase
contains n_rounds.

e In phase 7, the processor with 1d_, if there 1s one,

sends a message around the ring and 1s elected

Example: n = 4 and 7 is smallest 1d. 1(

e In phases O through 6 (corresponding to 5 rounds |
through 28), no message is ever sent.

e At beginning of phase 7 (round 29), processor with

id 7 sends message which is forwarded around ring.

cFﬂQ‘\TAMENiD
Note reliancz on synchrony and knowledge of n!

Correctness: Convince yourself.

Message Complexity: @ (n). Note that thic is optimal.

Time Complexity: O(n - m), where m is the smallest
id in the ring. Not bounded by n.

Another Synchronous LE Algorithm

This algorithm

e works in a slightly weaker model: Processors might
not all start at same round; a processor either wakes
up spontaneously or when first gets a message.

e is uniform (does not rely on knowing n).
Idea:

e A processor that wakes up spontaneously is active;
sends its id in a fast message — 1 edge/round.

o A processogt%&_wakes up when receiving a mes-
. i . .
sage is relay; never in the competition.

e,
——————

e A fast message becomes slow if it reaches an active
processor — 1 edge/22 rounds (1m is msg id)

e Processors (active or relay) only forward a message
whose id is smaller than any id this processor has
seen so far (ignoring the id of relay processors).

e If a processor gets own id back, leader.

Analysis of Synchronous LE Algorithm

Correctness: Convince yourself that active processor
with smallest id 1s elected.

Message Complexity: Winner’s message is the fastest.
While it traverses the ring, other messages are slower,
so they are gs%vﬁsﬁﬁan and stopped before too many
messages are sent. E

More carefully, divide messages into three kinds:
(1. fast messages
p——

@slow messages sent while the leader’s message 1s
fast

@slow messages sent while the leader’s message 1s
slow

Analysis of Synchronous LE Algorithm (cont’d)

Number of type | messages (fast):
Show that no processor forwards more than one fast
message. (BY CONTRADICTON)

pk . @*_,

It Di tmwmds s fast msg and pg’s fast msg, then
when_k s fast messaoe arrives at p;:

I either p; has already sent its fast message, so pk
message becomes slow, or

2._&- has not already sent its fast message, so it never
will.

» Number of type | messages is at most n.
e e

Analysis of Synchronous LE Algorithm (cont’d)

messages (slow while leader’s is fast):

Number of type 2
e | cader’s message is fast for at most n rounds.

e Slow message i is forwarded n/2%times in n rounds.

e Worst case (largest number of messages) 1s when

ids are as small as possible, 0 to n — 1.

Number of type 2 messages is at most &/ = 5 <N

‘Number of type 3 messages (slow while leader’s 1s slow

e Once leader’s message_r becomes slow, it takes at

most n - 2¢ rounds to return to leader.

e No messages are sent once leader’s message has
returned to leader.

e Slow message / is forwarded n - 2%/2* times in n - 2
rounds.

e Worst case is whenidsare Oton —land x =0

0.
Number of type 3 messages is at most ;. 01 %—r = 2n

O

Time Complexity of Synchronous LE Algorithms

Time Complexity: O(n - 2%), where x is the minimum
1d. Even worse than the previous algorithm.

Both these algorithms have two potentially undesirable
properties:

e rely on the numeric values of the ids to count

e number of rounds bears no relationship to n, but
depends on the minimum id

Mogov\d)mwﬁ_; Esé@olﬁ.e' IL. SOIPET® AlLSRITMO

SUL SEGUENTE ANEWO, CosTIToe DA =8 PRO(ESSR),
SURONENDO CHE AL RIMC ROUND 21 SVEGLING
T1.P5 ¢ Pg, = Cle bl SERBO ROUND > SVEGU Py
i A T
A L=
i X

Gallagér-HumbIet-Spira
Minimal Spanning Tree

e Assumption:

— unique weights w(e) for all edges

~ ASYNCHRONOUS L SYSTEM WIiTH AN ARBITRAR(CONNECIED -
NON - ANONYMOOS GRAPH Cé\:(v:g)
e Defs:

— Fragment F 1s a subtree of the MST of G

— Outgoing edge e from F if one of the edge’s nodes is in F
and the other is not in F.

g SHS AGRITAM REGURES Q(IE[H\/[%W{)

MESSASES

GHS Asoririn
ﬁRTHEP\ N
[lssoMPTiON

LoMMA. IF TTRE EDSES HAVE DISTINCT WEIGHTS => TR
— hsT s UMeVE
PRooF . (BY cerma) o jfTi M3 ofF &.
LeT € BE THe MIN-WEIGHT EDSE BELONEING TO
T:AT2. W.ro.e. e 2e'ls .
=Ty 0365 CoNas A gL, AND AT LEAST
ONE ebge € OF THis CYUF & Ty,
“» el we!) awv Tz 0B\ Jel is
A SPaNNING TREE ITH WEIGHT < THAN T2 (cml).
LEMMA . LT T ee THE UNievE MST oF G,
o TRaeveNT T oF | = THE MINMOM-wWEGHT
OQUTGoING Erst OF T & 76 1.

Epees Folow A TIFO fouoy

="' (BYoon®) | er e g6 RE MUCE oF F,

AND (ET aq;TZ - | 0 {ez% CONTAINS A

GYCLEI AND SOCH A Cycre ONTAINS AT | EBST
ONE ADDITIo Ngy (L OUT&OING EDGE OF F.
E

1 SQY ej.
(=]

Wte e (e
e

> 1\5¢] 0 e s
BETER THANT ~ conrr!

GHS (continued)

* Proposition; If F is a fragment and e is the least
weight outgoing edge of F, then
F u{e} is a fragment.

Algorlthm MAIN IDEA
 Start with single nodq Bi a_gments and
mcrementally enlarge‘theih e

Global description of GHS

Maintain for G = (V,E) a set of fragments such that

U;nodes(F)) = Vandi#j & FnF =0

start with one-node fragments |

nodes in a fragment cooperate to find the lowest

weight outgoing edge .
Myoec 2 _JOIN _

when j§iSredge is found, eamibine with the other

fragment

Terminate when only one fragment remains

OPERAIONS ARE CRORDINGTED By CORE EDBES OF
<THE FRAGMENTS

FRAGMENT |
IDENTITY (w, L)

W : WEGHT OF THE CoRE EDaT
| > L OF THE ‘-FQHG‘“‘IE;\[']“/ WITH Z___:.:C
[F THE TRIGIENT CNTANS A IJINGLE NODE

—dd

UNION \

A CoMPINATION OF Two

%MM H COMBINATION Li = L.z
* ABSCRPTION

bl

MENTS O

LEVEL =1 TRODICER A NEW FRAGMENT
OF Lever L. AND WHosE CORE EDGE /s
HE EDSE (seD Top. THE UNION

AN ARSORSTION oF A FRAGMENT IXES NOT-
ChANGE THE DeNT) oF THe ABEORBING TRAG

Ae soon as A ONION TAKES PLACE | THE
IDENTTY OF TRE RESUIING TRAGMENT
s SENT To AL [T NODES.

Local description of GHS

e Each node p stores

— the state of its edges e, stake [e] € {basic, branch, reject}

(key) .. _. 7
DERTTYY C_ nameé of its fragment w (WS- ng_‘/_
i— level of its fragment |

— best weight of outgoing edges from its fragment
— father channel (i.e. route towards the core node)

~ s oun st state [P] < §3epig, Fd Foond |
| 5

Flamel_
sleeping : il nodo non partecipa al MPS
Find: ha identificato il min. arc. uscente dal frammento
Found: ricerca del min. arc. uscente

‘-"]T(pg OF MEAGER

P : SENT BY CoRE Nobes RiGHT
Inmae (w,L,s) : AFTER. CRERTION

SERY BY A NobEe /A Tind sSTHiE

OVER IS MINIMUMm - wEiaHr Rasic €lse :
10 CHECK WHETHER. 1S AN OUTGOING, GDSE
QEJ?G’, ' RESPONSE 7o TR

ACEPT

\
TZ’?ST- \/'w/ L/\.

. - WEEAT
BT (W) USED To FiD THE MIN- B
| o OUvgona EDSE

" Jo AWAE
~ HAR CoRE : SENT BY GoRE NODES
LHANGE - ONION)

, . "
onneet (w, L) ST OF UNo
Connect (w, L) = Reave

@ H - ALGGQ\T“HM

® IDENTIFYING OUTGOING EDGES
* FINDING THE MINIMUM OUlGoING EDGE
® RAGMENT UNION

IDENTIFYING O, GOING EDGES

Nope R N T5 (w._‘, Li) PICks TS MINIMUM - WgienT
E“S'CE'&_,SAY@. AND SENLS ON T A

Test (wit Z—‘l)

fio-=-ep e ()

‘-9 “; CW;, Li)z (wzlr Lz) n* € |s NoT AN
UTéoine Epge = n .RQJQJ/. @:= Reyeerer

29 IF (w‘!Li)?é (wz,(—z) AND Lz ;Li
> b A . D MARKS € AS MIN, OUTGoING 6.
by el ;P
3) Ip (g, L) # (s, L) AN [, <Ly

= %— Does Nor RE?LY To B UNFIL oNe oF
THE ABOVE <CONDITIORS s VERIFIED

THIs Blacks F (ANDTHE WHoLE 1}:';!)

Flamel_
si puo verificare in qualche altro istante che Pj si unira a Pi

TINDNe TRe MnmoN Qursoimg £DGE

-Rocess SmeED BY cope NODES
BY 2£RDING Thitlate ()L, Find | T2

AL NoDes N THE mqemgm “THRovaH
Tees OF THE FRAGMENT

~ A Nope B REEING TRE Thitiate “HANGES T2
SIATE TO Fwdl ., THEN:

1) UPATES (TS INFORMATION ABOOT TRAGUIENT
AT Is (w,L);

2) REGORS THE DIRETION TowarDs THE CoRe

) IF £ HAS OUTURRDS EDSES OF THE FRAGHENT
TORWARDS THE TiTiate. WEsshal

4) FIND TS LochL MINIMOM QUIGOING EDGE

IF P s A LEAF OF THE FROGTENT iy @i@ﬁé@
AND ENTERS INTo A Foond siaTE (0 ¢

- I & ls }NTERNQL WA Fo Al THE RERRTS
RON T3 CHlLDREN AND CHooses THE HINIMOM
FINMLY SERDS A Pepod (1;) AND MARkS J‘THE
BEST £D6E, AND ENERS INTO A Foond STHE

— Bpsed OR Au, THE Rq:orts CoRE NODES S$END A
Chabgo.—core, T© TRE CHOSEN NODE, TRAT SENDS A
Comned (W, L) over > M, UTGoG EDGE , AND MARKS
IT AS A Pranch.

vt TRAZMENTE. (N

\

\ hnect: '
'/‘Qg%

R \\ P
i | J Wams
Bk) | UNTIL [,

2> Ly

\- 7‘2 (wz L?,\J

@) FL,-L, AND P IS &oine To SERD (op

ALREADY SENT) A Cowmect O EDGE e THEN
COMBINATION TBRES RACE

+ F = F UF;.
:"Cw@ La'”')

B Cw Lz)

P SEDs m Intiate @2 L S’J) e
WHERE S;.€ §Fed Fomdl ;P RuALDS THE

_b Wtate tesse® T Nodes oF F.
@&l sls '
(>Lo 15 MPossele (B 1s Lockep)

A -
Aﬂﬁ{:@m\}muﬂ O

Estauire (GHS soi sedvente GraFo -

J:—[E@L'ALGOQITHO INIZIA DA P E Ps

@ L sisEMA ET PSELDOSINCRONG @ | MESBAGS !
INVIATT DA PROESoRI PISPALI VEN6ONO CoNsEGNAT)
IN 4 UNITA DI TEHPO ’ QUELLl INVIATI DA ProcEssoe)
Ry N 2 UNITA' D) TEMPO

~ s ik
CORRECTNESS OF O HS
o TOw. PROOPIS VERY CofMUCATED

> WE Toeos oM EovERAL TROPERTIES
» TERMINATION
¢ SYNCHRONEATION

* ABSORPTION \His SERRCHING FR.A MOE

TERMNATION

RESPoNse To ’tEat 20 Counecls APE SOMETINES
DELAED = Ceadioore. s AfROR FosIBLE

).EMMA TROM ANY CoNRAGURATION WIH AT (EAST
To FRAGMENTR] EENTUALLY ETHER. ABSORPTIO)

or
COMBNATION ThKkES PLace

K b: ler | BE THE MIN LEEL A Ths CeNFGURMN

AN LeT F Be THE (BEL- | FROGIENT WHosE
MOE Hps Mip WEIQHT

AMONG AL (e - L Reawavs
> A 1ol vesrcemm = EiTHeR. REACHES

' OF (BveL S5

=Plap. Nopg,
INThe FresT RE | F a7 A pepy ppmoemLy
INn THE S€CND CASE , TR AWAKENED NoDE™ Bgromes
A TREGMENT OF (BvEL L=C i CHOSE A MO
T oD APRLY RECORSIVELY THE AR pMER T

L E\EJ\‘TDP_*LU{/ A SoNFIGURATION 1N WHIC
THE FRST CASE AfPLES (S REAQED,

=P EENDALY, TR (T3 Moe -

EEE)>LFE) wp Flassoren ~

A |t 1 s

@ "“\u_:f""f_l—(‘c) P C 5 oas THE Mo
O 7' (By Con STRUCT iCK))
& LOED oy =

il -
y AND CANNOT
— 4 N

6@___@_@_@1: GHS TErringTES,
‘E‘iﬂgz - IF Gl poes wer TERMINATE ~apu THERE
ST BE AT (EhsT 2 TREGMETE (since
WITH Josv onNE 1T ool WE—RHNHTE)
el “THE ABOVE LCMMA GUARANTEER, TRAT
“THE NoMBER. OF FRAGNENTS L pe FRoSRESIELY

REDUCED (F TO 4wy pzs
]

SYNCRON(ZATION

MESAGE TRANSMISION TIME /S UNBCUNDED

=B A WODE MigHT HAVE INACCORATE INFO
ABCUT ME, QN FRAGHENT,

Exanpe

We WILL SHow THAT AN INSCCORATE ANSWER
Does Nom AfFECT CopecetiEss |

Coam 4 LeTe e e core esE OF soME
FRAGMENT [THEN, e I3 NEVRR TRE oRre
OF A FRAGMENY &' sucy aer Ffé F'

Clinz Anae Pi WHosE TRAGMENT ID I

CORERTLY (W,) PEcnes 7o
WH LEVEC | ! St

Fool IFme INeo oF o

B 1= Pemicifeing
ABLCOTTION mip Iy

A TRAGMENT

IS INACLORATE map
N CoMBINATION og

Port Cases [>

EMARK 4 I
Ry F g seNDSAt@StOPJ"’WE_‘\
TN L T NdC«Orng@i&;

WITH OTHEE- FRAGIERTS =i THE™ ALY INCoRCRLT
INFO HIGHT RE IN P
5

E ‘wi! L’i) 2 (&)‘ LZ)

IF Lo>|, = THE REAL LZIBY CLAIN 2. caN
/

MR S e e Prmor: pes
T

Nowe mar IF Lo <[, , TRE” PolLow ing s
TossIBLE : . MigHT ABSRPT T2 ELsELyERE |

AP T s =Ty NoT INTTATED BRY &

=P Fl, AND 2r ARE (N THE SANE FRAGHERT RBUT
> Does NoT KNob T

=P No PRBEM SincE P 15 NOT REPLYNG

E" 6"1, L4> Ei ‘sz, Lz) L,<L,

Arrer "O"‘”""/‘:(@zlti) Fro £, T0 D) p sawsT
B An Jutiate (w:l;Ld, state)

6 Crees

State = Fud, =P No PROBUEM, SINCE N This

B oww BRnumT N T o oF
THE Mot of E GEUE)

@ 5&7}&: :F_;OO{,
e DA A
) AD
Report Hesspar 5 2

g R
OWENTANY THIS MeHT g R Teeeew || Ry
Clam THe

v H@EOFHTSH@O’[FEP’?OEOFF

- ¥

y ‘ " (IL’ w

ULD BE kOckep
PRI £ = o ReroT).
R
; % ‘

> W) w(E) <o) =w (<):

< W (AH‘(QUIGOING EDSE OF 1:;)
v

E : 7 : - - : s

MESSEGE COMPLEX T k4

LEMMA A ¥RAGMENT OF LevEL L. Contans AT
LERST 2.L NODES |

Fool : By ndocrion .

=0 = TRNIAL

ASSOME TRUE p To FRaamENS oF LEWEL L4
ler ‘F:@oJ L)

ETHER AFTER. ConBinNAtioN
il F WAaS @GQTED/ Tz ANDE of Lever | —1 ¢

N [Fl= IR 4R » 2% ot oL
Ok APIER. Apsopriion O
A LEEL- L' <L srogmenrF

> AR RECRSVELY To F\-
“TheorEM (HHS Reauirfs @@““@)%W MEseeEs, ®

4 Immd@,
ANY NobE 5;“‘3?/ Ampt EacH TIME
CEIvES 4 HE (EVEL OF

Chungs W 13- emarienr
* ;2&?0‘ INCKE%W?GE%

wp (T CAN GO THRooe‘sH < Goaw LEELS
» Q WY h@"“‘ﬁ“w ¢ l -

5 o T et AR A g '
W«:@éﬁa TR : P
pres ":v:--'.:‘,,. * L8 % PR

=

Shared Memory SYSTEM (ASYNCRONOOS)

Processors communicate via a set of share ' ,
|
instead of passing messages. ReGISTER.

- Each shared variable has a type, defining a set of oper-

ations that can be performed atomically.< READ/WRITE

- ACcESS RNTERN : SiNewe MuLTiRLE . READ/MoDIFY/RITE
Changes to the model from the message-passing case:

e no inbuf and outbuf state components NO MESAGES H

e configuration includes values of shared variables

‘e only event type is a computation step by a processor.
When p; takes a step: No DeLIVERY ||

- ﬂ’s state in old config specifies which shared vari-
able is to be accessed and with which operation

— operation is done; variable’s value in the new con-
fig changes according to operation’s semantics

— p;’s state In new config changes according to 1ts
old state and result of operation

5Y~ST?M : N FRocEsorS %, i g Pn
W. RE@[STE—KS Qi, il /Q'M

CU\LF:! GuRATIoN ;. C = (%,--ﬁm"«, ds oy >
=X ENT 0 ComMpuration B By X TRocEsSoR ¢

EXE:_ CUVON

—EGMENT * CO /(FO /C-{; Sﬁj J Cg} 42 Sets

Cm > THE REST OF APLYING The
TPENS\T!‘ON FONCTION OF Pﬁ(To M
SATE N .

Cac) FND T APRLYNG, -%L Memary
AOESS ORERATIONS To e RedsTERs 1N

G i, O

+

SCHETOLE . ¢, Q}S, ,qﬁz,

EXECOTON - EXECUTION SEEMENT WiTH .
Ko INTIAL CONAGURETIaY oF THE SYSEM

"‘é,f’ff%'i . IN AN INRINNE Execiior, EACH
CEETOR fhocesop Thkis INFINTE SEFS.

- .- N
C: CoNRGoRg oy O'= Ly b2, SCHM-P@,OJ) %ﬂ%oc

P oF]"L?g

‘Mutual Exclusion Problem

Each processor’s code is divided into four sections:

W

remainder critical
SEChon

\./

® entry section: synchronize with others to ensure mu-
tually exclusive access to the...

e critical section: use some resource; when done, en-
ter the...

e exit section: clean up, and then enter the...

® remainder section: not interested in the critical sec-
tion

Mutual Exclusion Algorithms

A mutual exclusion algorithm specifies code for entry
and exit sections to ensure that:

e mutual exclusion: at most one processor is in its
critical section at any point, and

e cither no deadlock: if a processor is in its entry
section at some point, then later some processor is

In 1its critical section, ?

e or no lockout: if a processor is in its entry section
at some point, then later the same processor 1S 1n 1tS
critical section, UNBOONOED :

TioNs

e or bounded waiting: no lockout + while a proces-
sor is in its entry section, other processors enter the
critical section no more than a certain number of
times.

LIVELINESS

Algorithm is allowed to assume:
® N0 processor stays in its critical section forever
‘-—

e variables used in the entry and exit sections are not
accessed during the critical and ren remainder sections

Overview of Mutual Exclusion Results

The main complexity measure of interest for shared
memory mutual exclusion algorithms is the amount of
shared space necessary, which is affected by:

e how powerful the type of the shared variables

e how strong the liveness condition to be satisfied
most powerful shared variables (read-moerite),
numbsg of different states of the shared memory is:

. Upperbound = lower bound
\ ;

'ND | 2 (obvious)

NL 7 + c (Burns et al.)

/'/.

W n? (queue alg.) |n (Burns & Ly>h~l\

n
5 (Burns et al.)

A

Overview of Mutual Exclusion Results (cont’d)
- e —

If the shared variables are the weak read/write kind, we
measure the number of distinct variables needed.

upper bound = lower bound

'ND n
| (Burns & Lynch)

NL 3n boolean
~ (tournament alg.)

|
'BW 2n unbounded

| ~ (bakery alg.)

A

Overview of Mutual Exclusion Results (cont’d)
- e ———"

If the shared variables are the weak read/write kind, we
measure the number of distinct variables needed.

upper bound = lower bound

ND n
| (Burns & Lynch)

NL 3n boolean
- (tournament alg.)

|
'BW 2n unbounded

| ~ (bakery alg.)

Analysis of Bakery Algorithm

Mutual Exclusion: This follows by showing that pro-
cessor 1n critical section has the unique smallest Num-
ber (breaking ties with ids) among all contending pro-
CESSOTrS.

No Lockout: This follows by observing that the con-
tending processor p; with the smallest Number (break-
ing ties with ids) will be next — every other processor
that picks a Number while p; is waiting will get a
larger one.

Space Complexity: Number of shared variables is 2n;
Choosing variables are binary but Number variables
are unbounded.

lewwo 4 |z o 5 In Tre CRITICAL SECTON, AND,
FoL soHE K40 puber[K] £0 =
(rowker [K]) > (mumlaer[i 1 E)

%_i‘?i. SiNcE Dols I THE CS, T PASED THE Elod
WAT STATEMENT FOR J=I< . “THERE ARE 2 (ASES:
DPL Rgﬂonuu\pwﬁ‘-] =0 . IN THis CASE : "
© EWMER : p O 1N THE eI
OR. P> NoT FINisH [R CHoonG > NOKBER .
BUU . Aror pomeD THE FRST WA STATEHENT
WTH choosing [K] = FALSE AND HAD AREADY qjoen
s NUMegk.
=P [STARED READING howber AFTER p.
| - pmber [T] < nomber [ic]
2_) {3{ QEﬁD THAT (hﬂ“&i@(ﬁ‘]]k) \ (Muu&\aer[(-,],t)‘]y\'! THLIS
ChoE | THls REMHAINS TRUE ONTIL D cxits THE &S

Ok P DoE> nNol Crooe A NG W NOHBEL (Tﬂﬁ?'

WiLL BE, IN ANY Cﬂst?/' L ARGER. THAN nvwwﬁl). -
Lerna 2 IF pis WWECs THER howber[c) >0,
Hual Py Inducrion, (T 15 €Ay T Prow WT HUMbefEﬂ);

Fol- ANY ©Or. SInGE P s N THE C3S; [N TRE ENTRY
ErTion CHosE A NOHBER > homber [7] ,\JJ.I e, >0. 4

THG-’QR_GE : e DA PRoIDES MUTUAL ExCLUSION,
A 87 CORNTRADITTION .

A —

——

ASSUHG' ?: AND PJ' ARE SINULTANGOUSL! 1N YHE CS.
-t Tpore LEHMA 2 y mum,bev[f«], 'WUML\WEYJ '%O,
ARD TROM Sirip4 (\numbev [L],L) ><huu\9(r[ﬂj.jj)

AND @Uu.,wm’;;b (wwbww [] ,C) I A ConYEAD, H

dEEgcRE!H The Bp TRODES NO LOCKk OUY,

Lol . By CanvRADICTIOR.
AssoHE THRE BXST STERED FRoCESRS, AND
LET p, BE TRE STARED ROCESSR WiTH HINIFUH
(wowber[c] 1) . AlL ProCEsoRs CHoosine A NOBEE
AFTER o (L PECEIE A (AR ER TICKET , AND
“TMEREFORE L N7 EnvER THE CS BEFRE P
Al ProesseRs WTH srrle- TICkET Wil Enk
Tee CS (smcg Ko STAQED) AND Bt [T

B 0, . EENTDALY Pass THE WA STATeHENTS
AND ENTER me CS / A CoNTRADCTION, ¥

SR ETY e /-
7 W eax, owberltl=0 T L IFF ALTHE
TeocEssops ARE IN THE RETAMNDER SECTION |

Lopelowlwale s PRounreo CoRFUTARE (A SEQUBNTE
AFFERIARONE = THE PR ASORITHI IS Botnien ()giiine.

,BOOND@D ME Aleoriim

-—

Fest) | s
STep) Boobed ME Acormim For 2. PROCE SRS
a0
H Allops oCkooT ‘B,Pi
Z FOOLEPN @ @lﬂmlst
\ALrpEs : w[] <
F P S INTERESED IN
ﬁRgEN BV'E" ENTERING THE (S
The MGORITHM 15 ASYMMETRIC : FRIQTY 1S GIVEY
Te D, [; ENERS THE C= IFF 1 IS NOT INTERESED
N T AT AW
('?F TOR 1% ODE -?'{;,il-ﬁ
<EhTy> <EnT\7>
L= \U[{]Z::O
WAIT ONTIL @[@] =0

\\}[@J::j \”[‘1]:::{

WAT ONTIL (W[€]=o0) F (W(e]=4) eom L,
< Cntlicall Secliow D < (rifics] Seclion >
<Ext > < Exit>

\UEe]-- o W= @

/'*’:DG* JumedTo DlMogmApg cHe L'ALGoRITMO appanTisce

LA ME L’Assgﬂ?:ﬂ DI SIALO MA NoN | /AsseNzA D)
oo,

Bounded 2-Processor ME Algorithm - Mo | e o7

Uses 3 binary shared variables:
e W[O]: written by py and read by p;, initially 0

e W[1]: vice versa, initially O

e Priority: written and read by both, initially O

{ Entryp: COrE FoR FL L=04
1. W[1] := 0
2. walt until W[l-1] = 0 or
Prlority = 1
3. W[1] := 1
4. 1f (Priority = 1-1i) then
5. 1f (W[1l-1] = 1) then goto Line 1
6. else wait until (W[1l-1] = 0)
F. < Crtimf Sechion S
Ex1th
8. Priority := 1-1

9. Wi1l := 0

No Deadlock for 2-Processor Algorithm

(Usetul for showing no lockout.)

[t one processor (say pj) ever enters its remainder sec-
tion for good, then the other processor (say pg) cannot
be starved, since it will keepseeingw([1] = 0.

So any deadlock would starve both processors.

WLOG, suppose Priority gets stuck at O after both
processors are stuck in their entry sections.

Thus p 1s not stuck in Line 2. skips Line 5, and is stuck
in Line 6.

Thus py skips Line 6 and is stuck in Line 2 with W[1]
stuck at 0.

But then pg gets unstuck and enters the critical section.

® —@ @ @
pO, pl stuck in pO stuck pl stuck in pO enters
entry, Priority=0 in Line 6 Line 2, W[1l] =0 critical

No Lockout for 2-Processor Algorithm

e S

Suppose 1n contradiction py (WLOGQG) is starved. %

Since there 1s no deadlock. p| subsequently goes criti-
cal infinitely often. o

The first time that p; executes Line 8 after pg gets stuck
In its entry section, Priority gets stuck at 0.

Then p is stuck in Line 6, waiting for W[1] to equal
O,withw[0] = 1.

But the next time p; enters its entry section, it gets
stuck 1in Line 2 with w[1] = 0. This contradicts no
deadlock.

- @ @ -
p0 in entry pl at Line 8; .EQ stuck -in Pl enters entry.
- Priority =0 Line 6 with sets W[1] to 0.

forever after WIOJ = 1 forever gpyck in Line 2

Mutual Exclusion for 2-Processor Algorithm

Mutual Exclusion: Suppose in contradiction py and p;
are simultaneously critical.

oo ® o o
L A _ ¥
rJ | | (1) W[0] = W[1] = 1, both critical
(2)pl's m(}st recent write of I to W[1] (Line 3)] ¥.L.0.6
r B feadn

(3) p0O’s most recent j\-’rite of 1 to W[0] (Line 3)) =

— |
(4) pO’s last read of W[1] (Line 5 or 6)
[

4
WLOG suppose (2) precedes (3). But then 1n (4), pg
reads 1. not 0, and thus py cannot be critical at (1).

A—

f
—» P CaoN BEMieR. THE €S OnNuY IF
Wkl=0 (Lmes 5 AND G

OF THC AL@oQﬂT-M) ,

Tournament Algorithm (cont’d)

Pseudocode ¥ &be8k is recursive: HP. o

e p; begins at node 2 okt +13 j playing o the role of Dy ii0d %
where k = [logn] — 1.

e After winning at node v, “critical section” for node
v IS competltlon for ¥’s parent, node Luj playing
role of py, 04 2 In 2-proc. algorithm.

Correctness: Based on the correctness of the 2-processor
algorithm and the tournament structure.

e Projection of an admissible execution of tournament
algorithm onto a particular node produces an admis-
sible execution of 2-proc. algorithm.

e ME for tournament algorithm follows from ME for
2-proc. algorithm at the root node.

e NL for tournament algorithm follows from NL for

the 2-proc. algorithms at all nodes of tree.
AP0 FONDIMENTO T
What about bounded waiting? No.

e — =

Space Complexity: 3n boolean read/write variables.

: - g E : \

E;/rocedwre, NODE (V: ""TESUJ side: g 4§
L-: wﬂﬂr;bg v @

WHIT JNTIL (erXSIDt?: @ OR W‘OE‘TYV; S‘DE)

WANT;,’DE=.—_4
"] IF (PRtoRm("= 4-3IDE) THEMN

i= (WANTi-snoe""i) Ten T L
CLSE e UNTH (WNT e = ©)

= (v= 1) TAE ¥ KT THE RooT”

WaNTY 1= @

S|IDE *
PRIORITY Vi = {-SIDE

END PROCE DURE

Tournament Algorithm

No lockout mutual exclusion algorithm for n proces-
sors using bounded size variables:

e based on a tournament tree. complete binary tree
with n — 1 nodes

e A copy of the 2-processor algorithm is associated
with each node of the tree

e Each proc. begins at a specified leaf. two per leaf

e A-prog) proceeds to next level in tree by winning the
2-processor competition for current node:
—on left side, play role of pg
—on right side. play role ot py

e when processor wins at root. it enters critical section

—— e e s

l

o
L e T e 3

s e ¥ e

pO, pl p2,p3 p4,p5 p6, p7

L

Y

TADLT - ToLERANCE

i PENGNG (CRASH)

= a //’
& S

\ EYZANTIVE [AReiTRARY. BERAIOR)

 ~ CoohDINATED ATk Promem (CAP)
- ConzgNo0S FROBLEM Ccp)

N SYNCRONODS MPS witH BENEN FAILRES

CP m SYNC MPs WAR BYeawine Fou e

- _ . OPTIMAL # OF Rounps
,2 ALGORI(THTTS : . EXPONENTIAL NESSAGE, ;Bpi;'r/

COBLE 4 oFRomDs Bov
e Ty oF uiNe P (BN n
THE cBE OF ONLY ONE BeNien FALUEE

For ~SYNCROROLS SYSTENMS
ZoTH MPS AND SHMS

—_—

HE CooRONATED ATACK RBLEM € F

SYNC MPS wilh BENGN FAILRES

s '
> g 7 %

,NR)T xi INPUT 2t 2
QUTRIT™ U OUTRIT U,

IF A=A, = 0O AND No HESSAsgs ARRIVE AT
LITY : THEN 31 :ﬁz =0 J MD&

THERE 15 gN EXECOTIOR N WyicH Y.<y, = 4
~JiTJ2—3

A SARIG N

;iéi LeT X BE AN EXECOTWOR AND LE_T—P\ =

RocesR . THE WIEW oF PeW L o</f>
_ v

5 THE SUBSEQUENCE OF COMAUTETI N |

=ML A BETwEEN EXECOTIO NS ;

_ t
A, oy ExecuTions ;o ooy @ o , - og}v

e—%ik F oy 0
T, —THEEE (S No AL@oﬁ”HM
o] (ev CoNTR)

F bExecoTion st 7
RE # OF HespeEs =

AT SouEs T CAF

“Y%=<x. (ET ="

N N Ei
W
) B Aame' LAST Ne=aet F 2 —>p
2
""Z(LET O(,Q B2 AN BXBCoTion IDEN T Jo B
CEPFT M, s NOT™ ReCEIVED py n, /
- g ko
g o(ﬁz T k= @ DEiDES 4 Bom IN
k =i D Decibee 4 As A
THen et - IDENTICAL TO o et =
; k BXCEPT My 1sNGT- CaIvEED

uﬁ} dk‘ /ETJ C\
THE PRocE=Sop &END;NG;,

B,
Ay Ao Oo wHERE N ofy M ISNGT DEUVER-H) Yglst

mngo IDENYICAL ToO o(JWIH 2520 wp of A po P U=, =4
wp . (DENTICAL TO L.',wﬂ'ﬂ A2=0 -b,B P; P L=l ,

) WHERE &_15 27 28 Wes
i e Also H% Ys=Y=1.

Fault-Tolerant Consensus

g

Types of processor failure:

e crash: in middle of step, might only send a subset
of messages

e Byzantine: take arbitrary actions
Consensus problem: Every processor has an input.

e Termination: Eventually every nonfaulty processor
must decide on a value. 4%

e Agreement: All nonfaulty decisions must be the same.
o _ Yo=Yy V P, Py NON-FAULTY
e Validity: 1If all inputs are the same, then the non-

————— *

faulty decision must be that input. 3; € 51,’ - %,

Validity ensures that outputs bear some relationship to
inputs (but also rules out easy solutions!).

Background: Collection of armies, all on the same side.
Each general begins with an opinion whether to attack.
If all attack, they will win, otherwise they will lose.
Some generals are traitors and will behave incorrectly.

f ToroLaay

CL|leVE

Overview of Consensus Results

Let f be the maximum number of faulty processors.

Tight bounds for synchronous message passing:

crash failures Byzantine failures
number of rounds f+1 f+1
total number of procs| > f+1 >3f+1
message size polynomial polynomial

® Asynchronous case: impossible in both shared memory
and message passing, even if only one crash failure is
to be tolerated.

Modeling Processor Failures

For an execution to be admissible:

Crash Failures:
All but a set of at most f processors (the faulty ones)
take an infinite number of steps.

e In synchronous case: once a faulty processor fails
to take a step in a round, it takes no more steps.

e In message passing case: In a faulty processor’s last
step, ag arbitrary subset of the processor’s outgoing
messages make it into the channels. (This is where
the difficulties lie.)

szantine Failures:

A set of at most f processors (the faulty ones) can
send messages with arbitrary content and change state
arbitrarily (not according to their transition functions).

Consensus Algorithm for Crash Failures

Code for p;:

\

v := my input E%zé_
at each round 1 through f+1:
if I have not yet sent v then
j‘ send v to all
|v := minimum among all received
values and current value of v

_in round f£+1, decide on v=«

Termination: By the code.
O

Validity: Holds since processors do not introduce spu-
rious messages: if all inputs are the same, then that is

the only value ever in circulation.
O

Analysis of Crash Consensus Algorithm

2y Comir. Giaidi
Agreement: Suppose p; demdes on a smaller value, &,
than does p;. Then x was hidden from p; by a chain of
faulty processors:

round round round round

BEOE = OE
ﬁ s R a7y \?/ fr)

There are f + 1 faulty processors in this chain, a con-
tradiction.
u

Performance:

G i e —— e
e number of processors n > f
e f + 1 rounds

O@Q : |VDmessages each of size log|V|, where V is

@put set.
mi A HEsHRES /zn = MM(IV’ f+1)<nt)V|<
= Ot |v))=

= O(v*)

o = %34'.;552,) b i / :ju eX +=<h
AND THE NumBeR OF DIFRERENT VALUES <. K. .

L _ _
7# ROOND gL (see DN’D"SJ")

Cobe R P,
Viz wy inpi
akt eacl roond. 4 ool %QH
'fak%notdetsentv then,

Sendl. it to X
Vi puniuon Z%W‘d ol i%
ab Loy roungL docsali o, ¥

M@E::j.:iW 1 é#h-%\g-«i) . Min (IV[/%+9=
OCm?n (J'a;, nz.f\/f))-

&

Byzanﬁhe Failures (Lll*'(S ARE REUABLF)

How many processors total are needed to solve consen-
sus when f = 1?

e Suppose n = 2. If pg starts with input O and p;
starts with input 1, then someone has to change, but
not both. What if one processor is faulty? How can
the other one know?

e Suppose n = 3. If py has input 0, p; has input 1,
and po 1s faulty, then a tie-breaker is needed, but po
might be malicious.

Theorem (5.8): Any consensus algorithm for message
passing that tolerates 1 Byzantine failure must have at
least 4 processors total.

Proof: Suppose there is a consensus algorithm A =

(A, B, C) for 3 processors and 1 Byzantine failure.
B

> DY CaNTRANToR

A C

(0 ¥

Processor Lower Bound for Byzantine Case

Now consider a ring of six processors running compo-
nents of A in this fashion:

Give each processor the indicated input and let the ring
execute. Call the resulting execution 8.

® B does not necessarily solve consensus: it doesn’t
have to, since the assumptions under which A is
supposed to work do not hold.

e However, the processors do something. This be-
havior will be used to specify the behavior of the
faulty processors in certain particularly adversarial
executions of A on the triangle.

Processor Lower Bound (cont’d)

Let a1 be this execution, in which 1 is decided:

acts like p2 to pl
of n
acts like FAOLTY

p5 to p0 in 3

Let ap be this execution, in which 0 is decided:
L. UTPuT
FAUTY
acts like p0 to p acts like p3 to py

BV

Processor Lower Bound (cont’d)

Let ag be this execution:

A
—(0
sy acts like pl

to p0 in B — INPUT 4
What is decided in a3?
e po’s view in a3 equals py’s view in B, which equals
po’s view in eq. Thus pgy decides 1 in az3.

e po’s view in o3 equals py’s view in B, which equals
po’s view in ap. Thus po decides Q 1n o/3.
e But this contradicts agreement.

O]

Read reduction in textbook to show n = 3f 1s 1mpos-
sible for f > 1.

THEOREM: IN & sSysTEM wiTF oRS Wi
HEC BN WITH 1 Procssors, semy wAH

q-mr-F BYZQNTTI\IE W/‘m&é‘ IS No AwgorliHM
WHICH SolES> THE CQONSENSUS FROBLEM |F 55,;.

Thoor . (Bt GoNRADICTION)

Tor e spke of simpLcry Lo (Y,
/ W, e— .

Yhemwon TRE 6T oF PRoFssks T ——

]
2 SeT Pt
. > f:ﬁ, B ,E’> }&HCH QNTAINING EXACTLY
= 1 YRolessops.

=

E)

/

-]{: EE 1S5 FAULTY wmp- AT MOST
§ Froceisors AQE ATy N THE SIMXATED
SYSTEM e “THE SIMULATED SYSEH WORKS

e cnt oy B s cenety

Consensus Algorithms fg

e ——

Minimum number of rounds is f + 1, since crash fail-
ures are a special case of Byzantine failures.

Exponential Tree Algorithm HEIGHT: {+/

Each processor maintains a tree data structure in its
local state. Each node of the tree is labeled with a
sequence of processor indices with no repeats:

e root’s label is empty sequence A (root has level 0)
e root has n children labeled 0 through n — 1

e child node labeled ¢ has n — 1 children labeled 7 : 0
through 7 : n — 1, skipping ¢ : ¢

e in general, node at level d with label v has n — d
children labeled v : 0 through v : » — 1, skipping
any index appearing in v = [LENGTH OF THE (ABEL: oltt

e nodes at level f + 1 are the leaves.

Exponential Tree Algorithm

Each processor fills in the tree nodes with values as the
rounds go by:

e initially, store your input in the root (level 0)

e round 1: send level O of your tree (the root);
store value received from p; in node j (level 1)
(default if none)

e round 2: send level 1 of your tree;
store value received from p; for node £ in node k:j

(level 2) (“the value that p; told me that p, told p;™)
(default if none)

e continue for f + 1 rounds

In the last round, each processor uses the values in 1ts
tree to compute its decision. The decision is resolve()),

where resolve(r) equals

e value in tree node labeled 7 if it is a leaf

e majority{resolve(r’) : 7’ is a child of 7} otherwise
(default if none).

Example of Exponential Tree

The tree whenn = 4 and f = 1:

LEVEL
—»

OF LeveL d

IN GENERHL, A NoDE N THE TREE \'S LABEWED

WH A Seeyence -
Li: (/z. - ‘:d'
i
L ¥ SAYs THAT L st THAT "d 9 SAYD TRAT. ..

- TRAT lﬂ SG!DX

Proof of Exponential Tree Algorithm
LET I AND 7y BE NoNFAOLTY .

Lemma (5.10): Nonfaulty Processor p; s resolved value

for node m = 7’7, what p; reports for n’, equals what

p; has stored for 7',

Proof: By induction on the height of 7.

Basis: m 1s a leaf Then p; stores in node m what

p; sends it for 7’ in the last round.. For leaves, the

resolved value is the tree value.

Induction: m is not a leaf.

e By tree definition, 7 has at least n — f chlldren >24

e Sincen > 3f, m has majority of nonfaulty chlldren
e Let 7k be a child of 7 such that pj, 1s nonfaulty.

e Since p; is nonfaulty, p; correctly reports to p;. that
it has some value # in node 7’; thus p;, stores v in
node 7 = 7'5.

e By induction, p;’s resolved value for mk equals the
value v that p;, has in its tree node 7.

e So all of 7’s nonfaulty children resolve to v in p;’s
tree, and thus 7 resolves to v in p;’s tree.

Proof of Exponential Tree Algorithm

nonfaulty pj nonfaulty pk nonfaulty pi

@),

)
stores o NN | =~
Vin @ resolves to V =1 .

tree A
stores ' f
free - @ 2z

resolves to V. majority of

\ by ind. hyp. children resolve toV
NO-FAD
O ﬁw

Validity: Suppose all'inputs are v.

e Nonfaulty processor p; decides on resolve(A), which
is the majority among resolve(j), 0 < j < n — 1.

e The previous lemma implies that for each nonfaulty
p; » resolve(j) is the value stored at the root of p;’s
tree, which i1s _p_j’s input v.

e Thus p; decides v.

[

Proof of Exponential Tree Algorithm (cont’d)

Agreement: Show that all nonfaulty processors re-
solve the same value for their tree roots.

FA node is common if all nonfaulty processors resolve
" the same value for 1t]We will show the root is common.
Strategy:
N T

1. Show that every node with a certain property is com-
mon.

2. Show that the root has the property.

‘Lemma (5.11): If every 7-to-leaf path has a common
node, then 7 1s common.

Proof: By induction on the height of 7.

Basis: 7 is a leaf. Then every 7w-to-leaf path consists
solely of 7, and since the path is assumed to contain a
common node, that node 1s .

Proof of Exponential Tree Algorithm (cont’d)

Induction: is not a leaf. Suppose in contradiction 7
W_ —
1S not common. TTK

e Then every child 7/ of 7 has the property that every
T’-to-leaf path has a common node. Assore—feNex

2 Smce the height of 7’ is smaller than thehelght of 7r
the inductive hypothes1s implies that __7_r_‘ 1S common.

e Therefore all nonfaulty processors compute the same
resolved value for 7' and thus 7 1s common.

O, us RIOT S “OMHCON:
Z)Show every root-to-leaf path has a common node.
e There are f + 2 nodes on a root-to-leaf path.

e The label of each non-root node on a root-to-leaf
path ends in a distinct processor index: 1,29, ... ,1f+]

e At least one of these indices is that of a nonfaulty
processor, say .
e Lemma 5.10 implies that the node whose label ends
in ¢} 1S common.
O

Proof of Exponential Tree Algorithm (cont’d)

Complexity:
e n > 3f processors
e f + 1 rounds

e Messages in round r7c?"ontain
nn—1)(n—-2)---(n— (r —2)) values.
When » = f + 1, this is exponential if f is more
than constant relative to n.

CPSC 668: Distributed Algorithms & Systems J. Welch, Texas A&M University [119]

A Polynomial Algorithm for Byzantine Agreement

We can reduce the message size with a simple algo-
rithm that increases the number of processors to n >
4 f and number of rounds to 2(f + 1).

Phase King Algorithm | e -

Uses f + 1 phases, each taking two rounds.
Code for p;:

pref := my input v

first round of phase k:
send pref to all
receive prefs of others
let maj be the value that occurs > n/2 times
among all prefs (0 if none)
let mult be number of times maj occurs

second round of phase K:
if i = K then send maj // I am the phase king
receive tie-breaker from P (0 if none)
if mult > /2 + ¢
then pref := maj

else pref := tie-breaker
if K = £+1 then decide pref

CPSC 668: Distributed Algorithms & Systems J. Welch, Texas A&M University [122]

Progf of Phase King Algorithm (comnt’d)

Agreement:

o Since there are f + 1 phases, at least one has a
nonfaulty king.

e Lemma 5.14 implies that at the end of thaft phase
all nonfaulty processors have the same preference.

9

Lemma 5.13 implies that from that phase onward,
the nonfaulty preferences stay the same.

@ Thus the decisions are the same.
]

Performamce:

o number of processors n > &f
o 2(f + 1) rounds U (L pus (V)D

o O(n?f) messages, each of size ¥NE8.

V‘ INPUT SET

L e-ond Mostwt ' e secy ow PW n=4’}—~
g che L' algortuo Rirse-Kine (allisce .

f

CPSC 668: Distributed Algorithms & Systems J. Welch, Texas A&M University [120]

Proof of Phase King Algorithm

VALIDITY
Lemma (S.13): If all nonfaulty processors prefer v at
start of phase K, then all do at end of phase k&
Proof:

e Each nonfaulty processor receives at least n — f
preferences (including its own) for v in the first round
of phase k.

=p Sincen > 4fpn—f >n/2+ f=p [v=f >n/k

@ Thus the processor still prefers v. FIRST RoUND :
CHooSE V
[SECOND RoUND :
MAWTAIN Vv

Validity: Follows from Lemma 5.13.
O

CPSC 668: Distributed Algorithms & Systems J. Welch, Texas A&M University [121]

Proof of Phase King Algorithm (cont’d)

Lemma (S.14): If the king of phase kg is nonfaulty,
then all nonfaulty processors have the same preference
at the end of phase k.

Proof: Consider two nonfaulty processors p; and p;.

Case I: p; and p; both use py’s tie-breaker. Smce D 18
n@nfauﬂtya &h@y agree.

Case 2: p; uses its majority value and Dj uses the king’s
tie-breaker.

® p; s majority value is v.
® p; receives more than n/2 + f preferences for v.
- ® p receives more than n/2 preferences for v.
o pg’s tie-breaker is v.
Case 3: p; and p; both use their own majority values.
D;’S maj@rﬁlty_\vaﬂu@ Is v.
o p; recetves more than n/2 + f preferences for v.
o p; recelves more than n/2 preferences for v.

@ g_:ajs majority value is also v.
o

