

Università Degli Studi Di L'Aquila

Secondo parziale di **Algoritmi e Strutture Dati con Laboratorio** (parte di teoria) Martedì 12 Febbraio 2008 – Proff. Guido Proietti e Giovanna Melideo

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:

Da riconsegnare entro 40 minuti

ESERCIZIO: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Dati due elementi u, v appartenenti ad un universo totalmente ordinato U, una funzione hash $h(\cdot)$ si dice perfetta se: a) $u = v \implies h(u) \neq h(v)$ b) $u \neq v \implies h(u) = h(v)$ c) $u = v \implies h(u) = h(v)$ *d) $u \neq v \implies h(u) \neq h(v)$
- 3. L'albero BFS (ovvero ottenuto mediante una visita in ampiezza) di un grafo connesso di n vertici ha altezza: *a) O(n) b) O(1) c) $O(\log n)$ d) o(n)
- 4. Sia G = (V, E) un grafo completo di 6 vertici, in cui i vertici sono numerati da 1 a 6, ed il peso dell'arco (i, j) è pari al minimo tra $i \in j$. Qual è la distanza tra il vertice 3 e il vertice 6 in G?

 a) 1 *b) 2 c) 3 d) 6
- 5. Il minimo albero ricoprente del grafo della domanda (4) ha peso totale: a) 6 b) 15 c) 0 **d) 5
- 6. Dato un grafo pesato con n vertici ed m = O(n) archi, l'algoritmo di Dijkstra realizzato con heap di Fibonacci costa: a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) O(m) *d) $O(n \log n)$
- 7. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m = \Theta(n)$, ha complessità: *a) $\Theta(n^2)$ b) $\Theta(n+m)$ c) $\Theta(n^3)$ d) $O(m \log n)$
- 8. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti ad n-1 Union ed m Find può essere risolto in:

 a) $\Theta(n)$ b) $\Theta(m)$ c) $\Theta(m^2)$ *d) $O(n+m\log n)$
- 9. Dato il grafo di domanda 4, il primo arco scartato dall'algoritmo di Kruskal ha peso: a) 1 $\,$ *b) 2 $\,$ c) 3 $\,$ d) 6
- 10. Dato un grafo completo con n vertici, l'algoritmo di Prim eseguito con un heap binario costa: a) $O(n^2)$ *b) $O(n^2 \log n)$ c) $\Theta(n^2 \log n)$ d) $\Theta(n^2)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										